Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fluid balance and acute kidney injury

Abstract

Intravenous fluids are widely administered to patients who have, or are at risk of, acute kidney injury (AKI). However, deleterious consequences of overzealous fluid therapy are increasingly being recognized. Salt and water overload can predispose to organ dysfunction, impaired wound healing and nosocomial infection, particularly in patients with AKI, in whom fluid challenges are frequent and excretion is impaired. In this Review article, we discuss how interstitial edema can further delay renal recovery and why conservative fluid strategies are now being advocated. Applying these strategies in critical illness is challenging. Although volume resuscitation is needed to restore cardiac output, it often leads to tissue edema, thereby contributing to ongoing organ dysfunction. Conservative strategies of fluid management mandate a switch towards neutral balance and then negative balance once hemodynamic stabilization is achieved. In patients with AKI, this strategy might require renal replacement therapy to be given earlier than when more-liberal fluid management is used. However, hypovolemia and renal hypoperfusion can occur in patients with AKI if excessive fluid removal is pursued with diuretics or extracorporeal therapy. Thus, accurate assessment of fluid status and careful definition of targets are needed at all stages to improve clinical outcomes. A conservative strategy of fluid management was recently tested and found to be effective in a large, randomized, controlled trial in patients with acute lung injury. Similar randomized, controlled studies in patients with AKI now seem justified.

Key Points

  • Fluid therapy is common in patients at risk of acute kidney injury (AKI)

  • Prolonged fluid resuscitation leads to edema in the kidneys and other organs

  • Fluid overload is associated with increased morbidity

  • An early transition to a fluid-restrictive strategy might be beneficial in patients with AKI

  • Fluid removal in patients with or at risk of AKI should be implemented with appropriate monitoring

  • Biomarkers and/or novel fluid assessment methods might contribute to safer fluid management

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Normal glomerular hemodynamics.
Figure 2: Pathological sequelae of fluid overload in organ systems.
Figure 3: Cumulative fluid balances achieved in the FACTT trial of liberal (more-conventional) versus conservative (more-restrictive) fluid management strategies in critically ill patients with acute lung injury.88

Similar content being viewed by others

References

  1. Brady, H. R., Clarkson, M. R. & Lieberthal, W. in Brenner and Rector's The Kidney (ed. Brenner, B. M.) 1260 (W. B. Saunders, Philadelphia, 2004).

    Google Scholar 

  2. Jindal, K. K. Management of idiopathic crescentic and diffuse proliferative glomerulonephritis: evidence-based recommendations. Kidney Int. Suppl. 70, S33–S40 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Kellum, J. A., Cerda, J., Kaplan, L. J., Nadim, M. K. & Palevsky, P. M. Fluids for prevention and management of acute kidney injury. Int. J. Artif. Organs 31, 96–110 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Leblanc, M. et al. Risk factors for acute renal failure: inherent and modifiable risks. Curr. Opin. Crit. Care 11, 533–536 (2005).

    Article  PubMed  Google Scholar 

  5. Brandstrup, B. et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann. Surg. 238, 641–648 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Payen, D. et al. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit. Care 12, R74 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stewart, R. M. et al. Less is more: improved outcomes in surgical patients with conservative fluid administration and central venous catheter monitoring. J. Am. Coll. Surg. 208, 725–735 (2009).

    Article  PubMed  Google Scholar 

  8. Brady, H. R. & Singer, G. G. Acute renal failure. Lancet 346, 1533–1540 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Brady, H. R., Clarkson, M. R. & Lieberthal, W. in Brenner and Rector's The Kidney (ed. Brenner, B. M.) 1215 (W. B. Saunders, Philadelphia, 2004).

    Google Scholar 

  10. Badr, K. F. & Ichikawa, I. Prerenal failure: a deleterious shift from renal compensation to decompensation. N. Engl. J. Med. 319, 623–629 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Blantz, R. C. Pathophysiology of pre-renal azotemia. Kidney Int. 53, 512–523 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Lieberthal, W. Biology of ischemic and toxic renal tubular cell injury: role of nitric oxide and the inflammatory response. Curr. Opin. Nephrol. Hypertens. 7, 289–295 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Sheridan, A. M. & Bonventre, J. V. Cell biology and molecular mechanisms of injury in ischemic acute renal failure. Curr. Opin. Nephrol. Hypertens. 9, 427–434 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Sutton, T. A., Fisher, C. J. & Molitoris, B. A. Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int. 62, 1539–1549 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Bull, G. M., Joekes, A. M. & Lowe, K. G. Renal function studies in acute tubular necrosis. Clin. Sci. 9, 379–404 (1950).

    CAS  PubMed  Google Scholar 

  16. Bagshaw, S. M., Langenberg, C. & Bellomo, R. Urinary biochemistry and microscopy in septic acute renal failure: a systematic review. Am. J. Kidney Dis. 48, 695–705 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Eckardt, K. U. Acute renal failure—more than kidney ischemia? Wien. Klin. Wochenschr. 112, 145–148 (2000).

    CAS  PubMed  Google Scholar 

  18. Brezis, M., Rosen, S., Silva, P. & Epstein, F. H. Selective vulnerability of the medullary thick ascending limb to anoxia in the isolated perfused rat kidney. J. Clin. Invest. 73, 182–190 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brezis, M., Heyman, S. N. & Epstein, F. H. Determinants of intrarenal oxygenation. II. Hemodynamic effects. Am. J. Physiol. 267, F1063–F1068 (1994).

    CAS  PubMed  Google Scholar 

  20. Whitehouse, T., Stotz, M., Taylor, V., Stidwill, R. & Singer, M. Tissue oxygen and hemodynamics in renal medulla, cortex, and corticomedullary junction during hemorrhage-reperfusion. Am. J. Physiol. Renal Physiol. 291, F647–F653 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Langenberg, C., Bagshaw, S. M., May, C. N. & Bellomo, R. The histopathology of septic acute kidney injury: a systematic review. Crit. Care 12, R38 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Racusen, L. C. Pathology of acute renal failure: structure/function correlations. Adv. Ren. Replace. Ther. 4, 3–16 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Solez, K. & Racusen, L. C. Role of the renal biopsy in acute renal failure. Contrib. Nephrol. 68–75 (2001).

  24. Sladen, R. N. Oliguria in the ICU. Systematic approach to diagnosis and treatment. Anesthesiol. Clin. North America 18, 739–752, viii (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Bouchard, J. et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 76, 422–427 (2009).

    Article  PubMed  Google Scholar 

  26. Rahbari, N. N. et al. Meta-analysis of standard, restrictive and supplemental fluid administration in colorectal surgery. Br. J. Surg. 96, 331–341 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Chong, P. C. et al. Substantial variation of both opinions and practice regarding perioperative fluid resuscitation. Can. J. Surg. 52, 207–214 (2009).

    PubMed  PubMed Central  Google Scholar 

  28. Lobo, D. N., Dube, M. G., Neal, K. R., Allison, S. P. & Rowlands, B. J. Peri-operative fluid and electrolyte management: a survey of consultant surgeons in the UK. Ann. R. Coll. Surg. Engl. 84, 156–160 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Walsh, S. R. et al. Perioperative fluid management: prospective audit. Int. J. Clin. Pract. 62, 492–497 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Maddox, D. A. & Brenner, B. M. in Brenner and Rector's The Kidney (ed. Brenner, B. M.) 353–362 (W. B. Saunders, Philadelphia, 2004).

    Google Scholar 

  31. Liu, Y. L., Prowle, J., Licari, E., Uchino, S. & Bellomo, R. Changes in blood pressure before the development of nosocomial acute kidney injury. Nephrol. Dial. Transplant. 24, 504–511 (2009).

    Article  PubMed  Google Scholar 

  32. Schrier, R. W. Body fluid volume regulation in health and disease: a unifying hypothesis. Ann. Intern. Med. 113, 155–159 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Opie, L. H. in Braunwald's Heart Disease, 8th edn (eds Libby, P., Bonow, R. O., Mann, D. L. & Zipes, D. P.) 526–534 (Saunders Elsevier, Philadelphia, 2007).

    Google Scholar 

  34. Weil, M. H. Shock and fluid resuscitation. The Merck Manuals Online Medical Library [online], (2007).

    Google Scholar 

  35. LeDoux, D., Astiz, M. E., Carpati, C. M. & Rackow, E. C. Effects of perfusion pressure on tissue perfusion in septic shock. Crit. Care Med. 28, 2729–2732 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Marik, P. E., Baram, M. & Vahid, B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 134, 172–178 (2008).

    Article  PubMed  Google Scholar 

  37. Michard, F. & Teboul, J. L. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121, 2000–2008 (2002).

    Article  PubMed  Google Scholar 

  38. Bouhemad, B. et al. Isolated and reversible impairment of ventricular relaxation in patients with septic shock. Crit. Care Med. 36, 766–774 (2008).

    Article  PubMed  Google Scholar 

  39. Bouhemad, B. et al. Acute left ventricular dilatation and shock-induced myocardial dysfunction. Crit. Care Med. 37, 441–447 (2009).

    Article  PubMed  Google Scholar 

  40. Rudiger, A. & Singer, M. Mechanisms of sepsis-induced cardiac dysfunction. Crit. Care Med. 35, 1599–1608 (2007).

    Article  PubMed  Google Scholar 

  41. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit. Care Med. 20, 864–874 (1992).

  42. Di Giantomasso, D., May, C. N. & Bellomo, R. Vital organ blood flow during hyperdynamic sepsis. Chest 124, 1053–1059 (2003).

    Article  PubMed  Google Scholar 

  43. Ruokonen, E. et al. Regional blood flow and oxygen transport in septic shock. Crit. Care Med. 21, 1296–1303 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Fleck, A. et al. Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. Lancet 325, 781–784 (1985).

    Article  Google Scholar 

  45. Murphy, C. V. et al. The importance of fluid management in acute lung injury secondary to septic shock. Chest 136, 102–109 (2009).

    Article  PubMed  Google Scholar 

  46. Heyland, D. K., Cook, D. J., King, D., Kernerman, P. & Brun-Buisson, C. Maximizing oxygen delivery in critically ill patients: a methodologic appraisal of the evidence. Crit. Care Med. 24, 517–524 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Wan, L., Bellomo, R. & May, C. N. The effect of normal saline resuscitation on vital organ blood flow in septic sheep. Intensive Care Med. 32, 1238–1242 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Wan, L., Bellomo, R. & May, C. N. A comparison of 4% succinylated gelatin solution versus normal saline in stable normovolaemic sheep: global haemodynamic, regional blood flow and oxygen delivery effects. Anaesth. Intensive Care 35, 924–931 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Perel, P. & Roberts, I. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database of Systematic Reviews. Issue 4. Art. No.: CD000567. doi:10.1002/14651858.CD000567.pub3 (2007).

    Google Scholar 

  50. Jungheinrich, C., Scharpf, R., Wargenau, M., Bepperling, F. & Baron, J. F. The pharmacokinetics and tolerability of an intravenous infusion of the new hydroxyethyl starch 130/0.4 (6%, 500 ml) in mild-to-severe renal impairment. Anesth. Analg. 95, 544–551 (2002).

    CAS  PubMed  Google Scholar 

  51. Berson, S. A., Yalow, R. S., Schrieber, S. S. & Post, J. Tracer experiments with I131 labelled human serum albumin: distribution and degradation studies. J. Clin. Invest. 32, 746–768 (1953).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Finfer, S. et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N. Engl. J. Med. 350, 2247–2256 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Brunkhorst, F. M. et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N. Engl. J. Med. 358, 125–139 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Schortgen, F. et al. Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet 357, 911–916 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Schortgen, F., Girou, E., Deye, N., Brochard, L. & CRYCO Study Group. The risk associated with hyperoncotic colloids in patients with shock. Intensive Care Med. 34, 2157–2168 (2008).

    Article  PubMed  Google Scholar 

  56. Molitoris, B. A. & Bacallao, R. Pathophysiology of ischemic acute renal failure: cytoskeletal aspects. Atlas of Diseases of the Kidney: Online Edition [online], (1998).

    Google Scholar 

  57. McCullough, P. A. Acute kidney injury with iodinated contrast. Crit. Care Med. 36, S204–S211 (2008).

    Article  PubMed  Google Scholar 

  58. Sever, M. S., Vanholder, R. & Lameire, N. Management of crush-related injuries after disasters. N. Engl. J. Med. 354, 1052–1063 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Frassetto, L., Morris, R. C., Sellmeyer, D. E., Todd, K. & Sebastian, A. Diet, evolution and aging—the pathophysiologic effects of the post-agricultural inversion of the potassium-to-sodium and base-to-chloride ratios in the human diet. Eur. J. Nutr. 40, 200–213 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Langenberg, C. et al. Urinary biochemistry in experimental septic acute renal failure. Nephrol. Dial. Transplant. 21, 3389–3397 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Powell-Tuck, J. et al. British consensus guidelines on intravenous fluid therapy for adult surgical patients (GIFTASUP) [online], (2008).

  62. Pinsky, M. R., Brophy, P., Padilla, J., Paganini, E. & Pannu, N. Fluid and volume monitoring. Int. J. Artif. Organs 31, 111–126 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Reid, F., Lobo, D. N., Williams, R. N., Rowlands, B. J. & Allison, S. P. (Ab)normal saline and physiological Hartmann's solution: a randomized double-blind crossover study. Clin. Sci. (Lond.) 104, 17–24 (2003).

    CAS  Google Scholar 

  64. Scheingraber, S., Rehm, M., Sehmisch, C. & Finsterer, U. Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 90, 1265–1270 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Wilcox, C. S. Regulation of renal blood flow by plasma chloride. J. Clin. Invest. 71, 726–735 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Williams, E. L., Hildebrand, K. L., McCormick, S. A. & Bedel, M. J. The effect of intravenous lactated Ringer's solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth. Analg. 88, 999–1003 (1999).

    CAS  PubMed  Google Scholar 

  67. Malbrain, M. L. et al. Results from the International Conference of Experts on Intra-abdominal Hypertension and Abdominal Compartment Syndrome. I. Definitions. Intensive Care Med. 32, 1722–1732 (2006).

    Article  PubMed  Google Scholar 

  68. Doty, J. M. et al. Effects of increased renal parenchymal pressure on renal function. J. Trauma 48, 874–877 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Wauters, J. et al. Pathophysiology of renal hemodynamics and renal cortical microcirculation in a porcine model of elevated intra-abdominal pressure. J. Trauma 66, 713–719 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Malbrain, M. L. et al. Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: a multiple-center epidemiological study. Crit. Care Med. 33, 315–322 (2005).

    Article  PubMed  Google Scholar 

  71. Dalfino, L., Tullo, L., Donadio, I., Malcangi, V. & Brienza, N. Intra-abdominal hypertension and acute renal failure in critically ill patients. Intensive Care Med. 34, 707–713 (2008).

    Article  PubMed  Google Scholar 

  72. Vidal, M. G. et al. Incidence and clinical effects of intra-abdominal hypertension in critically ill patients. Crit. Care Med. 36, 1823–1831 (2008).

    Article  PubMed  Google Scholar 

  73. Firth, J. D., Raine, A. E. & Ledingham, J. G. Raised venous pressure: a direct cause of renal sodium retention in oedema? Lancet 331, 1033–1035 (1988).

    Article  Google Scholar 

  74. Mullens, W. et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J. Am. Coll. Cardiol. 53, 589–596 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Stone, H. H. & Fulenwider, J. T. Renal decapsulation in the prevention of post-ischemic oliguria. Ann. Surg. 186, 343–355 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ramaswamy, D. et al. Maintenance and recovery stages of postischemic acute renal failure in humans. Am. J. Physiol. Renal Physiol. 282, F271–F280 (2002).

    Article  PubMed  Google Scholar 

  77. Desai, K. V. et al. Mechanics of the left ventricular myocardial interstitium: effects of acute and chronic myocardial edema. Am. J. Physiol. Heart Circ. Physiol. 294, H2428–H2434 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Madias, J. E. Apparent amelioration of bundle branch blocks and intraventricular conduction delays mediated by anasarca. J. Electrocardiol. 38, 160–165 (2005).

    Article  PubMed  Google Scholar 

  79. Boyle, A., Maurer, M. S. & Sobotka, P. A. Myocellular and interstitial edema and circulating volume expansion as a cause of morbidity and mortality in heart failure. J. Card. Fail. 13, 133–136 (2007).

    Article  PubMed  Google Scholar 

  80. Humphrey, H., Hall, J., Sznajder, I., Silverstein, M. & Wood, L. Improved survival in ARDS patients associated with a reduction in pulmonary capillary wedge pressure. Chest 97, 1176–1180 (1990).

    Article  CAS  PubMed  Google Scholar 

  81. Nisanevich, V. et al. Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology 103, 25–32 (2005).

    Article  PubMed  Google Scholar 

  82. Schrier, R. W. & Wang, W. Acute renal failure and sepsis. N. Engl. J. Med. 351, 159–169 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Rosenberg, A. L. et al. Review of a large clinical series: association of cumulative fluid balance on outcome in acute lung injury: a retrospective review of the ARDSnet tidal volume study cohort. J. Intensive Care Med. 24, 35–46 (2009).

    Article  PubMed  Google Scholar 

  84. Sakr, Y. et al. High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest 128, 3098–3108 (2005).

    Article  PubMed  Google Scholar 

  85. Martin, G. S. et al. Albumin and furosemide therapy in hypoproteinemic patients with acute lung injury. Crit. Care Med. 30, 2175–2182 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Martin, G. S. et al. A randomized, controlled trial of furosemide with or without albumin in hypoproteinemic patients with acute lung injury. Crit. Care Med. 33, 1681–1687 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. McArdle, G. T. et al. Preliminary results of a prospective randomized trial of restrictive versus standard fluid regime in elective open abdominal aortic aneurysm repair. Ann. Surg. 250, 28–34 (2009).

    Article  PubMed  Google Scholar 

  88. The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Comparison of two fluid-management strategies in acute lung injury. N. Engl. J. Med. 354, 2564–2575 (2006).

  89. Rivers, E. et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N. Engl. J. Med. 345, 1368–1377 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Monnet, X. & Teboul, J. L. Volume responsiveness. Curr. Opin. Crit. Care 13, 549–553 (2007).

    Article  PubMed  Google Scholar 

  91. Gombos, E. A. et al. Reactivity of renal and systemic circulations to vasoconstrictor agents in normotensive and hypertensive subjects. J. Clin. Invest. 41, 203–217 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Richer, M., Robert, S. & Lebel, M. Renal hemodynamics during norepinephrine and low-dose dopamine infusions in man. Crit. Care Med. 24, 1150–1156 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Albanèse, J. et al. Renal effects of norepinephrine in septic and nonseptic patients. Chest 126, 534–539 (2004).

    Article  PubMed  Google Scholar 

  94. Bellomo, R. & Giantomasso, D. D. Noradrenaline and the kidney: friends or foes? Crit. Care 5, 294–298 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bellomo, R., Wan, L. & May, C. Vasoactive drugs and acute kidney injury. Crit. Care Med. 36, S179–S186 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Bourgoin, A. et al. Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit. Care Med. 33, 780–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Di Giantomasso, D., Morimatsu, H., May, C. N. & Bellomo, R. Intrarenal blood flow distribution in hyperdynamic septic shock: effect of norepinephrine. Crit. Care Med. 31, 2509–2513 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Di Giantomasso, D., Morimatsu, H., May, C. N. & Bellomo, R. Increasing renal blood flow: low-dose dopamine or medium-dose norepinephrine. Chest 125, 2260–2267 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Arlati, S. et al. Decreased fluid volume to reduce organ damage: a new approach to burn shock resuscitation? A preliminary study. Resuscitation 72, 371–378 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Uchino, S. et al. Diuretics and mortality in acute renal failure. Crit. Care Med. 32, 1669–1677 (2004).

    Article  PubMed  Google Scholar 

  101. Mehta, R. L. et al. Diuretics, mortality, and nonrecovery of renal function in acute renal failure. JAMA 288, 2547–2553 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Asare, K. Management of loop diuretic resistance in the intensive care unit. Am. J. Health Syst. Pharm. 66, 1635–1640 (2009).

    Article  PubMed  Google Scholar 

  103. Martin, G. S. Fluid balance and colloid osmotic pressure in acute respiratory failure: emerging clinical evidence. Crit. Care 4 (Suppl. 2), S21–S25 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Karajala, V., Mansour, W. & Kellum, J. A. Diuretics in acute kidney injury. Minerva Anestesiol. 75, 251–257 (2009).

    CAS  PubMed  Google Scholar 

  105. van der Voort, P. H. et al. Furosemide does not improve renal recovery after hemofiltration for acute renal failure in critically ill patients: a double blind randomized controlled trial. Crit. Care Med. 37, 533–538 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Zucchelli, P. & Santoro, A. Dialysis-induced hypotension: a fresh look at pathophysiology. Blood Purif. 11, 85–98 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. Conger, J. D. Does hemodialysis delay recovery from acute renal failure? Semin. Dial. 3, 146–148 (1990).

    Article  Google Scholar 

  108. Manns, M., Sigler, M. H. & Teehan, B. P. Intradialytic renal haemodynamics—potential consequences for the management of the patient with acute renal failure. Nephrol. Dial. Transplant. 12, 870–872 (1997).

    Article  CAS  PubMed  Google Scholar 

  109. Bouchard, J. & Mehta, R. L. Volume management in continuous renal replacement therapy. Semin. Dial. 22, 146–150 (2009).

    Article  PubMed  Google Scholar 

  110. Lin, Y. F. et al. The 90-day mortality and the subsequent renal recovery in critically ill surgical patients requiring acute renal replacement therapy. Am. J. Surg. 198, 325–332 (2009).

    Article  PubMed  Google Scholar 

  111. Bell, M. et al. Continuous renal replacement therapy is associated with less chronic renal failure than intermittent haemodialysis after acute renal failure. Intensive Care Med. 33, 773–780 (2007).

    Article  PubMed  Google Scholar 

  112. Bagshaw, S. M. et al. Prognosis for long-term survival and renal recovery in critically ill patients with severe acute renal failure: a population-based study. Crit. Care 9, R700–R709 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Jacka, M. J., Ivancinova, X. & Gibney, R. T. Continuous renal replacement therapy improves renal recovery from acute renal failure. Can. J. Anaesth. 52, 327–332 (2005).

    Article  PubMed  Google Scholar 

  114. The RENAL Replacement Therapy Study Investigators. Intensity of continuous renal-replacement therapy in critically ill patients. N. Engl. J. Med. 361, 1627–1638 (2009).

  115. Bagshaw, S. M. et al. Timing of renal replacement therapy and clinical outcomes in critically ill patients with severe acute kidney injury. J. Crit. Care 24, 129–140 (2009).

    Article  PubMed  Google Scholar 

  116. Doi, K. et al. Reduced production of creatinine limits its use as marker of kidney injury in sepsis. J. Am. Soc. Nephrol. 20, 1217–1221 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Haase-Fielitz, A. et al. Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery—a prospective cohort study. Crit. Care Med. 37, 553–560 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Wabel, P., Chamney, P., Moissl, U. & Jirka, T. Importance of whole-body bioimpedance spectroscopy for the management of fluid balance. Blood Purif. 27, 75–80 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Wynne, J. L. et al. Impedance cardiography: a potential monitor for hemodialysis. J. Surg. Res. 133, 55–60 (2006).

    Article  PubMed  Google Scholar 

  120. Zaluska, W. T. et al. Relative underestimation of fluid removal during hemodialysis hypotension measured by whole body bioimpedance. ASAIO J. 44, 823–827 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Ronco, C., Bellomo, R. & Ricci, Z. Hemodynamic response to fluid withdrawal in overhydrated patients treated with intermittent ultrafiltration and slow continuous ultrafiltration: role of blood volume monitoring. Cardiology 96, 196–201 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Steuer, R. R. et al. Enhanced fluid removal guided by blood volume monitoring during chronic hemodialysis. Artif. Organs 22, 627–632 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Davenport, A. Can advances in hemodialysis machine technology prevent intradialytic hypotension? Semin. Dial. 22, 231–236 (2009).

    Article  PubMed  Google Scholar 

  124. Jacobs, L. H. et al. Inflammation, overhydration and cardiac biomarkers in haemodialysis patients: a longitudinal study. Nephrol. Dial. Transplant. doi:10.1093/ndt/gfp417

    Article  CAS  Google Scholar 

  125. Tripepi, G. et al. Biomarkers of left atrial volume: a longitudinal study in patients with end stage renal disease. Hypertension 54, 818–824 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Australian and New Zealand Intensive Care Society Clinical Trials Group, The George Institute & Fresenius Kabi. Crystalloid versus hydroxyethyl starch trials (CHEST): a multi-centre randomized controlled trial of fluid resuscitation with starch (6% hydroxyethyl starch 130/0.4) compared to saline (0.9% sodium chloride) in intensive care patients on mortality. ClinicalTrials.gov: NCT00935168 [online] (2009).

  127. Mitchell, J. P., Schuller, D., Calandrino, F. S. & Schuster, D. P. Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am. Rev. Respir. Dis. 145, 990–998 (1992).

    Article  CAS  PubMed  Google Scholar 

  128. Adesanya, A., Rosero, E., Timaran, C., Clagett, P. & Johnston, W. E. Intraoperative fluid restriction predicts improved outcomes in major vascular surgery. Vasc. Endovascular Surg. 42, 531–536 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Désirée Lie, University of California, Orange, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinaldo Bellomo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Systematic search strategy used to identify clinical studies (shown in Table 2) that examine fluid balance or therapy in critically ill adults. (DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prowle, J., Echeverri, J., Ligabo, E. et al. Fluid balance and acute kidney injury. Nat Rev Nephrol 6, 107–115 (2010). https://doi.org/10.1038/nrneph.2009.213

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2009.213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing