Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Controversies in the pathogenesis of HIV-associated renal diseases

Abstract

The two most common HIV-associated renal diseases, HIV-associated nephropathy and HIV immune-complex kidney disease, share the common pathologic finding of hyperplasia within the glomerulus. Podocyte injury is central to the pathogenesis of these diseases; however, the source of the proliferating glomerular epithelial cell remains a topic of debate. Parenchymal injury has been linked to direct infection of renal epithelial cells by HIV-1, although the mechanism of viral entry into this non-lymphoid compartment is unclear. Although transgenic rodent models have provided insight into viral proteins responsible for inducing renal disease, such models have substantial limitations. Rodent HIV-1 models, for instance, cannot replicate all features of immune activation, a process that could have an important role in the pathogenesis of the HIV-associated renal diseases.

Key Points

  • HIV-associated nephropathy (HIVAN) and HIV immune-complex kidney disease (HIVICK) are the most common renal diseases in patients with HIV-1

  • HIVAN seems to be caused directly by HIV-1 infection, possibly via disruption of normal homeostatic functions of mature podocytes caused by HIV proteins Nef, Vpr and Tat

  • Contrary to HIVAN, HIVICK is not observed in rodent models of HIV-1, which might mean that virus replication or immune response to viral proteins—not expression of viral genes alone—induce this condition

  • The mechanism by which renal parenchymal cells are infected by HIV-1 does not seem to involve the same CD4–chemokine co-receptor mechanism that the virus uses to infect immune cells

  • Hyperplastic injury in the glomerulus is a common pathogenic event of the HIV-associated renal diseases, although the source of the proliferative epithelial cell is unclear

  • Immune activation, both systemic and within the kidney, is dramatically altered in HIV-1 infection and might have a role in precipitating and exacerbating HIV-associated renal diseases

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Renal biopsy sample from a patient with HIV-associated nephropathy.
Figure 2: The interplay of environmental (red) and genetic (blue) factors in HIV-associated renal diseases.

Similar content being viewed by others

References

  1. Szczech, L. A. et al. The clinical epidemiology and course of the spectrum of renal diseases associated with HIV infection. Kidney Int. 66, 1145–1152 (2004).

    Article  PubMed  Google Scholar 

  2. Wyatt, C. M. et al. The spectrum of kidney disease in patients with AIDS in the era of antiretroviral therapy. Kidney Int. 75, 428–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Kiryluk, K., Martino, J. & Gharavi, A. G. Genetic susceptibility, HIV infection, and the kidney. Clin. J. Am. Soc. Nephrol. 2 (Suppl. 1), S25–S35 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Alpers, C. E. et al. Focal segmental glomerulosclerosis in primates infected with a simian immunodeficiency virus. AIDS Res. Hum. Retroviruses 13, 413–424 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Stephens, E. B., Tian, C., Li, Z., Narayan, O. & Gattone, V. H. 2nd. Rhesus macaques infected with macrophage-tropic simian immunodeficiency virus (SIVmacR71/17E) exhibit extensive focal segmental and global glomerulosclerosis. J. Virol. 72, 8820–8832 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Stephens, E. B., Tian, C., Dalton, S. B. & Gattone, V. H. 2nd. Simian–human immunodeficiency virus-associated nephropathy in macaques. AIDS Res. Hum. Retroviruses 16, 1295–1306 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Poli, A. et al. Renal involvement in feline immunodeficiency virus infection: a clinicopathological study. Nephron 64, 282–288 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Cohen, A. H. & Nast, C. C. HIV-associated nephropathy. A unique combined glomerular, tubular, and interstitial lesion. Mod. Pathol. 1, 87–97 (1988).

    CAS  PubMed  Google Scholar 

  9. D'Agati, V., Suh, J. I., Carbone, L., Cheng, J. T. & Appel, G. Pathology of HIV-associated nephropathy: a detailed morphologic and comparative study. Kidney Int. 35, 1358–1370 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Strauss, J. et al. Renal disease in children with the acquired immunodeficiency syndrome. N. Engl. J. Med. 321, 625–630 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Ray, P. E., Xu, L., Rakusan, T. & Liu, X. H. A 20-year history of childhood HIV-associated nephropathy. Pediatr. Nephrol. 19, 1075–1092 (2004).

    Article  PubMed  Google Scholar 

  12. Wools-Kaloustian, K. K. & Gupta, S. K. Will there be an epidemic of HIV-related chronic kidney disease in sub-Saharan Africa? Too soon to tell. Kidney Int. 74, 845–847 (2008).

    Article  PubMed  Google Scholar 

  13. Kao, W. H. et al. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat. Genet. 40, 1185–1192 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Kopp, J. B. et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat. Genet. 40, 1175–1184 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bruggeman, L. A. et al. Renal epithelium is a previously unrecognized site of HIV-1 infection. J. Am. Soc. Nephrol. 11, 2079–2087 (2000).

    CAS  PubMed  Google Scholar 

  16. Cohen, A. H., Sun, N. C., Shapshak, P. & Imagawa, D. T. Demonstration of human immunodeficiency virus in renal epithelium in HIV-associated nephropathy. Mod. Pathol. 2, 125–128 (1989).

    CAS  PubMed  Google Scholar 

  17. Kimmel, P. L., Ferreira-Centeno, A., Farkas-Szallasi, T., Abraham, A. A. & Garrett, C. T. Viral DNA in microdissected renal biopsy tissue from HIV infected patients with nephrotic syndrome. Kidney Int. 43, 1347–1352 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Eitner, F. et al. Chemokine receptor CCR5 and CXCR4 expression in HIV-associated kidney disease. J. Am. Soc. Nephrol. 11, 856–867 (2000).

    CAS  PubMed  Google Scholar 

  19. Marras, D. et al. Replication and compartmentalization of HIV-1 in kidney epithelium of patients with HIV-associated nephropathy. Nat. Med. 8, 522–526 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Zerhouni-Layachi, B. et al. Dual tropism of HIV-1 envelopes derived from renal tubular epithelial cells of patients with HIV-associated nephropathy. AIDS 20, 621–624 (2006).

    Article  PubMed  Google Scholar 

  21. Eitner, F. et al. Chemokine receptor (CCR5) expression in human kidneys and in the HIV infected macaque. Kidney Int. 54, 1945–1954 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Gröne, H. J. et al. Spatial and temporally restricted expression of chemokines and chemokine receptors in the developing human kidney. J. Am. Soc. Nephrol. 13, 957–967 (2002).

    PubMed  Google Scholar 

  23. Segerer, S., Mack, M., Regele, H., Kerjaschki, D. & Schlöndorff, D. Expression of the C-C chemokine receptor 5 in human kidney diseases. Kidney Int. 56, 52–64 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Gonzalez, E. et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307, 1434–1440 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, X. H., Hadley, T. J., Xu, L., Peiper, S. C. & Ray, P. E. Up-regulation of Duffy antigen receptor expression in children with renal disease. Kidney Int. 55, 1491–1500 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Woolley, I. J. et al. HIV nephropathy and the Duffy antigen/receptor for Chemokines in African Americans. J. Nephrol. 14, 384–387 (2001).

    CAS  PubMed  Google Scholar 

  27. He, W. et al. Duffy antigen receptor for chemokines mediates trans-infection of HIV-1 from red blood cells to target cells and affects HIV-AIDS susceptibility. Cell Host Microbe 4, 52–62 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ray, P. E. et al. Infection of human primary renal epithelial cells with HIV-1 from children with HIV-associated nephropathy. Kidney Int. 53, 1217–1229 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Geijtenbeek, T. B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Baribaud, F., Pöhlmann, S. & Doms, R. W. The role of DC-SIGN and DC-SIGNR in HIV and SIV attachment, infection, and transmission. Virology 286, 1–6 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Hatsukari, I. et al. DEC-205-mediated internalization of HIV-1 results in the establishment of silent infection in renal tubular cells. J. Am. Soc. Nephrol. 18, 780–787 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Mikulak, J., Teichberg, S., Faust, T., Schmidtmayerova, H. & Singhal, P. C. HIV-1 harboring renal tubular epithelial cell interaction with T cells results in T cell trans-infection. Virology 385, 105–114 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. John, R. & Nelson, P. J. Dendritic cells in the kidney. J. Am. Soc. Nephrol. 18, 2628–2635 (2007).

    Article  PubMed  Google Scholar 

  34. Wu, L. & Kewalramani, V. N. Dendritic-cell interactions with HIV: infection and viral dissemination. Nat. Rev. Immunol. 6, 859–868 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tanji, N. et al. Detection and localization of HIV-1 DNA in renal tissues by in situ polymerase chain reaction. Histol. Histopathol. 21, 393–401 (2006).

    CAS  PubMed  Google Scholar 

  36. Conaldi, P. G. et al. HIV-persistent infection and cytokine induction in mesangial cells: a potential mechanism for HIV-associated glomerulosclerosis. AIDS 14, 2045–2047 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Tokizawa, S. et al. Infection of mesangial cells with HIV and SIV: identification of GPR1 as a coreceptor. Kidney Int. 58, 607–617 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Alpers, C. E., McClure, J. & Bursten, S. L. Human mesangial cells are resistant to productive infection by multiple strains of human immunodeficiency virus types 1 and 2. Am. J. Kidney Dis. 19, 126–130 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Green, D. F., Resnick, L. & Bourgoignie, J. J. HIV infects glomerular endothelial and mesangial but not epithelial cells in vitro. Kidney Int. 41, 956–960 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Kramer-Hämmerle, S., Rothenaigner, I., Wolff, H., Bell, J. E. & Brack-Werner, R. Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res. 111, 194–213 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Rosenstiel, P., Gharavi, A., D'Agati, V. D. & Klotman, P. Transgenic and infectious animal models of HIV-associated nephropathy. J. Am. Soc. Nephrol. doi:10.1681/ASN.2008121230

  42. Bruggeman, L. A. et al. Nephropathy in human immunodeficiency virus-1 transgenic mice is due to renal transgene expression. J. Clin. Invest. 100, 84–92 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dickie, P. et al. HIV-associated nephropathy in transgenic mice expressing HIV-1 genes. Virology 185, 109–119 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Kopp, J. B. et al. Progressive glomerulosclerosis and enhanced renal accumulation of basement membrane components in mice transgenic for human immunodeficiency virus type 1 genes. Proc. Natl Acad. Sci. USA 89, 1577–1581 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhong, J. et al. Expression of HIV-1 genes in podocytes alone can lead to the full spectrum of HIV-1-associated nephropathy. Kidney Int. 68, 1048–1060 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Hanna, Z. et al. Transgenic mice expressing human immunodeficiency virus type 1 in immune cells develop a severe AIDS-like disease. J. Virol. 72, 121–132 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Balog, K. & Minarovits, J. Nef: a pleiotropic modulator of primate lentivirus infectivity and pathogenesis. Acta Microbiol. Immunol. Hung. 53, 51–75 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Keppler, O. T. et al. Rodent cells support key functions of the human immunodeficiency virus type 1 pathogenicity factor Nef. J. Virol. 79, 1655–1665 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hanna, Z. et al. Nef harbors a major determinant of pathogenicity for an AIDS-like disease induced by HIV-1 in transgenic mice. Cell 95, 163–175 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Priceputu, E. et al. Primary human immunodeficiency virus type 1 nef alleles show major differences in pathogenicity in transgenic mice. J. Virol. 81, 4677–4693 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dickie, P. et al. Focal glomerulosclerosis in proviral and c-fms transgenic mice links Vpr expression to HIV-associated nephropathy. Virology 322, 69–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Kajiyama, W., Kopp, J. B., Marinos, N. J., Klotman, P. E. & Dickie, P. Glomerulosclerosis and viral gene expression in HIV-transgenic mice: role of nef. Kidney Int. 58, 1148–1159 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Husain, M., D'Agati, V. D., He, J. C., Klotman, M. E. & Klotman, P. E. HIV-1 Nef induces dedifferentiation of podocytes in vivo: a characteristic feature of HIVAN. AIDS 19, 1975–1980 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Zuo, Y. et al. HIV-1 genes vpr and nef synergistically damage podocytes, leading to glomerulosclerosis. J. Am. Soc. Nephrol. 17, 2832–2843 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Le, R. E. & Benichou, S. The Vpr protein from HIV-1: distinct roles along the viral life cycle. Retrovirology 2, 11 (2005).

    Article  CAS  Google Scholar 

  56. Conaldi, P. G. et al. Human immunodeficiency virus-1 tat induces hyperproliferation and dysregulation of renal glomerular epithelial cells. Am. J. Pathol. 161, 53–61 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Doublier, S. et al. HIV-1 Tat reduces nephrin in human podocytes: a potential mechanism for enhanced glomerular permeability in HIV-associated nephropathy. AIDS 21, 423–432 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Fung, E. et al. Dissecting the role of HIV-Tat in HIVAN [abstract]. J. Am. Soc. Nephrol. 17, 64A (2006).

    Article  Google Scholar 

  59. Wharram, B. L. et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J. Am. Soc. Nephrol. 16, 2941–2952 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Faulhaber, J. R. & Nelson, P. J. Virus-induced cellular immune mechanisms of injury to the kidney. Clin. J. Am. Soc. Nephrol. 2 (Suppl. 1), S2–S5 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Lindemann, D. et al. Severe immunodeficiency associated with a human immunodeficiency virus 1 NEF/3′-long terminal repeat transgene. J. Exp. Med. 179, 797–807 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Reid, W. et al. An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc. Natl Acad. Sci. USA 98, 9271–9276 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Reid, W. et al. HIV-1 transgenic rats develop T cell abnormalities. Virology 321, 111–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Santoro, T. J. et al. Growth failure and AIDS-like cachexia syndrome in HIV-1 transgenic mice. Virology 201, 147–151 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Skowronski, J., Parks, D. & Mariani, R. Altered T cell activation and development in transgenic mice expressing the HIV-1 nef gene. EMBO J. 12, 703–713 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Varin, A. et al. Synthetic Vpr protein activates activator protein-1, c-Jun N-terminal kinase, and NF-κB and stimulates HIV-1 transcription in promonocytic cells and primary macrophages. J. Biol. Chem. 280, 42557–42567 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Olivetta, E. et al. HIV-1 Nef induces the release of inflammatory factors from human monocyte/macrophages: involvement of Nef endocytotic signals and NF-κB activation. J. Immunol. 170, 1716–1727 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Ensoli, B. et al. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J. Virol. 67, 277–287 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Frankel, A. D. & Pabo, C. O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55, 1189–1193 (1988).

    Article  CAS  PubMed  Google Scholar 

  70. Tobiume, M. et al. Extracellular Nef protein activates signal transduction pathway from Ras to mitogen-activated protein kinase cascades that leads to activation of human immunodeficiency virus from latency. AIDS Res. Hum. Retroviruses 18, 461–467 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Kapasi, A. A., Patel, G., Franki, N. & Singhal, P. C. HIV-1 gp120-induced tubular epithelial cell apoptosis is mediated through p38-MAPK phosphorylation. Mol. Med. 8, 676–685 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Singhal, P. C., Reddy, K., Franki, N. & Ding, G. HIV-1 gp120 envelope protein modulates proliferation of human glomerular epithelial cells. J. Cell. Biochem. 76, 61–70 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Singhal, P. C. et al. HIV-1 gp160 envelope protein modulates proliferation and apoptosis in mesangial cells. Nephron 76, 284–295 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Singhal, P. C., Sharma, P. & Garg, P. HIV-1 gp160 protein–macrophage interactions modulate mesangial cell proliferation and matrix synthesis. Am. J. Pathol. 147, 1780–1789 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Winston, J. A. et al. Nephropathy and establishment of a renal reservoir of HIV type 1 during primary infection. N. Engl. J. Med. 344, 1979–1984 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Douek, D. C., Roederer, M. & Koup, R. A. Emerging concepts in the immunopathogenesis of AIDS. Annu. Rev. Med. 60, 471–484 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Eustace, J. A. et al. Cohort study of the treatment of severe HIV-associated nephropathy with corticosteroids. Kidney Int. 58, 1253–1260 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Laradi, A., Mallet, A., Beaufils, H., Allouache, M. & Martinez, F. HIV-associated nephropathy: outcome and prognosis factors. Groupe d' Etudes Nephrologiques d'Ile de France. J. Am. Soc. Nephrol. 9, 2327–2335 (1998).

    CAS  PubMed  Google Scholar 

  79. Cohen, S. D. & Kimmel, P. L. Immune complex renal disease and human immunodeficiency virus infection. Semin. Nephrol. 28, 535–544 (2008).

    Article  PubMed  Google Scholar 

  80. Vielhauer, V., Anders, H. J. & Schlöndorff, D. Chemokines and chemokine receptors as therapeutic targets in lupus nephritis. Semin. Nephrol. 27, 81–97 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Waldman, M., Marshall, V., Whitby, D. & Kopp, J. B. Viruses and kidney disease: beyond HIV. Semin. Nephrol. 28, 595–607 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Martinka, S. & Bruggeman, L. A. Persistent NF-κB activation in renal epithelial cells in mouse model of HIV-associated nephropathy. Am. J. Physiol. Renal Physiol. 290, F657–F665 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Ross, M. J., Martinka, S., D'Agati, V. D. & Bruggeman, L. A. NF-κB regulates Fas-mediated apoptosis in HIV-associated nephropathy. J. Am. Soc. Nephrol. 16, 2403–2411 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Ross, M. J. et al. HIV-1 infection initiates an inflammatory cascade in human renal tubular epithelial cells. J. Acquir. Immune Defic. Syndr. 42, 1–11 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. O'Donnell, M. P. et al. Renal cell cytokine production stimulates HIV-1 expression in chronically HIV-1-infected monocytes. Kidney Int. 53, 593–597 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Heckmann, A. et al. IKK2 inhibitor alleviates kidney and wasting diseases in a murine model of human AIDS. Am. J. Pathol. 164, 1253–1262 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Albaqumi, M., Soos, T. J., Barisoni, L. & Nelson, P. J. Collapsing glomerulopathy. J. Am. Soc. Nephrol. 17, 2854–2863 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Ross, M. J., Bruggeman, L. A., Wilson, P. D. & Klotman, P. E. Microcyst formation and HIV-1 gene expression occur in multiple nephron segments in HIV-associated nephropathy. J. Am. Soc. Nephrol. 12, 2645–2651 (2001).

    CAS  PubMed  Google Scholar 

  89. Barisoni, L., Kriz, W., Mundel, P. & D'Agati, V. The dysregulated podocyte phenotype: a novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy. J. Am. Soc. Nephrol. 10, 51–61 (1999).

    CAS  PubMed  Google Scholar 

  90. Barisoni, L., Bruggeman, L. A., Mundel, P., D'Agati, V. D. & Klotman, P. E. HIV-1 induces renal epithelial dedifferentiation in a transgenic model of HIV-associated nephropathy. Kidney Int. 58, 173–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Nelson, P. J., Sunamoto, M., Husain, M. & Gelman, I. H. HIV-1 expression induces cyclin D1 expression and pRb phosphorylation in infected podocytes: cell-cycle mechanisms contributing to the proliferative phenotype in HIV-associated nephropathy. BMC Microbiol. 2, 26 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Dijkman, H., Smeets, B., van der Lack, J., Steenbergen, E. & Wetzels, J. The parietal epithelial cell is crucially involved in human idiopathic focal segmental glomerulosclerosis. Kidney Int. 68, 1562–1572 (2005).

    Article  PubMed  Google Scholar 

  93. Dijkman, H. B. et al. Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells. Kidney Int. 70, 338–344 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Nagata, M. et al. Origin and phenotypic features of hyperplastic epithelial cells in collapsing glomerulopathy. Am. J. Kidney Dis. 32, 962–969 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Barisoni, L. & Nelson, P. J. Collapsing glomerulopathy: an inflammatory podocytopathy? Curr. Opin. Nephrol. Hypertens. 16, 192–195 (2007).

    Article  PubMed  Google Scholar 

  96. Appel, D. et al. Recruitment of podocytes from glomerular parietal epithelial cells. J. Am. Soc. Nephrol. 20, 333–343 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ronconi, E. et al. Regeneration of glomerular podocytes by human renal progenitors. J. Am. Soc. Nephrol. 20, 322–332 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Thorner, P. S., Ho, M., Eremina, V., Sado, Y. & Quaggin, S. Podocytes contribute to the formation of glomerular crescents. J. Am. Soc. Nephrol. 19, 495–502 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Spektor, T. M. & Rice, J. C. Ring around the genes. Nat. Cell Biol. 9, 1343–1344 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Gherardi, D. et al. Reversal of collapsing glomerulopathy in mice with the cyclin-dependent kinase inhibitor CYC202. J. Am. Soc. Nephrol. 15, 1212–1222 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Nelson, P. J., Gelman, I. H. & Klotman, P. E. Suppression of HIV-1 expression by inhibitors of cyclin-dependent kinases promotes differentiation of infected podocytes. J. Am. Soc. Nephrol. 12, 2827–2831 (2001).

    CAS  PubMed  Google Scholar 

  102. Nelson, P. J., D'Agati, V. D., Gries, J. M., Suarez, J. R. & Gelman, I. H. Amelioration of nephropathy in mice expressing HIV-1 genes by the cyclin-dependent kinase inhibitor flavopiridol. J. Antimicrob. Chemother. 51, 921–929 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. He, J. C. et al. Retinoic acid inhibits HIV-1-induced podocyte proliferation through the cAMP pathway. J. Am. Soc. Nephrol. 18, 93–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Takano, Y. et al. Recovery and maintenance of nephrin expression in cultured podocytes and identification of HGF as a repressor of nephrin. Am. J. Physiol. Renal Physiol. 292, F1573–F1582 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Vaughan, M. R. et al. ATRA induces podocyte differentiation and alters nephrin and podocin expression in vitro and in vivo. Kidney Int. 68, 133–144 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Bruggeman is supported by NIH grants DK061395 and DK077668 and is a member of the Case Center for AIDS Research supported by NIH grant AI36219. Dr. Nelson is supported by NIH grants DK065498, DK079498, and DK083375.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie A. Bruggeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruggeman, L., Nelson, P. Controversies in the pathogenesis of HIV-associated renal diseases. Nat Rev Nephrol 5, 574–581 (2009). https://doi.org/10.1038/nrneph.2009.139

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2009.139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing