Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

ANCA-associated vasculitis: from bench research to novel treatments

Abstract

Small-vessel vasculitic syndromes such as Wegener granulomatosis and microscopic polyangiitis, which are associated with circulating antineutrophil cytoplasmic autoantibodies, are an important cause of renal failure. Current immunosuppressive regimens based on cyclophosphamide have significantly improved survival in patients with these conditions. However, such treatments are toxic, increase the risk of infection and do not cure the disease; fresh approaches are, therefore, required. An increased understanding of the pathogenesis of these syndromes has allowed the rational use of newer therapies such as rituximab, an anti-CD20 chimeric monoclonal antibody that depletes B cells. Further understanding of the disease pathogenesis is crucial to the development of novel targeted therapies, which are urgently required to improve patient prognosis. Future potential therapies include molecules that block signaling pathways that are essential in the pathogenesis of these diseases.

Key Points

  • Current treatment regimens for antineutrophil cytoplasmic autoantibody (ANCA)-associated vasculitides that are based on cyclophosphamide have improved survival but are associated with significant morbidity

  • ANCAs are pathogenic antibodies that activate neutrophils and cause inflammation

  • B cells have a key role in the pathogenesis of ANCA-associated vasculitides and their removal using B-cell-depleting therapeutic antibodies offers hope for the future and is being investigated in randomized trials

  • Signaling pathways in neutrophils activated by ANCAs differ from those induced by immune complexes; molecules that block these pathways have shown benefit in animal models, providing hope for less-toxic therapies

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Renal biopsy findings in a patient with ANCA-associated vasculitis.
Figure 2: Pulmonary involvement in Wegener granulomatosis.
Figure 3: Immunofluorescence staining patterns of antineutrophil cytoplasmic antibodies (ANCAs).

Similar content being viewed by others

References

  1. Savage, C. O. S., Harper, L. & Adu, D. Primary systemic vasculitis. Lancet 349, 553–558 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Watts, R. A., Lane, S. E., Bentham, G. & Scott, D. G. Epidemiology of systemic vasculitis: a ten-year study in the United Kingdom. Arthritis Rheum. 43, 414–419 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Mukhtyar, C. et al. Outcomes from studies of antineutrophil cytoplasm antibody associated vasculitis: a systematic review by the European League Against Rheumatism systemic vasculitis task force. Ann. Rheum. Dis. 67, 1004–1010 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Watts, R. et al. Geoepidemiology of systemic vasculitis: comparison of the incidence in two regions of Europe. Ann. Rheum. Dis. 60, 170–172 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mukhtyar, C. et al. EULAR Recommendations for the management of primary small and medium vessel vasculitis. Ann. Rheum. Dis. doi:10.1136/ard.2008.088096 (2008).

  6. de Groot, K., Adu, D. & Savage, C. The value of pulse cyclophosphamide in ANCA-associated vasculitis: meta-analysis and critical review. Nephrol. Dial. Transplant. 16, 2018–2027 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Jayne, D. R. et al. Randomized trial of plasma exchange or high-dosage methylprednisolone as adjunctive therapy for severe renal vasculitis. J. Am. Soc. Nephrol. 18, 2180–2188 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. de Groot, K. et al. Randomized trial of cyclophosphamide versus methotrexate for induction of remission in early systemic antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 52, 2461–2469 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Jayne, D. et al. A randomized trial of maintenance therapy for vasculitis associated with antineutrophil cytoplasmic autoantibodies. N. Engl. J. Med. 349, 36–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Metzler, C., Fink, C., Lamprecht, P., Gross, W. L. & Reinhold-Keller, E. Maintenance of remission with leflunomide in Wegener's granulomatosis. Rheumatology (Oxford) 43, 315–320 (2004).

    Article  CAS  Google Scholar 

  11. Langford, C. A., Talar-Williams, C. & Sneller, M. C. Mycophenolate mofetil for remission maintenance in the treatment of Wegener's granulomatosis. Arthritis Rheum. 51, 278–283 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Flossmann, O. & Jayne, D. R. Maintaining remission in a patient with vasculitis. Nat. Clin. Pract. Rheumatol. 4, 499–504 (2008).

    Article  PubMed  Google Scholar 

  13. Booth, A. D. et al. Outcome of ANCA-associated renal vasculitis: a 5-year retrospective study. Am. J. Kidney Dis. 41, 776–784 (2003).

    Article  PubMed  Google Scholar 

  14. Azathioprine; cyclophosphamide; prednisolone in Therapeutic Drugs (ed. Dollery, C.) p. A181–A184; C366–C372; P199–P220 (London, Churchill Livingstone, 1991).

  15. de Leeuw, K. et al. Accelerated atherosclerosis in patients with Wegener's granulomatosis. Ann. Rheum. Dis. 64, 753–759 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Hogan, S. L. et al. Predictors of relapse and treatment resistance in antineutrophil cytoplasmic antibody-associated small-vessel vasculitis. Ann. Intern. Med. 143, 621–631 (2005).

    Article  PubMed  Google Scholar 

  17. Pagnoux, C. et al. Predictors of treatment resistance and relapse in antineutrophil cytoplasmic antibody-associated small-vessel vasculitis: comparison of two independent cohorts. Arthritis Rheum. 58, 2908–2918 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hoffman, G. S. et al. Wegener's granulomatosis: an analysis of 158 patients. Ann. Intern. Med. 116, 488–498 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Guillevin, L. et al. A prospective, multi-center randomized trial comparing steroids and pulse cyclophosphomide versus steroids and oral cyclophosphomide in the treatment of generalised Wegener's granulomatosis. Arthritis Rheum. 40, 2187–2198 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Stegeman, C. A., Cohen Tervaert, J. W., Manson, W. L. & Kallenberg, C. G. M. Persistent nasal carriage of Staphylococcus aureus and relapse rate of Wegener's granulomatosis. Presented at the 4th International Workshop on ANCA, May 28–30, Lübeck, Germany (1992).

    Google Scholar 

  21. Hagen, E. et al. Diagnostic value of standardized assays for antineutrophil cytoplasmic antibodies in idiopathic systemic vasculitis. Kidney Int. 53, 743–753 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Boomsma, M. M. et al. Prediction of relapses in Wegener's granulomatosis by measurement of antineutrophil cytoplasmic antibody levels: a prospective study. Arthritis Rheum. 43, 2025–2033 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Bansal, P. J. & Tobin, M. C. Neonatal microscopic polyangiitis secondary to transfer of maternal myeloperoxidase–antineutrophil cytoplasmic antibody resulting in neonatal pulmonary hemorrhage and renal involvement. Ann. Allergy Asthma Immunol. 93, 398–401 (2004).

    Article  PubMed  Google Scholar 

  24. Xiao, H. et al. Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J. Clin. Invest. 110, 955–963 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xiao, H. et al. The role of neutrophils in the induction of glomerulonephritis by anti-myeloperoxidase antibodies. Am. J. Pathol. 167, 39–45 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schreiber, A., Xiao, H., Falk, R. J. & Jennette, J. C. Bone marrow-derived cells are sufficient and necessary targets to mediate glomerulonephritis and vasculitis induced by anti-myeloperoxidase antibodies. J. Am. Soc. Nephrol. 17, 3355–3364 (2006).

    Article  PubMed  Google Scholar 

  27. Little, M. A. et al. Antineutrophil cytoplasm antibodies directed against myeloperoxidase augment leukocyte–microvascular interactions in vivo. Blood 106, 2050–2058 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Harper, L., Cockwell, P., Adu, D. & Savage, C. Neutrophil priming and apoptosis in ANCA-associated vasculitis. Kidney Int. 59, 1729–1738 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Muller Kubold, A., Mesander, G., Stegeman, C., Kallenberg, C. & Cohen Tervaert, J. Are circulating neutrophils intravascularly activated in patients with anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides? Clin. Exp. Immunol. 114, 491–499 (1998).

    Article  Google Scholar 

  30. Huugen, D. et al. Aggravation of anti-myeloperoxidase antibody-induced glomerulonephritis by bacterial lipopolysaccharide: role of tumor necrosis factor-α. Am. J. Pathol. 167, 47–58 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Falk, R. J., Terrell, R. S., Charles, L. A. & Jennette, J. C. Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc. Natl Acad. Sci. USA 87, 4115–4119 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Condliffe, A. M., Chilvers, E. R., Haslett, C. & Dransfield, I. Priming differentially regulates neutrophil adhesion molecule expression/function. Immunology 89, 105–111 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Williams, J. M. et al. Activation of the Gi heterotrimeric G protein by ANCA IgG F(ab')2 fragments is necessary but not sufficient to stimulate the recruitment of those downstream mediators used by intact ANCA IgG. J. Am. Soc. Nephrol. 14, 661–669 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Hewins, P., Williams, J. M., Wakelam, M. J. & Savage, C. O. Activation of Syk in neutrophils by antineutrophil cytoplasm antibodies occurs via Fcγ receptors and CD18. J. Am. Soc. Nephrol. 15, 796–808 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Radford, D., Lord, J. & Savage, C. The activation of the neutrophil respiratory burst by anti-neutrophil cytoplasm autoantibody (ANCA) from patients with systemic vasculitis requires tyrosine kinases and protein kinase C activation. Clin. Exp. Immunol. 118, 171–179 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ben-Smith, A., Dove, S., Martin, A., Wakelam, M. & Savage, C. Anti-neutrophil cytoplasmic autoantibodies from patients with systemic vasculitis activate neutrophils via distinct signalling cascades compared to conventional Fcγ receptor ligation. Blood 981, 1448–1455 (2001).

    Article  Google Scholar 

  37. Williams, J. M. & Savage, C. O. Characterization of the regulation and functional consequences of p21ras activation in neutrophils by antineutrophil cytoplasm antibodies. J. Am. Soc. Nephrol. 16, 90–96 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Reumaux, D., Kuijpers, T. W., Hordijk, P. L., Duthilleul, P. & Roos, D. Involvement of Fcγ receptors and β2 integrins in neutrophil activation by anti-proteinase-3 or anti-myeloperoxidase antibodies. Clin. Exp. Immunol. 134, 344–350 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Savage, C. O., Harper, L. & Holland, M. New findings in pathogenesis of antineutrophil cytoplasm antibody-associated vasculitis. Curr. Opin. Rheumatol. 14, 15–22 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Nolan, S. L. et al. Mechanisms of ANCA-mediated leukocyte-endothelial cell interactions in vivo. J. Am. Soc. Nephrol. 19, 973–984 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lamprecht, P. Off balance: T-cells in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitides. Clin. Exp. Immunol. 141, 201–210 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Giscombe, R., Wang, X. B., Kakoulidou, M. & Lefvert, A. K. Characterization of the expanded T-cell populations in patients with Wegener's granulomatosis. J. Intern. Med. 260, 224–230 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Marinaki, S. et al. Abnormalities of CD4 T cell subpopulations in ANCA-associated vasculitis. Clin. Exp. Immunol. 140, 181–191 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abdulahad, W. H. et al. Functional defect of circulating regulatory CD4+ T cells in patients with Wegener's granulomatosis in remission. Arthritis Rheum. 56, 2080–2091 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Thewissen, M. et al. CD4+CD28null T cells in autoimmune disease: pathogenic features and decreased susceptibility to immunoregulation. J. Immunol. 179, 6514–6523 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Voswinkel, J. et al. B lymphocyte maturation in Wegener's granulomatosis: a comparative analysis of VH genes from endonasal lesions. Ann. Rheum. Dis. 65, 859–864 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Hooke, D., Gee, D. & Atkins, R. Leukocyte analysis using monoclonal antibodies in glomerulonephritis. Kidney Int. 31, 964–972 (1987).

    Article  CAS  PubMed  Google Scholar 

  48. Popa, E. R., Stegeman, C. A., Bos, N. A., Kallenberg, C. G. & Tervaert, J. W. Differential B- and T-cell activation in Wegener's granulomatosis. J. Allergy Clin. Immunol. 103, 885–894 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Culton, D. A. et al. Similar CD19 dysregulation in two autoantibody-associated autoimmune diseases suggests a shared mechanism of B-cell tolerance loss. J. Clin. Immunol. 27, 53–68 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Voswinkel, J., Muller, A. & Lamprecht, P. Is PR3-ANCA formation initiated in Wegener's granulomatosis lesions? Granulomas as potential lymphoid tissue maintaining autoantibody production. Ann. NY Acad. Sci. 1051, 12–19 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Stassen, P. M., Cohen Tervaert, J. W. & Stegeman, C. A. Induction of remission in active anti-neutrophil cytoplasmic antibody-associated vasculitis with mycophenolate mofetil in patients who cannot be treated with cyclophosphamide. Ann. Rheum. Dis. 66, 798–802 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Joy, M. S., Hogan, S. L., Jennette, J. C., Falk, R. J. & Nachman, P. H. A pilot study using mycophenolate mofetil in relapsing or resistant ANCA small vessel vasculitis. Nephrol. Dial. Transplant. 20, 2725–2732 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Hu, W. et al. Mycophenolate mofetil versus cyclophosphamide for inducing remission of ANCA vasculitis with moderate renal involvement. Nephrol. Dial. Transplant. 23, 1307–1312 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. European Vasculitis Study Group Active Clinical Trials http://www.vasculitis.org/acttrials.htm

  55. Diegel, M. L., Nadler, S. G. & Kiener, P. A. In vivo administration of 15-deoxyspergulin inhibits antigen-presenting cell stimulation of T cells and NF-κB activation. Int. Immunopharmacol. 2, 1451–1464 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Tepper, M. A., Nadler, S. G., Esselstyn, J. M. & Sterbenz, K. G. Deoxyspergualin inhibits κ light chain expression in 70Z/3 pre-B cells by blocking lipopolysaccharide-induced NF-κB activation. J. Immunol. 155, 2427–2436 (1995).

    CAS  PubMed  Google Scholar 

  57. Kalsch, A. I. et al. In vivo effects of cyclic administration of 15-deoxyspergualin on leucocyte function in patients with Wegener's granulomatosis. Clin. Exp. Immunol. 146, 455–462 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Flossmann, O. et al. Deoxyspergualin in relapsing and refractory Wegener's granulomatosis. Ann. Rheum. Dis. doi:10.1136/ard.2008.092429 (2008).

  59. Schmitt, W. H. et al. Prolonged treatment of refractory Wegener's granulomatosis with 15-deoxyspergualin: an open study in seven patients. Nephrol. Dial. Transplant. 20, 1083–1092 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Walsh, M. & Jayne, D. Rituximab in the treatment of anti-neutrophil cytoplasm antibody associated vasculitis and systemic lupus erythematosus: past, present and future. Kidney Int. 72, 676–682 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Ramos-Casals, M., Brito-Zeron, P., Munoz, S. & Soto, M. J. A systematic review of the off-label use of biological therapies in systemic autoimmune diseases. Medicine (Baltimore) 87, 345–364 (2008).

    Article  Google Scholar 

  62. Yokoyama, H. et al. Progressive multifocal leukoencephalopathy in a patient with B-cell lymphoma during rituximab-containing chemotherapy: case report and review of the literature. Int. J. Hematol. 88, 443–447 (2008).

    Article  PubMed  Google Scholar 

  63. Smith, K. G., Jones, R. B., Burns, S. M. & Jayne, D. R. Long-term comparison of rituximab treatment for refractory systemic lupus erythematosus and vasculitis: remission, relapse, and re-treatment. Arthritis Rheum. 54, 2970–2982 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Ferraro, A. J., Drayson, M. T., Savage, C. O. & MacLennan, I. C. Levels of autoantibodies, unlike antibodies to all extrinsic antigen groups, fall following B cell depletion with rituximab. Eur. J. Immunol. 38, 292–298 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Hoyer, B. F. et al. Short-lived plasmablasts and long-lived plasma cells contribute to chronic humoral autoimmunity in NZB/W mice. J. Exp. Med. 199, 1577–1584 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cassese, G. et al. Inflamed kidneys of NZB/W mice are a major site for the homeostasis of plasma cells. Eur. J. Immunol. 31, 2726–2732 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Taylor, R. P. & Lindorfer, M. A. Immunotherapeutic mechanisms of anti-CD20 monoclonal antibodies. Curr. Opin. Immunol. 20, 444–449 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Assi, L. K. et al. Tumor necrosis factor α activates release of B lymphocyte stimulator by neutrophils infiltrating the rheumatoid joint. Arthritis Rheum. 56, 1776–1786 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Krumbholz, M. et al. BAFF is elevated in serum of patients with Wegener's granulomatosis. J. Autoimmun. 25, 298–302 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Ding, C. Belimumab, an anti-BLyS human monoclonal antibody for potential treatment of inflammatory autoimmune diseases. Expert Opin. Biol. Ther. 8, 1805–1814 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Schmitt, W. H. et al. Treatment of refractory Wegener's granulomatosis with antithymocyte globulin (ATG): an open study in 15 patients. Kidney Int. 65, 1440–1448 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Walsh, M., Chaudhry, A. & Jayne, D. R. Long-term follow-up of relapsing/refractory ANCA associated vasculitis treated with the lymphocyte depleting antibody alemtuzumab (CAMPATH-1H). Ann. Rheum. Dis. 67, 1322–1327 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Sansom, D. M. & Walker, L. S. The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol. Rev. 212, 131–148 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Linsley, P. S. et al. Human B7–1 (CD80) and B7–2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1, 793–801 (1994).

    Article  CAS  PubMed  Google Scholar 

  75. Greene, J. L. et al. Covalent dimerization of CD28/CTLA-4 and oligomerization of CD80/CD86 regulate T cell costimulatory interactions. J. Biol. Chem. 271, 26762–26771 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Zhou, Y. et al. An analysis of CTLA-4 and proinflammatory cytokine genes in Wegener's granulomatosis. Arthritis Rheum. 50, 2645–2650 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Kremer, J. M. et al. Effects of abatacept in patients with methotrexate-resistant active rheumatoid arthritis: a randomized trial. Ann. Intern. Med. 144, 865–876 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Kremer, J. M. et al. Results of a two-year followup study of patients with rheumatoid arthritis who received a combination of abatacept and methotrexate. Arthritis Rheum. 58, 953–963 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Reynolds, J. et al. CD28-B7 blockade prevents the development of experimental autoimmune glomerulonephritis. J. Clin. Invest. 105, 643–651 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Little, M. A. et al. Therapeutic effect of anti-TNF–α antibodies in an experimental model of anti-neutrophil cytoplasm antibody-associated systemic vasculitis. J. Am. Soc. Nephrol. 17, 160–169 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Khan, S. B. et al. Antibody blockade of TNF-α reduces inflammation and scarring in experimental crescentic glomerulonephritis. Kidney Int. 67, 1812–1820 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Booth, A. et al. Prospective study of TNFα blockade with infliximab in anti-neutrophil cytoplasmic antibody-associated systemic vasculitis. J. Am. Soc. Nephrol. 15, 717–721 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Stone, J. H. et al. Etanercept combined with conventional treatment in Wegener's granulomatosis. Arthritis Rheum. 44, 1149–1154 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Group, W. R. Etanercept plus standard therapy for Wegener's granulomatosis. N. Engl. J. Med. 352, 351–361 (2005).

    Article  Google Scholar 

  85. Wung, P. K. et al. Effects of glucocorticoids on weight change during the treatment of Wegener's granulomatosis. Arthritis Rheum. 59, 746–753 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Stone, J. H. et al. Solid malignancies among patients in the Wegener's Granulomatosis Etanercept Trial. Arthritis Rheum. 54, 1608–1618 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Wung, P. et al. Risk factors for herpes zoster in immunocompromised patients: experience from the Wegener's granulomatosis etanercept trial. Kidney Blood Press. Res. 28, 175 (2005).

    Google Scholar 

  88. Osterman, M. T. & Lichtenstein, G. R. Current and future anti-TNF therapy for inflammatory bowel disease. Curr. Treat. Options Gastroenterol. 10, 195–207 (2007).

    Article  PubMed  Google Scholar 

  89. Nishimoto, N. et al. Long-term safety and efficacy of tocilizumab, an anti-interleukin-6 receptor monoclonal antibody, in monotherapy, in patients with rheumatoid arthritis (the STREAM study): evidence of safety and efficacy in a 5-year extension study. Ann. Rheum. Dis. doi:10.1136/ard.2008.092866 (2008).

  90. Pine, P. R. et al. Inflammation and bone erosion are suppressed in models of rheumatoid arthritis following treatment with a novel Syk inhibitor. Clin. Immunol. 124, 244–257 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Weinblatt, M. E. et al. Treatment of rheumatoid arthritis with a Syk kinase inhibitor: a twelve-week, randomized, placebo-controlled trial. Arthritis Rheum. 58, 3309–3318 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Smith, J. et al. Syk inhibitor is effective in treatment of experimental glomerulonephritis [abstract]. J. Am. Soc. Nephrol. 19, 63A (2008).

    Article  Google Scholar 

  93. Kälsch, A. I. et al. Imatinib mesylate, a new kid on the block for the treatment of anti-neutrophil cytoplasmic autoantibodies-associated vasculitis? Clin. Exp. Immunol. 151, 391–398 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Paniagua, R. T. et al. Selective tyrosine kinase inhibition by imatinib mesylate for the treatment of autoimmune arthritis. J. Clin. Invest. 116, 2633–2642 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation. Science 287, 1049–1053 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Li, Z. et al. Roles of PLC-β2 and -β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science 287, 1046–1049 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Camps, M. et al. Blockade of PI3Kγ suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat. Med. 11, 936–943 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Barber, D. F. et al. PI3Kγ inhibition blocks glomerulonephritis and extends lifespan in a mouse model of systemic lupus. Nat. Med. 11, 933–935 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Clarke, H. C. et al. Ras antagonist farnesylthiosalicylic acid (FTS) reduces glomerular cellular proliferation and macrophage number in rat thy-1 nephritis. J. Am. Soc. Nephrol. 14, 848–854 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Braun, T. & Fenaux, P. Farnesyltransferase inhibitors and their potential role in therapy for myelodysplastic syndromes and acute myeloid leukaemia. Br. J. Haematol. 141, 576–586 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Gratwohl, A. et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases. Bone Marrow Transplant. 35, 869–879 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Daikeler, T. et al. Haematopoietic stem cell transplantation for vasculitis including Behçet's disease and polychondritis: a retrospective analysis of patients recorded in the European Bone Marrow Transplantation and European League Against Rheumatism databases and a review of the literature. Ann. Rheum. Dis. 66, 202–207 (2007).

    Article  PubMed  Google Scholar 

  103. Statkute, L. et al. Autologous non-myeloablative haematopoietic stem cell transplantation for refractory systemic vasculitis. Ann. Rheum. Dis. 67, 991–997 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Kotter, I., Daikeler, T., Amberger, C., Tyndall, A. & Kanz, L. Autologous stem cell transplantation of treatment-resistant systemic vasculitis—a single center experience and review of the literature. Clin. Nephrol. 64, 485–489 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorraine Harper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pallan, L., Savage, C. & Harper, L. ANCA-associated vasculitis: from bench research to novel treatments. Nat Rev Nephrol 5, 278–286 (2009). https://doi.org/10.1038/nrneph.2009.45

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2009.45

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing