Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Weibel–Palade bodies—sentinels of acute stress

Abstract

Weibel–Palade bodies are uniquely present in endothelial cells and harbor a range of bioactive substances that participate in hemostasis, vasomotion, inflammation and fibrinolysis, in addition to modulating vascular permeability, angiogenic sprouting, and stem cell mobilization. This Perspectives article examines the latest insights into the biogenesis of these organelles and the cellular and molecular mechanisms of their exocytosis. In addition, we advance two hypotheses on the pathogenic role of these organelles: first, in the development of endothelial dysfunction associated with the reduction of nitric oxide bioavailability and accumulation of peroxynitrite and second, as a first-line response to acute stress that determines the balance between regenerative and proinflammatory signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron micrographs showing Weibel–Palade bodies.
Figure 2: Signal transduction pathways that regulate the exocytosis of Weibel–Palade bodies.
Figure 3: Hypothetical role of Weibel–Palade bodies as stress-responsive sentinels and mediators of inflammation.

Similar content being viewed by others

References

  1. Weibel, E. R. & Palade, G. E. New cytoplasmic components in arterial endothelia. J. Cell Biol. 23, 101–112 (1964).

    Article  CAS  Google Scholar 

  2. Metcalf, D. J., Nightingale, T. D., Zenner, H. L., Lui-Roberts, W. W. & Cutler, D. F. Formation and function of Weibel–Palade bodies. J. Cell Sci. 121, 19–27 (2008).

    Article  CAS  Google Scholar 

  3. Lowenstein, C. J., Morrell, C. N. & Yamakuchi, M. Regulation of Weibel–Palade body exocytosis. Trends Cardiovasc. Med. 15, 302–308 (2005).

    Article  CAS  Google Scholar 

  4. Valentijn, K. M., Valentijn, J. A., Jansen, K. A. & Koster, A. J. A new look at Weibel–Palade body structure in endothelial cells using electron tomography. J. Struct. Biol. 161, 447–458 (2008).

    Article  CAS  Google Scholar 

  5. Rondaij, M. G., Bierings, R., Kragt, A., van Mourik, J. A. & Voorberg, J. Dynamics and plasticity of Weibel–Palade bodies in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 26, 1002–1007 (2006).

    Article  CAS  Google Scholar 

  6. Wolff, B., Burns, A. R., Middleton, J. & Rot, A. Endothelial cell 'memory' of inflammatory stimulation: human venular endothelial cells store interleukin 8 in Weibel–Palade bodies. J. Exp. Med. 188, 1757–1762 (1998).

    Article  CAS  Google Scholar 

  7. Øynebråten, I., Bakke, O., Brandtzaeg, P., Johansen, F. E. & Haraldsen, G. Rapid chemokine secretion from endothelial cells originates from 2 distinct compartments. Blood 104, 314–320 (2004).

    Article  Google Scholar 

  8. Fiedler, U. et al. The Tie-2 ligand angiopoietin 2 is stored in and rapidly released upon stimulation from endothelial cell Weibel–Palade bodies. Blood 103, 4150–4156 (2004).

    Article  CAS  Google Scholar 

  9. Kobayashi, T. et al. The tetraspanin CD63/lamp3 cycles between endocytic and secretory compartments in human endothelial cells. Mol. Biol. Cell. 11, 1829–1843 (2000).

    Article  CAS  Google Scholar 

  10. Matsushita, K. et al. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 115, 139–150 (2003).

    Article  CAS  Google Scholar 

  11. Morange, P. E. et al. Endothelial cell markers and the risk of coronary heart disease: the Prospective Epidemiological Study of Myocardial Infarction (PRIME) study. Circulation 109, 1343–1348 (2004).

    Article  CAS  Google Scholar 

  12. Nybo, M. & Rasmussen, L. M. The capability of plasma osteoprotegerin as a predictor of cardiovascular disease: a systematic literature review. Eur. J. Endocrinol. 159, 603–608 (2008).

    Article  CAS  Google Scholar 

  13. Förstermann, U. & Münzel, T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113, 1708–1714 (2006).

    Article  Google Scholar 

  14. Simmons, E. M. et al. Plasma cytokine levels predict mortality in patients with acute renal failure. Kidney Int. 65, 1357–1365 (2004).

    Article  CAS  Google Scholar 

  15. Araki, M. et al. Expression of IL-8 during reperfusion of renal allografts is dependent on ischemic time. Transplantation 81, 783–788 (2006).

    Article  CAS  Google Scholar 

  16. Pinsky, D. J. et al. Hypoxia-induced exocytosis of endothelial cell Weibel–Palade bodies. A mechanism for rapid neutrophil recruitment after cardiac preservation. J. Clin. Invest. 97, 493–500 (1996).

    Article  CAS  Google Scholar 

  17. Kuo, M. C. et al. Ischemia-induced exocytosis of Weibel–Palade bodies mobilizes stem cells. J. Am. Soc. Nephrol. 19, 2321–2330 (2008).

    Article  CAS  Google Scholar 

  18. Patschan, D., Patschan, S., Gobe, G. G., Chintala, S. & Goligorsky, M. S. Uric acid heralds ischemic tissue injury to mobilize endothelial progenitor cells. J. Am. Soc. Nephrol. 18, 1516–1524 (2007).

    Article  CAS  Google Scholar 

  19. Leemans, J. C. et al. Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J. Clin. Invest. 115, 2894–2903 (2005).

    Article  CAS  Google Scholar 

  20. Favre, J. et al. Toll-like receptors 2-deficient mice are protected against postischemic coronary endothelial dysfunction. Arterioscler. Thromb. Vasc. Biol. 27, 1064–1071 (2007).

    Article  CAS  Google Scholar 

  21. Wu, H. et al. TLR4 activation mediates kidney ischemia/reperfusion injury. J. Clin. Invest. 117, 2847–2859 (2007).

    Article  CAS  Google Scholar 

  22. Chun, J. & Prince, A. Activation of Ca2+-dependent signaling by TLR2. J. Immunol. 177, 1330–1337 (2006).

    Article  CAS  Google Scholar 

  23. Schömig, K. et al. Interleukin-8 is associated with circulating CD133+ progenitor cells in acute myocardial infarction. Eur. Heart J. 27, 1032–1037 (2006).

    Article  Google Scholar 

  24. He, T., Peterson, T. E. & Katusic, Z. S. Paracrine mitogenic effect of human endothelial progenitor cells: role of interleukin-8. Am. J. Physiol. Heart Circ. Physiol. 289, H968–H972 (2005).

    Article  CAS  Google Scholar 

  25. Kocher, A. A. et al. Myocardial homing and neovascularization by human bone marrow angioblasts is regulated by IL-8/Gro CXC chemokines. J. Mol. Cell. Cardiol. 40, 455–464 (2006).

    Article  CAS  Google Scholar 

  26. Udani, V. et al. Differential expression of angiopoietin 1 and angiopoietin 2 may enhance recruitment of bone marrow-derived endothelial precursor cells into brain tumors. Neurol. Res. 27, 801–806 (2005).

    Article  CAS  Google Scholar 

  27. Daly, C. et al. Angiopoietin 2 functions as an autocrine protective factor in stressed endothelial cells. Proc. Natl Acad. Sci. USA 103, 15491–15496 (2006).

    Article  CAS  Google Scholar 

  28. Asahara, T. et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 18, 3964–3972 (1999).

    Article  CAS  Google Scholar 

  29. Matsushita, K. et al. Vascular endothelial growth factor regulation of Weibel–Palade-body exocytosis. Blood 105, 207–214 (2005).

    Article  CAS  Google Scholar 

  30. Chavakis, E. et al. High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells. Circ. Res. 100, 204–212 (2007).

    Article  CAS  Google Scholar 

  31. Bertuglia, S. et al. ITF1697, a stable Lys–Pro-containing peptide, inhibits Weibel–Palade body exocytosis induced by ischemia/reperfusion and pressure elevation. Mol. Med. 13, 615–624 (2007).

    Article  CAS  Google Scholar 

  32. Yamakuchi, M. et al. HMG-CoA reductase inhibitors inhibit endothelial exocytosis and decrease myocardial infarct size. Circ. Res. 96, 1185–1192 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Studies in the authors' laboratory were supported in part by NIH grants DK54602, DK052783 and DK45462 and by Westchester Artificial Kidney Foundation (M. S. Goligorsky) and a Fellowship grant from the Deutsche Forschungsgemeinschaft (PA 1530/3-1; D. Patschan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Goligorsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goligorsky, M., Patschan, D. & Kuo, MC. Weibel–Palade bodies—sentinels of acute stress. Nat Rev Nephrol 5, 423–426 (2009). https://doi.org/10.1038/nrneph.2009.87

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2009.87

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing