Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The amygdala and reward

Key Points

  • It is widely accepted that the amygdala is associated with fear conditioning and the processing of negative emotions. But this structure is also involved in the processing of positive emotions, and particularly in learning about the positive value of stimuli.

  • A number of types of behaviour that involve reward processing are independent of the amygdala. These include visual-discrimination learning, visuomotor conditional learning, food-cup approach (Pavlovian conditioning), and food and object preferences.

  • These behaviours, in the absence of stimulus–reward association mediated by the amygdala, could rely on stimulus–response learning or cortical representations of the value of stimuli.

  • Different divisions of the amygdala mediate different kinds of stimulus–value association. Lesions of the basolateral nucleus of the amygdala impair performance on tasks that require linking an object with a current (as opposed to a consistent) stimulus value. Examples of paradigms that can expose this effect include reinforcer devaluation (in which the value of a reinforcer changes) and second-order conditioning (in which a previously neutral stimulus comes to acquire the value of the reinforcer with which it has been paired).

  • Neurons of the basolateral amygdala, like neurons in the prefrontal cortex, show complex patterns of firing that include specific responses to particular objects, such as foods. These patterns of firing can be modulated by reinforcer devaluation.

  • Lesions of the central nucleus of the amygdala, by contrast, impair Pavlovian approach or avoidance responses to specific conditioned stimuli. An example of Pavlovian approach is the increased rearing response of rats to a light that is repeatedly paired with food delivery.

  • Patients with bilateral amygdala damage perform poorly on laboratory-based gambling tasks. Unlike patients with damage to the prefrontal cortex, who are also impaired on these tasks, patients with amygdala damage fail to generate normal changes in skin-conductance response and other autonomic responses when they 'win' or 'lose' money. Their inability to learn a winning strategy might result from an inability to generate the appropriate affective state.

  • Future work should aim to integrate these functions of the amygdala with its other functions, such as the production of fear responses and attentional processing.

Abstract

The amygdala — an almond-shaped group of nuclei at the heart of the telencephalon — has been associated with a range of cognitive functions, including emotion, learning, memory, attention and perception. Most current views of amygdala function emphasize its role in negative emotions, such as fear, and in linking negative emotions with other aspects of cognition, such as learning and memory. However, recent evidence supports a role for the amygdala in processing positive emotions as well as negative ones, including learning about the beneficial biological value of stimuli. Indeed, the amygdala's role in stimulus–reward learning might be just as important as its role in processing negative affect and fear conditioning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anatomical relationships of the basolateral complex and the central nucleus of the amygdala in macaque monkeys.
Figure 2: Reinforcer-devaluation task.
Figure 3: Second-order conditioning.
Figure 4: Neuronal firing in the basolateral amygdala and the orbital frontal cortex during the delay portion of trials in a two-odour discrimination task.

Similar content being viewed by others

References

  1. Calder, A. J., Lawrence, A. D. & Young, A. W. Neuropsychology of fear and loathing. Nature Rev. Neurosci. 2, 352–363 (2001).

    Article  CAS  Google Scholar 

  2. Medina, J. F., Repa, J. C., Mauk, M. D. & LeDoux, J. E. Parallels between cerebellum- and amygdala-dependent conditioning. Nature Rev. Neurosci. 3, 122–131 (2002).

    Article  CAS  Google Scholar 

  3. McGaugh, J. L., Ferry, B., Vazdarjanova, A. & Roozendaal, B. in The Amygdala: a Functional Analysis (ed. Aggleton, J. P.) 391–423 (Oxford Univ. Press, Oxford, UK, 2000).

    Google Scholar 

  4. Davis, M. & Whalen, P. J. The amygdala: vigilance and emotion. Mol. Psychiatry 6, 13–34 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Everitt, B. J., Cardinal, R. N., Hall, J., Parkinson, J. A. & Robbins, T. W. in The Amygdala: a Functional Analysis (ed. Aggleton, J. P.) 353–390 (Oxford Univ. Press, Oxford, UK, 2000).

    Google Scholar 

  6. Gaffan, D. in The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (ed. Aggleton, J. P.) 471–483 (Wiley–Liss, New York, 1992).

    Google Scholar 

  7. Baxter, M. G. & Murray, E. A. in The Amygdala: a Functional Analysis (ed. Aggleton, J. P.) 545–568 (Oxford Univ. Press, Oxford, UK, 2000).

    Google Scholar 

  8. Murray, E. A. & Mishkin, M. Severe tactual as well as visual memory deficits follow combined removal of the amygdala and hippocampus in monkeys. J. Neurosci. 4, 2565–2580 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Murray, E. A. & Mishkin, M. Amygdalectomy impairs crossmodal association in monkeys. Science 228, 604–606 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Mishkin, M. & Oubre, J. L. Dissociation of deficits on visual memory tasks after inferior temporal and amygdala lesions in monkeys. Soc. Neurosci. Abstr. 2, 1127 (1976).

    Google Scholar 

  11. Spiegler, B. J. & Mishkin, M. Evidence for the sequential participation of inferior temporal cortex and amygdala in the acquisition of stimulus–reward associations. Behav. Brain Res. 3, 303–317 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Gaffan, D. & Harrison, S. Amygdalectomy and disconnection in visual learning for auditory secondary reinforcement by monkeys. J. Neurosci. 7, 2285–2292 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gaffan, D. & Murray, E. A. Amygdalar interaction with the mediodorsal nucleus of the thalamus and the ventromedial prefrontal cortex in stimulus–reward associative learning in the monkey. J. Neurosci. 10, 3479–3493 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Murray, E. A., Gaffan, E. A. & Flint, R. W. Jr. Anterior rhinal cortex and amygdala: dissociation of their contributions to memory and food preference in rhesus monkeys. Behav. Neurosci. 110, 30–42 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Goulet, S. & Murray, E. A. Neural substrates of crossmodal association memory in monkeys: the amygdala versus the anterior rhinal cortex. Behav. Neurosci. 115, 271–284 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Murray, E. A., Gaffan, D. & Mishkin, M. Neural substrates of visual stimulus–stimulus association in rhesus monkeys. J. Neurosci. 13, 4549–4561 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Murray, E. A. & Mishkin, M. Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus. J. Neurosci. 18, 6568–6582 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Málková, L., Gaffan, D. & Murray, E. A. Excitotoxic lesions of the amygdala fail to produce impairments in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys. J. Neurosci. 17, 6011–6020 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Thornton, J. A., Málková, L. & Murray, E. A. Rhinal cortex ablations fail to disrupt reinforcer devaluation effects in rhesus monkeys (Macaca mulatta). Behav. Neurosci. 112, 1020–1025 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Wyvell, C. L. & Berridge, K. C. Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward 'wanting' without enhanced 'liking' or response reinforcement. J. Neurosci. 20, 8122–8130 (2000).This study used elegant behavioural methods to show a selective role of dopamine in the nucleus accumbens in modulating 'wanting' (incentive salience) of reward, in the absence of any effect on the primary or secondary reinforcing properties of the reward itself. This is a particularly accessible example of dissociable aspects of reward.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Berridge, K. C. & Robinson, T. E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Brain Res. Rev. 28, 309–369 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Burns, L. H., Robbins, T. W. & Everitt, B. J. Differential effects of excitotoxic lesions of the basolateral amygdala, ventral subiculum and medial prefrontal cortex on responding with conditioned reinforcement and locomotor activity potentiated by intra-accumbens infusions of d-amphetamine. Behav. Brain Res. 55, 167–183 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Blundell, P., Hall, G. & Killcross, S. Lesions of the basolateral amygdala disrupt selective aspects of reinforcer representation in rats. J. Neurosci. 21, 9018–9026 (2001).These experiments examined the impact of neurotoxic lesions of the basolateral amygdala on reinforcer representation, indexed by the differential-outcomes effect and reinforcer-specific Pavlovian-instrumental-transfer effects. Although the lesions fail to affect the acquisition of instrumental responding or discrimination, they do disrupt phenomena that depend on the ability to represent the properties of rewards.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Murray, E. A. & Wise, S. P. Role of the hippocampus plus subjacent cortex but not amygdala in visuomotor conditional learning in rhesus monkeys. Behav. Neurosci. 110, 1261–1270 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Gallagher, M., Graham, P. W. & Holland, P. C. The amygdala central nucleus and appetitive Pavlovian conditioning: lesions impair one class of conditioned behavior. J. Neurosci. 10, 1906–1911 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hatfield, T., Han, J.-S., Conley, M., Gallagher, M. & Holland, P. Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. J. Neurosci. 16, 5256–5265 (1996).A study that shows an involvement of the amygdala in appetitive learning. Rats with lesions of the basolateral complex (but not the central nucleus) of the amygdala are impaired on two types of behaviour: responses to reinforcer devaluation and Pavlovian second-order conditioning. The same rats showed intact first-order conditioning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aggleton, J. P. & Passingham, R. E. An assessment of the reinforcing properties of foods after amygdaloid lesions in rhesus monkeys. J. Comp. Physiol. Psychol. 96, 71–77 (1982).

    Article  CAS  PubMed  Google Scholar 

  28. Gaffan, D. Hippocampus: memory, habit and voluntary movement. Philos Trans R Soc Lond B Biol Sci 308, 87–99 (1985).

    Article  CAS  PubMed  Google Scholar 

  29. Platt, M. L. & Glimcher, P. W. Neural correlates of decision variables in parietal cortex. Nature 400, 233–238 (1999).A neurophysiological study of decision making in awake, behaving monkeys. The authors showed that neurons in the parietal cortex carry signals that are related to the size and probability of reward outcomes, and are independent of attentional modulation.

    Article  CAS  PubMed  Google Scholar 

  30. Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999).A neurophysiological study of reward processing in awake, behaving monkeys. Neurons in the orbital prefrontal cortex showed increased firing in response to reward-predicting signals, during the expectation of rewards and after the receipt of rewards. Even more strikingly, some neurons carried signals about the relative preference among available rewards.

    Article  CAS  PubMed  Google Scholar 

  31. Tremblay, L. & Schultz, W. Modifications of reward expectation-related neuronal activity during learning in primate orbitofrontal cortex. J. Neurophysiol. 83, 1877–1885 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Rolls, E. T., Critchley, H. D., Mason, R. & Wakeman, E. A. Orbitofrontal cortex neurons: role in olfactory and visual association learning. J. Neurophysiol. 75, 1970–1981 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Wilson, F. A. & Rolls, E. T. The effects of stimulus novelty and familiarity on neuronal activity in the amygdala of monkeys performing recognition memory tasks. Exp. Brain Res. 93, 367–382 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Watanabe, M. Reward expectancy in primate prefrontal neurons. Nature 382, 629–632 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Jagadeesh, B., Chelazzi, L., Mishkin, M. & Desimone, R. Learning increases stimulus salience in anterior inferior temporal cortex of the macaque. J. Neurophysiol. 86, 290–303 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Easton, A. & Gaffan, D. in The Amygdala: a Functional Analysis (ed. Aggleton, J. P.) 569–586 (Oxford Univ. Press, Oxford, UK, 2000).

    Google Scholar 

  37. Easton, A. & Gaffan, D. Comparison of perirhinal cortex ablation and crossed unilateral lesions of the medial forebrain bundle from the inferior temporal cortex in the rhesus monkey: effects on learning and retrieval. Behav. Neurosci. 114, 1041–1057 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Easton, A. & Gaffan, D. Crossed unilateral lesions of the medial forebrain bundle and either inferior temporal or frontal cortex impair object–reward association learning in rhesus monkeys. Neuropsychologia 39, 71–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Gaffan, D., Murray, E. A. & Fabre-Thorpe, M. Interaction of the amygdala with the frontal lobe in reward memory. Eur. J. Neurosci. 5, 968–975 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Fernandez-Ruiz, J., Wang, J., Aigner, T. G. & Mishkin, M. Visual habit formation in monkeys with neurotoxic lesions of the ventrocaudal neostriatum. Proc. Natl Acad. Sci. USA 98, 4196–4201 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Toni, I. & Passingham, R. E. Prefrontal–basal ganglia pathways are involved in the learning of arbitrary visuomotor associations: a PET study. Exp. Brain Res. 127, 19–32 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Bar-Gad, I. & Bergman, H. Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr. Opin. Neurobiol. 11, 689–695 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Wise, S. P., Murray, E. A. & Gerfen, C. R. The frontal cortex–basal ganglia system in primates. Crit. Rev. Neurobiol. 10, 317–356 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Holland, P. C. & Rescorla, R. A. The effect of two ways of devaluing the unconditioned stimulus after first- and second-order appetitive conditioning. J. Exp. Psychol. Anim. Behav. Process. 1, 355–363 (1975).

    Article  Google Scholar 

  45. Holland, P. C. Event representation in Pavlovian conditioning: image and action. Cognition 37, 105–131 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Holland, P. Amount of training affects associatively-activated event representation. Neuropharmacology 37, 461–469 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Baxter, M. G., Parker, A., Lindner, C. C. C., Izquierdo, A. D. & Murray, E. A. Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J. Neurosci. 20, 4311–4319 (2000).Using a crossed-disconnection design, these authors show that the amygdala and the orbital/medial prefrontal cortex must functionally interact to guide choices between objects that yield different reward outcomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ettlinger, G. Visual discrimination following successive temporal ablations in monkeys. Brain 82, 232–250 (1959).

    Article  CAS  PubMed  Google Scholar 

  49. Butter, C. M., McDonald, J. A. & Snyder, D. R. Orality, preference behavior, and reinforcement value of nonfood object in monkeys with orbital frontal lesions. Science 164, 1306–1307 (1969).

    Article  CAS  PubMed  Google Scholar 

  50. Aggleton, J. P. & Passingham, R. E. Syndrome produced by lesions of the amygdala in monkeys (Macaca mulatta). J. Comp. Physiol. Psychol. 95, 961–977 (1981).

    Article  CAS  PubMed  Google Scholar 

  51. Nishijo, H., Ono, T. & Nishino, H. Single neuron responses in amygdala of alert monkey during complex sensory stimulation with affective significance. J. Neurosci. 8, 3570–3583 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Leonard, C. M., Rolls, E. T., Wilson, F. A. & Baylis, G. C. Neurons in the amygdala of the monkey with responses selective for faces. Behav. Brain Res. 15, 159–176 (1985).

    Article  CAS  PubMed  Google Scholar 

  53. Rolls, E. T. in The Amygdala: a Functional Analysis (ed. Aggleton, J. P.) 447–478 (Oxford Univ. Press, Oxford, UK, 2000).

    Google Scholar 

  54. Sanghera, M. K., Rolls, E. T. & Roper-Hall, A. Visual responses of neurons in the dorsolateral amygdala of the alert monkey. Exp. Neurol. 63, 610–626 (1979).

    Article  CAS  PubMed  Google Scholar 

  55. Rolls, E. T., Sienkiewicz, Z. J. & Yaxley, S. Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur. J. Neurosci. 1, 53–60 (1989).

    Article  PubMed  Google Scholar 

  56. Critchley, H. D. & Rolls, E. T. Hunger and satiety modify the responses of olfactory and visual neurons in the primate orbitofrontal cortex. J. Neurophysiol. 75, 1673–1686 (1996).A neurophysiological study of the effects of motivational state on the response properties of orbital frontal neurons to visual and olfactory stimuli in awake, behaving macaque monkeys. Most neurons that had specific responses to particular foods (either by sight or smell) reduced their responding after satiation with that food, indicating that the orbital frontal cortex has access to information about the current value of a food reinforcer.

    Article  CAS  PubMed  Google Scholar 

  57. Gewirtz, J. C. & Davis, M. Second-order fear conditioning prevented by blocking NMDA receptors in amygdala. Nature 388, 471–474 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Cador, M., Robbins, T. W. & Everitt, B. J. Involvement of the amygdala in stimulus–reward associations: interaction with the ventral striatum. Neuroscience 30, 77–86 (1989).

    Article  CAS  PubMed  Google Scholar 

  59. Everitt, B. J., Cador, M. & Robbins, T. W. Interactions between the amygdala and ventral striatum in stimulus–reward associations: studies using a second-order schedule of sexual reinforcement. Neuroscience 30, 63–75 (1989).

    Article  CAS  PubMed  Google Scholar 

  60. Setlow, B., Gallagher, M. & Holland, P. C. Disconnection of the basolateral amygdala complex and nucleus accumbens impairs appetitive Pavlovian second-order conditioned responses. Behav. Neurosci. 116, 267–275 (2002).

    Article  PubMed  Google Scholar 

  61. Holland, P. C., Hatfield, T. & Gallagher, M. Rats with basolateral amygdala lesions show normal increases in conditioned stimulus processing but reduced conditioned potentiation of eating. Behav. Neurosci. 115, 945–950 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Killcross, S., Robbins, T. W. & Everitt, B. J. Different types of fear-conditioned behaviour mediated by separate nuclei within amygdala. Nature 388, 377–380 (1997).This classic study showed a double dissociation between the basolateral amygdala and the central nucleus of the amygdala in mediating different types of fear-related behaviour in a conditioned-punishment procedure.

    Article  CAS  PubMed  Google Scholar 

  63. Parkinson, J. A. et al. The role of the primate amygdala in conditioned reinforcement. J. Neurosci. 21, 7770–7780 (2001).This experiment examined the performance of marmoset monkeys in a conditioned-reinforcement task adapted from that used in rats. Marmosets with amygdala lesions were less willing to work for presentations of a preoperatively trained secondary reinforcer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Setlow, B., Gallagher, M. & Holland, P. C. The basolateral complex of the amygdala is necessary for acquisition but not expression of CS motivational value in appetitive Pavlovian second-order conditioning. Eur. J. Neurosci. (in the press).The findings of this experiment complement those of reference 26 . The authors found that when first-order Pavlovian conditioning takes place before damage to the basolateral amygdala, subsequent second-order conditioning (after the amygdala lesion) proceeds normally. So, once a stimulus–value association is acquired in the presence of the basolateral amygdala, some aspects of the reinforcer representation that are necessary to support new learning can be represented and accessed outside the amygdala.

  65. Gallagher, M. & Holland, P. C. in The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (ed. Aggleton, J. P.) 307–321 (Wiley–Liss, New York, 1992).

    Google Scholar 

  66. Holland, P. C. Conditioned stimulus as a determinant of the form of the Pavlovian conditioned response. J. Exp. Psychol. Anim. Behav. Process. 3, 77–104 (1977).

    Article  CAS  PubMed  Google Scholar 

  67. Han, J. S., McMahan, R. W., Holland, P. & Gallagher, M. The role of an amygdalo-nigrostriatal pathway in associative learning. J. Neurosci. 17, 3913–3919 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bussey, T. J., Everitt, B. J. & Robbins, T. W. Dissociable effects of cingulate and medial frontal cortex lesions on stimulus–reward learning using a novel Pavlovian autoshaping procedure for the rat: implications for the neurobiology of emotion. Behav. Neurosci. 111, 908–919 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Parkinson, J. A., Robbins, T. W. & Everitt, B. J. Dissociable roles of the central and basolateral amygdala in appetitive emotional learning. Eur. J. Neurosci. 12, 405–413 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Parkinson, J. A., Willoughby, P. J., Robbins, T. W. & Everitt, B. J. Disconnection of the anterior cingulate cortex and nucleus accumbens core impairs Pavlovian approach behavior: further evidence for limbic cortical–ventral striatopallidal systems. Behav. Neurosci. 114, 42–63 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Cleland, G. G. & Davey, G. C. L. The effects of satiation and reinforcer devaluation on signal-centered behaviors in the rat. Learn. Motiv. 13, 343–360 (1982).

    Article  Google Scholar 

  72. Bechara, A., Damasio, A. R., Damasio, H. & Anderson, S. W. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50, 7–15 (1994).

    Article  CAS  PubMed  Google Scholar 

  73. Bechara, A., Tranel, D., Damasio, H. & Damasio, A. R. Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cereb. Cortex 6, 215–225 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Bechara, A., Damasio, H., Damasio, A. R. & Lee, G. P. Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. J. Neurosci. 19, 5473–5481 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schoenbaum, G., Chiba, A. A. & Gallagher, M. Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nature Neurosci. 1, 155–159 (1998).A unit-recording study of reward processing in awake, behaving rats performing a go–no-go olfactory discrimination. During the period after an instruction odour and before the rat's behavioural response, neurons in both the basolateral amygdala and the orbital frontal cortex showed activity that coded either rewarding (sucrose) or aversive (quinine) outcomes of a trial. This selective activity emerged early in training, before the rats had learned the task.

    Article  CAS  PubMed  Google Scholar 

  76. Schoenbaum, G., Chiba, A. A. & Gallagher, M. Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. J. Neurosci. 19, 1876–1884 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schoenbaum, G., Chiba, A. A. & Gallagher, M. Changes in functional connectivity in orbitofrontal cortex and basolateral amygdala during learning and reversal training. J. Neurosci. 20, 5179–5189 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. McDonald, R. J. & White, N. M. A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behav. Neurosci. 107, 3–22 (1993).

    Article  CAS  PubMed  Google Scholar 

  79. Hiroi, N. & White, N. M. The lateral nucleus of the amygdala mediates expression of the amphetamine-produced conditioned place preference. J. Neurosci. 11, 2107–2116 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yin, H. H. & Knowlton, B. J. Reinforcer devaluation abolishes conditioned cue preference: evidence for stimulus–stimulus associations. Behav. Neurosci. 116, 174–177 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Chiba, A. A., Bucci, D. J., Holland, P. C. & Gallagher, M. Basal forebrain cholinergic lesions disrupt increments but not decrements in conditioned stimulus processing. J. Neurosci. 15, 7315–7322 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Holland, P. C. & Gallagher, M. Amygdala central nucleus lesions disrupt increments, but not decrements, in conditioned stimulus processing. Behav. Neurosci. 107, 246–253 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Bucci, D. J., Holland, P. C. & Gallagher, M. Removal of cholinergic input to rat posterior parietal cortex disrupts incremental processing of conditioned stimuli. J. Neurosci. 18, 8038–8046 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Holland, P. C., Han, J. S. & Gallagher, M. Lesions of the amygdala central nucleus alter performance on a selective attention task. J. Neurosci. 20, 6701–6706 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hall, J., Parkinson, J. A., Connor, T. M., Dickinson, A. & Everitt, B. J. Involvement of the central nucleus of the amygdala and nucleus accumbens core in mediating Pavlovian influences on instrumental behaviour. Eur. J. Neurosci. 13, 1984–1992 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Swanson, L. W. & Petrovich, G. D. What is the amygdala? Trends Neurosci. 21, 323–331 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Kelley, A. E. & Berridge, K. C. The neuroscience of natural rewards: relevance to addictive drugs. J. Neurosci. 22, 3306–3311 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Price, J. L., Carmichael, S. T. & Drevets, W. C. Networks related to the orbital and medial prefrontal cortex; a substrate for emotional behavior? Prog. Brain Res. 107, 523–536 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Holland, P. C. & Gallagher, M. Amygdala circuitry in attentional and representational processes. Trends Cogn. Sci. 3, 65–73 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank S. P. Wise for helpful comments on an earlier version of the paper. M.G.B. is an Alfred P. Sloan Research Fellow. The research of E.A.M is supported by the Intramural Research Program of the National Institutes of Mental Health.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Elisabeth Murray's lab

Mark Baxter's lab

Encyclopedia of Life Sciences

learning and memory

MIT Encyclopedia of Cognitive Sciences

amygdala, primate

conditioning and the brain

magnetic resonance imaging

Glossary

EXCITOTOXIN

A chemical toxin — typically a structural analogue of the neurotransmitter glutamate — that, when injected into brain tissue, kills cell bodies in the region of injection, leaving fibres of passage through that region intact. The neurotoxic effect of these agents is mediated by their action at glutamate receptors and involves overstimulation of the neuron, which leads to cell death.

DELAYED NONMATCHING-TO-SAMPLE

A test of stimulus-recognition memory in which the subject is presented with one or more sample objects and, after a short delay, is confronted with a choice test between the sample object and a novel object. The subject is rewarded for choosing the novel object.

INSTRUMENTAL LEARNING

Learning that takes place through reinforcement (or the absence of punishment) that is contingent on the performance (or withholding) of a particular behaviour. So, the subject's response is instrumental in producing an outcome, typically a food reward. Compare with Pavlovian learning.

PAVLOVIAN LEARNING

Learning that takes place because of temporal contiguity between a stimulus (the conditioned stimulus) and a reinforcer (the unconditioned stimulus), in the absence of a requirement for the subject to produce a particular behaviour to obtain reinforcement. Also commonly referred to as classical conditioning.

CROSSED-DISCONNECTION LESION

This involves crossed unilateral lesions of two neural structures, one in each hemisphere of the brain. Because each hemisphere has one of the two structures intact, communication between the two structures is selectively disrupted. This procedure is commonly carried out to determine whether two brain structures functionally interact in a particular behaviour.

VENTROMEDIAL PREFRONTAL CORTEX

The regions of the cerebral cortex on the ventral and medial surfaces of the frontal lobes, including the orbital frontal cortex, the gyrus rectus and the anterior cingulate cortex. 'Orbital frontal' or 'orbital prefrontal' cortex usually refers more specifically to the cortex on the orbital surface of the frontal lobe, including Walker's areas 10, 11, 13 and 14.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baxter, M., Murray, E. The amygdala and reward. Nat Rev Neurosci 3, 563–573 (2002). https://doi.org/10.1038/nrn875

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn875

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing