Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

An update on regulatory T cells in transplant tolerance and rejection

Abstract

Several types of T cells with immunosuppressive properties have been identified, but FOXP3+ regulatory T (TREG) cells have emerged as a dominant cell type; they are critically involved in the induction and maintenance of immune tolerance. Manipulation of this cell type for the induction of transplant tolerance including renal transplant tolerance has attracted considerable attention. Studies in this area have demonstrated unexpected complexities, and attempts to translate TREG cells towards clinical utility have met with unanticipated difficulties. In this Review, a broad overview is provided on recent progress in the study of TREG cells, focusing on challenges, opportunities, and emerging approaches in exploiting TREG cells for the induction of transplant tolerance.

Key Points

  • Regulatory T (TREG) cells are indispensable in transplant tolerance

  • TREG cells are heterogeneous and are not inherently stable; their suppressive programs can be turned off or they may be reprogrammed to become T-effector cells

  • Some effector cell types, such as memory T cells, can evade TREG-cell-mediated suppression

  • Mechanisms that regulate the in vivo induction and stability of TREG cells are poorly defined

  • The mechanism by which FOXP3+ TREG cells interact with other types of regulatory cells in transplant tolerance is unknown

  • Potential complications of immunodeficiency exist from nonspecific expansion of TREG cells

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key features and differences between nTREG cells and iTREG cells.
Figure 2: Lineage plasticity of TREG cells in the periphery.
Figure 3: Evolution of TREG cells in transplant tolerance.

Similar content being viewed by others

References

  1. Lechler, R., Garden, O. A. & Turka, L. A. The complementary roles of deletion and regulation in transplantation tolerance. Nat. Rev. Immunol. 3, 147–158 (2003).

    Article  CAS  Google Scholar 

  2. Strom, T. B. & Koulmanda, M. Recently discovered T cell subsets cannot keep their commitments. J. Am. Soc. Nephrol. 20, 1677–1680 (2009).

    Article  CAS  Google Scholar 

  3. Zhou, X., Bailey-Bucktrout, S., Jeker, L. T. & Bluestone, J. A. Plasticity of CD4(+)Foxp3(+) T cells. Curr. Opin. Immunol. 21, 281–285 (2009).

    Article  CAS  Google Scholar 

  4. Vu, M. D. et al. OX40 costimulation turns off Foxp3+ Tregs. Blood 110, 2501–2510 (2007).

    Article  CAS  Google Scholar 

  5. Sakaguchi, S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004).

    Article  CAS  Google Scholar 

  6. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    Article  CAS  Google Scholar 

  7. Zhang, Z. X., Yang, L., Young, K. J., DuTemple, B. & Zhang, L. Identification of a previously unknown antigen-specific regulatory T cells and its mechanism of suppression. Nat. Med. 6, 782–789 (2000).

    Article  CAS  Google Scholar 

  8. Seino, K.-I. et al. Requirement for natural killer T (NKT) cells in the induction of allograft tolerance. Proc. Natl Acad. Sci. USA 98, 2577–2581 (2001).

    Article  CAS  Google Scholar 

  9. Wood, K. J. & Sakaguchi, S. Regulatory T cells in transplantation tolerance. Nat. Rev. Immunol. 3, 199–210 (2003).

    Article  CAS  Google Scholar 

  10. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    CAS  Google Scholar 

  11. Setoguchi, R., Hori, S., Takahashi, T. & Sakaguchi, S. Homeostatic maintenance of natural Foxp3+ CD25+ CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med. 201, 723–735 (2005).

    Article  CAS  Google Scholar 

  12. Curotto de Lafaille, M. A. & Lafaille, J. J. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30, 626–635 (2009).

    Article  CAS  Google Scholar 

  13. Molinero, L. L. et al. CARMA1 controls an early checkpoint in the thymic development of FoxP3+ regulatory T cells. J. Immunol. 182, 6736–6743 (2009).

    Article  CAS  Google Scholar 

  14. Gao, W. et al. Contrasting effects of cyclosporine and rapamycin on de novo generation of antigen-specific regulatory T cells. Am. J. Transplant. 7, 1722–1732 (2007).

    Article  CAS  Google Scholar 

  15. Liu, Y. et al. A critical function for TGF-beta signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat. Immunol. 9, 632–640 (2008).

    Article  CAS  Google Scholar 

  16. Chen, W. et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    Article  CAS  Google Scholar 

  17. Fontenot, J. D. et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22, 329–341 (2005).

    Article  CAS  Google Scholar 

  18. Waldmann, H. Transplantation tolerance—where do we stand? Nat. Med. 5, 1245–1248 (1999).

    Article  CAS  Google Scholar 

  19. Benson, M. J., Pino-Lagos, K., Rosemblatt, M. & Noelle, R. J. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med. 204, 1765–1774 (2007).

    Article  CAS  Google Scholar 

  20. Gao, W. et al. Treg versus Th17 lymphocyte lineages are cross-regulated by LIF versus IL-6. Cell Cycle 8, 1444–1450 (2009).

    Article  CAS  Google Scholar 

  21. Francisco, L. M. et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 206, 3015–3029 (2009).

    Article  CAS  Google Scholar 

  22. Wei, J. et al. Antagonistic nature of T helper 1/2 developmental programs in opposing peripheral induction of Foxp3+ regulatory T cells. Proc. Natl Acad. Sci. USA 104, 18169–18174 (2007).

    Article  CAS  Google Scholar 

  23. Haxhinasto, S., Mathis, D. & Benoist, C. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 205, 565–574 (2008).

    Article  CAS  Google Scholar 

  24. Lal, G. & Bromberg, J. S. Epigenetic mechanisms of regulation of Foxp3 expression. Blood 114, 3727–3735 (2009).

    Article  CAS  Google Scholar 

  25. Wong, J., Mathis, D. & Benoist, C. TCR-based lineage tracing: no evidence for conversion of conventional into regulatory T cells in response to a natural self-antigen in pancreatic islets. J. Exp. Med. 204, 2039–2045 (2007).

    Article  CAS  Google Scholar 

  26. Shevach, E. M. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30, 636–645 (2009).

    Article  CAS  Google Scholar 

  27. D'Alessio, F. R. et al. CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury. J. Clin. Invest. 119, 2898–2913 (2009).

    Article  CAS  Google Scholar 

  28. Joffre, O. et al. Prevention of acute and chronic allograft rejection with CD4+CD25+Foxp3+ regulatory T lymphocytes. Nat. Med. 14, 88–92 (2008).

    Article  CAS  Google Scholar 

  29. Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007).

    Article  CAS  Google Scholar 

  30. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    Article  CAS  Google Scholar 

  31. Bettni, M. & Vignali, D. A. Regulatory T cells and inhibitory cytokines in autoimmunity. Curr. Opin. Immunol. 21, 612–618 (2009).

    Article  Google Scholar 

  32. Collison, L. W. et al. The inhibitory cytokine IL-35 contributes to regulatory T cell function. Nature 450, 566–569 (2007).

    Article  CAS  Google Scholar 

  33. You, S. et al. Adaptive TGF-beta-dependent regulatory T cells control autoimmune diabetes and are a privileged target of anti-CD3 antibody treatment. Proc. Natl Acad. Sci. USA 104, 6335–6340 (2007).

    Article  CAS  Google Scholar 

  34. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGF-beta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17 producing cells. Immunity 24, 179–189 (2006).

    Article  CAS  Google Scholar 

  35. Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10, 1000–1007 (2009).

    Article  CAS  Google Scholar 

  36. Wan, Y. Y. & Flavell, R. A. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445, 766–770 (2007).

    Article  CAS  Google Scholar 

  37. Yang, X. O. et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29, 44–56 (2008).

    Article  CAS  Google Scholar 

  38. Zhou, X. et al. Selective miRNA disruption in Treg cells leads to uncontrolled autoimmunity. J. Exp. Med. 205, 1983–1991 (2008).

    Article  CAS  Google Scholar 

  39. Radhakrishnan, S. et al. Reprogrammed FoxP3+ T regulatory cells become IL-17+ antigen-specific autoimmune effectors in vitro and in vivo. J. Immunol. 181, 3137–3147 (2008).

    Article  CAS  Google Scholar 

  40. Li, X. C., Rothstein, D. M. & Sayegh, M. H. Costimulatory pathways in transplantation: challenges and new developments. Immunol. Rev. 229, 271–293 (2009).

    Article  CAS  Google Scholar 

  41. Lu, L. F. et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30, 80–91 (2009).

    Article  CAS  Google Scholar 

  42. Auchincloss, H. Jr & Sultan, H. Antigen processing and presentation in transplantation. Curr. Opin. Immunol. 8, 681–687 (1996).

    Article  CAS  Google Scholar 

  43. Rulifson, I. C., Szot, G. L., Palmer, E. & Bluestone, J. A. Inability to induce tolerance through direct antigen presentation. Am. J. Transplant. 2, 510–519 (2002).

    Article  CAS  Google Scholar 

  44. Hara, M. et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J. Immunol. 166, 3789–3796 (2001).

    Article  CAS  Google Scholar 

  45. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    Article  CAS  Google Scholar 

  46. Graca, L., Cobbold, S. P. & Waldmann, H. Identification of regulatory T cells in tolerated allografts. J. Exp. Med. 195, 1641–1646 (2002).

    Article  CAS  Google Scholar 

  47. Zhang, N. et al. Regulatory T cells sequentially migrate from inflamed tissues to draining lymph nodes to suppress the alloimmune response. Immunity 30, 458–469 (2009).

    Article  CAS  Google Scholar 

  48. Surh, C. D., Boyman, O., Purton, J. F. & Sprent, J. Homeostasis of memory T cells. Immunol. Rev. 211, 154–163 (2006).

    Article  CAS  Google Scholar 

  49. Qin, S. et al. “Infectious” transplantation tolerance. Science 259, 974–977 (1993).

    Article  CAS  Google Scholar 

  50. Honey, K., Cobbold, S. P. & Waldmann, H. CD40 ligand blockade induces CD4+ T cell tolerance and linked suppression. J. Immunol. 163, 4805–4810 (1999).

    CAS  PubMed  Google Scholar 

  51. Yang, J. et al. Allograft rejection mediated by memory T cells is resistant to regulation. Proc. Natl Acad. Sci. USA 104, 19954–19959 (2007).

    Article  CAS  Google Scholar 

  52. Korn, T. et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat. Med. 13, 423–431 (2007).

    Article  CAS  Google Scholar 

  53. Roy, S. et al. NK cells lyse T regulatory cells that expand in response to an intracellular pathogen. J. Immunol. 180, 1729–1736 (2008).

    Article  CAS  Google Scholar 

  54. Allan, S. E. et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int. Immunol. 19, 345–354 (2007).

    Article  CAS  Google Scholar 

  55. Seddiki, N. et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med. 203, 1693–1700 (2006).

    Article  CAS  Google Scholar 

  56. Liu, W. et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 203, 1701–1711 (2006).

    Article  CAS  Google Scholar 

  57. Miyara, M. et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30, 899–911 (2009).

    Article  CAS  Google Scholar 

  58. Allan, S. E. et al. The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs. J. Clin. Invest. 115, 3276–3284 (2005).

    Article  CAS  Google Scholar 

  59. Bayer, A. L., Yu, A., Adeegbe, D. & Malek, T. R. Essential role for interleukin-2 for CD4+CD25+ T regulatory cell development during the neonatal period. J. Exp. Med. 201, 769–777 (2005).

    Article  CAS  Google Scholar 

  60. Zheng, X. X. et al. Favorably tipping the balance between cytopathic and regulatory T cells to create transplantation tolerance. Immunity 19, 503–514 (2003).

    Article  CAS  Google Scholar 

  61. Webster, K. E. et al. In vivo expansion of T reg cells with IL-2-mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. J. Exp. Med. 206, 751–760 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

X. C. Li and L. A. Turka are supported by the NIH, USA.

Author information

Authors and Affiliations

Authors

Contributions

X. C. Li researched data for the article and contributed to the discussion of content, writing the article, and reviewing/editing the manuscript before submission. L. A. Turka contributed to the discussion of content, writing the article, and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Xian Chang Li.

Ethics declarations

Competing interests

L. A. Turka declares that he has acted as a consultant for GlaxoSmithKline, Biogen IDEC and Bristol–Myers Squibb, and is a stockholder/director for Novartis. X. C. Li declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Turka, L. An update on regulatory T cells in transplant tolerance and rejection. Nat Rev Nephrol 6, 577–583 (2010). https://doi.org/10.1038/nrneph.2010.101

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing