Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New concepts in the immunopathogenesis of multiple sclerosis

Key Points

  • Multiple sclerosis (MS), a demyelinating neurological disorder, has been thought of as an autoimmune disease that involves the response of CD4+ T cells to myelin antigens. However, there is substantial evidence that the disorder is more complex, as other immune cells seem to participate in the pathogenesis of MS.

  • The original concepts about the involvement of CD4+ cells in MS emanated from work on an animal model of the disease — experimental autoimmune encephalomyelitis (EAE). The insights from EAE were tested in MS, and some similarities were observed. In fact, most of the available therapies for MS target CD4+ responses. But the use of new techniques has made it possible to test more stringently the CD4+ model, showing that some of its predictions are not borne out, and providing evidence for the involvement of other immune cells, such as CD8+ cells and B lymphocytes.

  • As the CD4+ model has its limitations, alternative ideas have been put forward to account for the pathogenesis of MS. Among them, the possibility of an immune reaction against a brain pathogen has received some attention. Similarly, the idea that MS is primarily a neurodegenerative disorder that is subsequently accompanied by an immune reaction has been entertained.

  • A model for the pathogenesis of MS argues that cross-reactive antigens, a brain-resident pathogen or brain proteins after primary degeneration are released into the periphery, setting off an immune response that involves the priming of T and B cells. Primed cells will accumulate in the brain where they encounter their target antigens, initiating their effector functions and recruiting inflammatory cells, such as macrophages. In parallel to this immune response, repair mechanisms will be initiated, resulting in remyelination.

  • The development of new therapies for MS will depend on a deeper understanding of its molecular mechanisms. More importantly, the limitations of the CD4+ model compel us to look beyond the idea that MS is strictly an autoimmune disorder, and to pursue the development of treatments that are focused on other pathogenic causes.

Abstract

Multiple sclerosis (MS) is a commonly occurring inflammatory and demyelinating neurological disease. It has been considered to be an autoimmune disorder mediated by CD4+ type 1 T helper cells, but recent studies have challenged this idea by indicating a role for other immune cells. So, T- and B-cell responses in the brain of patients with MS involve the clonal expansion of lymphocytes and the antigen-driven maturation of the B-cell receptors, indicating that the immune response in MS engages a broad range of immune cells that target a limited number of brain antigens. At variance with the classical view, axons are not spared during the inflammatory process. Indeed, axonal damage determines clinical outcome to a large extent. Studies of the mechanisms of axonal damage and neurodegeneration in MS are in their infancy. Here, we summarize recent advances in our understanding of the pathogenesis of MS, and conclude with an outlook on how to capitalize on this knowledge to develop new therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible target antigens in the white matter.
Figure 2: Possible mechanisms leading to neuroinflammation.
Figure 3: Immune responses in multiple sclerosis.
Figure 4: Molecular interactions in central nervous system inflammation and repair.

Similar content being viewed by others

References

  1. Noseworthy, J. H., Lucchinetti, C., Rodriguez, M. & Weinshenker, B. G. Multiple sclerosis. N. Engl. J. Med. 343, 938–952 (2000).

    CAS  PubMed  Google Scholar 

  2. Kremenchutzky, M. et al. The natural history of multiple sclerosis: a geographically based study. 7. Progressive-relapsing and relapsing-progressive multiple sclerosis: a re-evaluation. Brain 122, 1941–1950 (1999).

    PubMed  Google Scholar 

  3. Miller, D. H., Grossman, R. I., Reingold, S. C. & McFarland, H. F. The role of magnetic resonance techniques in understanding and managing multiple sclerosis. Brain 121, 3–24 (1998).

    PubMed  Google Scholar 

  4. Losseff, N. A. et al. Progressive cerebral atrophy in multiple sclerosis. A serial MRI study. Brain 119, 2009–2019 (1996).

    PubMed  Google Scholar 

  5. Fox, N. C. et al. Progressive cerebral atrophy in MS: a serial study using registered, volumetric MRI. Neurology 54, 807–812 (2000).

    CAS  PubMed  Google Scholar 

  6. Compston, A. Genetic epidemiology of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 62, 553–561 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ebers, G. C., Sadovnick, A. D. & Risch, N. J. A genetic basis for familial aggregation in multiple sclerosis. Canadian Collaborative Study Group. Nature 377, 150–151 (1995).

    CAS  PubMed  Google Scholar 

  8. Ebers, G. C. & Dyment, D. A. Genetics of multiple sclerosis. Semin. Neurol. 18, 295–299 (1998).

    CAS  PubMed  Google Scholar 

  9. Oksenberg, J. R., Baranzini, S. E., Barcellos, L. F. & Hauser, S. L. Multiple sclerosis: genomic rewards. J. Neuroimmunol. 113, 171–184 (2001).

    CAS  PubMed  Google Scholar 

  10. Chapman, J. et al. APOE genotype is a major predictor of long-term progression of disability in MS. Neurology 56, 312–316 (2001).

    CAS  PubMed  Google Scholar 

  11. Fazekas, F. et al. Apolipoprotein E ɛ4 is associated with rapid progression of multiple sclerosis. Neurology 57, 853–857 (2001).

    CAS  PubMed  Google Scholar 

  12. Olerup, O. & Hillert, J. HLA class II-associated genetic susceptibility in multiple sclerosis: a critical evaluation. Tissue Antigens 38, 1–15 (1991).

    CAS  PubMed  Google Scholar 

  13. Sibley, W. A., Bamford, C. R. & Clark, K. Clinical viral infections and multiple sclerosis. Lancet 1, 1313–1315 (1985).

    CAS  PubMed  Google Scholar 

  14. Gale, C. R. & Martyn, C. N. Migrant studies in multiple sclerosis. Prog. Neurobiol. 47, 425–448 (1995).

    CAS  PubMed  Google Scholar 

  15. Lauer, K. The risk of multiple sclerosis in the U. S. A. in relation to sociogeographic features: a factor-analytic study. J. Clin. Epidemiol. 47, 43–48 (1994).

    CAS  PubMed  Google Scholar 

  16. Kurtzke, J. F. Epidemiology of multiple sclerosis. Does this really point toward an etiology? Lectio Doctoralis. Neurol. Sci. 21, 383–403 (2000).

    CAS  PubMed  Google Scholar 

  17. Lassmann, H., Raine, C. S., Antel, J. & Prineas, J. W. Immunopathology of multiple sclerosis: report on an international meeting held at the Institute of Neurology of the University of Vienna. J. Neuroimmunol. 86, 213–217 (1998).

    CAS  PubMed  Google Scholar 

  18. Remlinger, P. Les paralysies du traitement antirabique. Ann. Institut Pasteur 55, 35–68 (1928).

    Google Scholar 

  19. Rivers, T. M., Sprunt, D. H. & Gerry, B. P. Observations on attempts to produce acute disseminated encephalomyelitis in monkeys. J. Exp. Med. 58, 39–53 (1933).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wekerle, H., Kojima, K., Lannes-Vieira, J., Lassmann, H. & Linington, C. Animal models. Ann. Neurol. 36, S47–S53 (1994).

    CAS  PubMed  Google Scholar 

  21. Paterson, P. Y. Transfer of allergic encephalomyelitis in rats by means of lymph node cells. J. Exp. Med. 111, 119–135 (1960).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zamvil, S. S. & Steinman, L. The T lymphocyte in experimental allergic encephalomyelitis. Annu. Rev. Immunol. 8, 579–621 (1990).

    CAS  PubMed  Google Scholar 

  23. Rocken, M., Racke, M. & Shevach, E. M. IL-4-induced immune deviation as antigen-specific therapy for inflammatory autoimmune disease. Immunol. Today 17, 225–231 (1996).

    CAS  PubMed  Google Scholar 

  24. Panitch, H. S., Hirsch, R. L., Schindler, J. & Johnson, K. P. Treatment of multiple sclerosis with γ-interferon: exacerbations associated with activation of the immune system. Neurology 37, 1097–1102 (1987).

    CAS  PubMed  Google Scholar 

  25. Genain, C. P., Cannella, B., Hauser, S. L. & Raine, C. S. Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nature Med. 5, 170–175 (1999).

    CAS  PubMed  Google Scholar 

  26. Reindl, M. et al. Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: a comparative study. Brain 122, 2047–2056 (1999).

    PubMed  Google Scholar 

  27. Cross, A. H. MS: the return of the B cell. Neurology 54, 1214–1215 (2000).

    CAS  PubMed  Google Scholar 

  28. Martin, R., McFarland, H. F. & McFarlin, D. E. Immunological aspects of demyelinating diseases. Annu. Rev. Immunol. 10, 153–187 (1992).

    CAS  PubMed  Google Scholar 

  29. O'Connor, K. C., Bar-Or, A. & Hafler, D. A. The neuroimmunology of multiple sclerosis: possible roles of T and B lymphocytes in immunopathogenesis. J. Clin. Immunol. 21, 81–92 (2001).

    CAS  PubMed  Google Scholar 

  30. Wucherpfennig, K. W. & Strominger, J. L. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80, 695–705 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hemmer, B. et al. Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T cell clone. J. Exp. Med. 185, 1651–1659 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Benoist, C. & Mathis, D. Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry? Nature Immunol. 2, 797–801 (2001).

    CAS  Google Scholar 

  33. Vanderlugt, C. L. & Miller, S. D. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nature Rev. Immunol. 2, 85–95 (2002).

    CAS  Google Scholar 

  34. Hafler, D. A., Saadeh, M. G., Kuchroo, V. K., Milford, E. & Steinman, L. TCR usage in human and experimental demyelinating disease. Immunol. Today 17, 152–159 (1996).

    CAS  PubMed  Google Scholar 

  35. Archelos, J. J., Storch, M. K. & Hartung, H. P. The role of B cells and autoantibodies in multiple sclerosis. Ann. Neurol. 47, 694–706 (2000).

    CAS  PubMed  Google Scholar 

  36. Steinman, L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85, 299–302 (1996).

    CAS  PubMed  Google Scholar 

  37. Owens, T., Wekerle, H. & Antel, J. Genetic models for CNS inflammation. Nature Med. 7, 161–166 (2001).

    CAS  PubMed  Google Scholar 

  38. Willenborg, D. O., Fordham, S., Bernard, C. C., Cowden, W. B. & Ramshaw, I. A. IFN-γ plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J. Immunol. 157, 3223–3227 (1996).

    CAS  PubMed  Google Scholar 

  39. Ferber, I. A. et al. Mice with a disrupted IFN-γ gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J. Immunol. 156, 5–7 (1996).

    CAS  PubMed  Google Scholar 

  40. Furlan, R. et al. Intrathecal delivery of IFN-γ protects C57BL/6 mice from chronic-progressive experimental autoimmune encephalomyelitis by increasing apoptosis of central nervous system-infiltrating lymphocytes. J. Immunol. 167, 1821–1829 (2001).

    CAS  PubMed  Google Scholar 

  41. Bettelli, E. et al. IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice. J. Immunol. 161, 3299–3306 (1998).

    CAS  PubMed  Google Scholar 

  42. Frei, K. et al. Tumor necrosis factor α and lymphotoxin α are not required for induction of acute experimental autoimmune encephalomyelitis. J. Exp. Med. 185, 2177–2182 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sean, R. D. et al. Challenging cytokine redundancy: inflammatory cell movement and clinical course of experimental autoimmune encephalomyelitis are normal in lymphotoxin-deficient, but not tumor necrosis factor-deficient, mice. J. Exp. Med. 187, 1517–1528 (1998).

    Google Scholar 

  44. Liu, J. et al. TNF is a potent anti-inflammatory cytokine in autoimmune-mediated demyelination. Nature Med. 4, 78–83 (1998).

    CAS  PubMed  Google Scholar 

  45. Kassiotis, G., Pasparakis, M., Kollias, G. & Probert, L. TNF accelerates the onset but does not alter the incidence and severity of myelin basic protein-induced experimental autoimmune encephalomyelitis. Eur. J. Immunol. 29, 774–780 (1999).

    CAS  PubMed  Google Scholar 

  46. Steinman, L. Some misconceptions about understanding autoimmunity through experiments with knockouts. J. Exp. Med. 185, 2039–2041 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Brocke, S. et al. Treatment of experimental encephalomyelitis with a peptide analogue of myelin basic protein. Nature 379, 343–346 (1996).

    CAS  PubMed  Google Scholar 

  48. Lafaille, J. J. et al. Myelin basic protein-specific T helper 2 (Th2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease. J. Exp. Med. 186, 307–312 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cannella, B. & Raine, C. S. The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann. Neurol. 37, 424–435 (1995).

    CAS  PubMed  Google Scholar 

  50. Baranzini, S. E. et al. Transcriptional analysis of multiple sclerosis brain lesions reveals a complex pattern of cytokine expression. J. Immunol. 165, 6576–6582 (2000).An analysis of cytokine expression in the lesions of patients with MS.

    CAS  PubMed  Google Scholar 

  51. Sun, D. et al. Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J. Immunol. 166, 7579–7587 (2001).

    CAS  PubMed  Google Scholar 

  52. Huseby, E. S. et al. A pathogenic role for myelin-specific CD8+ T cells in a model for multiple sclerosis. J. Exp. Med. 194, 669–676 (2001).References 51 and 52 are the first reports on the potency of CD8+ T cells to induce EAE.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wolf, S. D., Dittel, B. N., Hardardottir, F. & Janeway, C. A. Jr. Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J. Exp. Med. 184, 2271–2278 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Linington, C., Bradl, M., Lassmann, H., Brunner, C. & Vass, K. Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am. J. Pathol. 130, 443–454 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Becher, B., Durell, B. G., Miga, A. V., Hickey, W. F. & Noelle, R. J. The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. J. Exp. Med. 193, 967–974 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Genain, C. P. et al. Late complications of immune deviation therapy in a nonhuman primate. Science 274, 2054–2057 (1996).

    CAS  PubMed  Google Scholar 

  57. van Oosten, B. W. et al. Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 47, 1531–1534 (1996).

    CAS  PubMed  Google Scholar 

  58. The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group. TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. Neurology 53, 457–465 (1999).

  59. van Oosten, B. W. et al. Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled, MR-monitored phase II trial. Neurology 49, 351–357 (1997).

    CAS  PubMed  Google Scholar 

  60. Hohlfeld, R. & Wiendl, H. The ups and downs of multiple sclerosis therapeutics. Ann. Neurol. 49, 281–284 (2001).

    CAS  PubMed  Google Scholar 

  61. Bielekova, B. et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nature Med. 6, 1167–1175 (2000).Shows the possible negative impact of myelin-specific immune therapy in MS.

    CAS  PubMed  Google Scholar 

  62. Kappos, L. et al. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group. Nature Med. 6, 1176–1182 (2000).

    CAS  PubMed  Google Scholar 

  63. Stohlman, S. A. & Hinton, D. R. Viral induced demyelination. Brain Pathol. 11, 92–106 (2001).An excellent review on viral-induced demyelination in humans and animal models.

    CAS  PubMed  Google Scholar 

  64. Haring, J. & Perlman, S. Mouse hepatitis virus. Curr. Opin. Microbiol. 4, 462–466 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Stohlman, S. A., Bergmann, C. C., Lin, M. T., Cua, D. J. & Hinton, D. R. CTL effector function within the central nervous system requires CD4+ T cells. J. Immunol. 160, 2896–2904 (1998).

    CAS  PubMed  Google Scholar 

  66. Lin, M. T., Hinton, D. R., Marten, N. W., Bergmann, C. C. & Stohlman, S. A. Antibody prevents virus reactivation within the central nervous system. J. Immunol. 162, 7358–7368 (1999).

    CAS  PubMed  Google Scholar 

  67. Ramakrishna, C., Stohlman, S. A., Atkinson, R. D., Shlomchik, M. J. & Bergmann, C. C. Mechanisms of central nervous system viral persistence: the critical role of antibody and B cells. J. Immunol. 168, 1204–1211 (2002).

    CAS  PubMed  Google Scholar 

  68. Wang, F. I., Stohlman, S. A. & Fleming, J. O. Demyelination induced by murine hepatitis virus JHM strain (MHV-4) is immunologically mediated. J. Neuroimmunol. 30, 31–41 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Dandekar, A. A., Wu, G. F., Pewe, L. & Perlman, S. Axonal damage is T cell mediated and occurs concomitantly with demyelination in mice infected with a neurotropic coronavirus. J. Virol. 75, 6115–6120 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Soldan, S. S. et al. Association of human herpesvirus 6 (HHV-6) with multiple sclerosis: increased IgM response to HHV-6 early antigen and detection of serum HHV-6 DNA. Nature Med. 3, 1394–1397 (1997).

    CAS  PubMed  Google Scholar 

  71. Taus, C. et al. Absence of HHV-6 and HHV-7 in cerebrospinal fluid in relapsing–remitting multiple sclerosis. Acta Neurol. Scand. 101, 224–228 (2000).

    CAS  PubMed  Google Scholar 

  72. Sriram, S. et al. Chlamydia pneumoniae infection of the central nervous system in multiple sclerosis. Ann. Neurol. 46, 6–14 (1999).

    CAS  PubMed  Google Scholar 

  73. Gieffers, J. et al. Presence of Chlamydia pneumoniae DNA in the cerebral spinal fluid is a common phenomenon in a variety of neurological diseases and not restricted to multiple sclerosis. Ann. Neurol. 49, 585–589 (2001).

    CAS  PubMed  Google Scholar 

  74. Ascherio, A. et al. Epstein–Barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 286, 3083–3088 (2001).

    CAS  PubMed  Google Scholar 

  75. Allan, S. M. & Rothwell, N. J. Cytokines and acute neurodegeneration. Nature Rev. Neurosci. 2, 734–744 (2001).

    CAS  Google Scholar 

  76. del Zoppo, G. et al. Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol. 10, 95–112 (2000).

    CAS  PubMed  Google Scholar 

  77. Barone, F. C. & Feuerstein, G. Z. Inflammatory mediators and stroke: new opportunities for novel therapeutics. J. Cereb. Blood Flow Metab. 19, 819–834 (1999).

    CAS  PubMed  Google Scholar 

  78. Nguyen, M. H., Julien, J.-P. & Rivest, S. Innate immunity: the missing link in neuroprotection and neurodegeneration? Nature Rev. Neurosci. 3, 216–228 (2002).

    CAS  Google Scholar 

  79. Schmied, M. et al. Apoptosis of T lymphocytes in experimental autoimmune encephalomyelitis. Evidence for programmed cell death as a mechanism to control inflammation in the brain. Am. J. Pathol. 143, 446–452 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tabi, Z., McCombe, P. A. & Pender, M. P. Apoptotic elimination of Vβ 8. 2+ cells from the central nervous system during recovery from experimental autoimmune encephalomyelitis induced by the passive transfer of Vβ 8. 2+ encephalitogenic T cells. Eur. J. Immunol. 24, 2609–2617 (1994).

    CAS  PubMed  Google Scholar 

  81. Gold, R., Hartung, H. P. & Lassmann, H. T-cell apoptosis in autoimmune diseases: termination of inflammation in the nervous system and other sites with specialized immune-defense mechanisms. Trends Neurosci. 20, 399–404 (1997).

    CAS  PubMed  Google Scholar 

  82. Kabat, E. A., Moore, D. H. & Landow, H. An electrophoretic study of the protein components in cerebrospinal fluid and their relationship to the serum proteins. J. Clin. Invest. 21, 571–577 (1942).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Losy, J., Mehta, P. D. & Wisniewski, H. M. Identification of IgG subclasses' oligoclonal bands in multiple sclerosis CSF. Acta Neurol. Scand. 82, 4–8 (1990).

    CAS  PubMed  Google Scholar 

  84. Greve, B., Magnusson, C. G., Melms, A. & Weissert, R. Immunoglobulin isotypes reveal a predominant role of type 1 immunity in multiple sclerosis. J. Neuroimmunol. 121, 120–125 (2001).

    CAS  PubMed  Google Scholar 

  85. Walsh, M. J. & Tourtellotte, W. W. Temporal invariance and clonal uniformity of brain and cerebrospinal IgG, IgA, and IgM in multiple sclerosis. J. Exp. Med. 163, 41–53 (1986).

    CAS  PubMed  Google Scholar 

  86. Qin, Y. et al. Clonal expansion and somatic hypermutation of V(H) genes of B cells from cerebrospinal fluid in multiple sclerosis. J. Clin. Invest. 102, 1045–1050 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Baranzini, S. E. et al. B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions. J. Immunol. 163, 5133–5144 (1999).

    CAS  PubMed  Google Scholar 

  88. Colombo, M. et al. Accumulation of clonally related B lymphocytes in the cerebrospinal fluid of multiple sclerosis patients. J. Immunol. 164, 2782–2789 (2000).References 86–88 established the occurrence of clonal expansion of B cells in the lesion and CSF of patients with MS.

    CAS  PubMed  Google Scholar 

  89. Owens, G. P., Burgoon, M. P., Anthony, J., Kleinschmidt-DeMasters, B. K. & Gilden, D. H. The immunoglobulin G heavy chain repertoire in multiple sclerosis plaques is distinct from the heavy chain repertoire in peripheral blood lymphocytes. Clin. Immunol. 98, 258–263 (2001).

    CAS  PubMed  Google Scholar 

  90. Smith-Jensen,T. et al. Comparison of immunoglobulin G heavy-chain sequences in MS and SSPE brains reveals an antigen-driven response. Neurology 54, 1227–1232 (2000).

    CAS  PubMed  Google Scholar 

  91. Oksenberg, J. R. et al. Limited heterogeneity of rearranged T-cell receptor V α transcripts in brains of multiple sclerosis patients. Nature 345, 344–346 (1990).

    CAS  PubMed  Google Scholar 

  92. Babbe, H. et al. Clonal expansions of CD8+ T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med. 192, 393–404 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Jacobsen, M. et al. Oligoclonal expansion of memory CD8+ T cells in the cerebrospinal fluid from multiple sclerosis patients. Brain 125, 538–550 (2002).References 92 and 93 established the occurrence of clonal expansion of CD8+ T cells in CNS lesions and in the CSF of patients with MS.

    PubMed  Google Scholar 

  94. Lucchinetti, C., Bruck, W. & Noseworthy, J. Multiple sclerosis: recent developments in neuropathology, pathogenesis, magnetic resonance imaging studies and treatment. Curr. Opin. Neurol. 14, 259–269 (2001).

    CAS  PubMed  Google Scholar 

  95. Lucchinetti, C. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707–717 (2000).Established the different patterns of pathology in acute demyelinating MS lesions.

    CAS  PubMed  Google Scholar 

  96. Cepok, S. et al. Patterns of cerebrospinal fluid pathology correlate with disease progression in multiple sclerosis. Brain 124, 2169–2176 (2001).

    CAS  PubMed  Google Scholar 

  97. Pitt, D., Werner, P. & Raine, C. S. Glutamate excitotoxicity in a model of multiple sclerosis. Nature Med. 6, 67–70 (2000).

    CAS  PubMed  Google Scholar 

  98. Scolding, N. J. & Franklin, R. J. Remyelination in demyelinating disease. Baillieres Clin. Neurol. 6, 525–548 (1997).

    CAS  PubMed  Google Scholar 

  99. Levine, J. M., Reynolds, R. & Fawcett, J. W. The oligodendrocyte precursor cell in health and disease. Trends Neurosci. 24, 39–47 (2001).

    CAS  PubMed  Google Scholar 

  100. Wolswijk, G. Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J. Neurosci. 18, 601–609 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Chang, A., Tourtellotte, W. W., Rudick, R. & Trapp, B. D. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N. Engl. J. Med. 346, 165–173 (2002).References 100 and 101 show the presence of oligodendrocyte progenitors in chronic MS lesions, which do not remyelinate neurons.

    PubMed  Google Scholar 

  102. Trapp, B. D. et al. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338, 278–285 (1998).Demonstration of the extent of axonal damage in MS lesions.

    CAS  PubMed  Google Scholar 

  103. Kornek, B. et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am. J. Pathol. 157, 267–276 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Bitsch, A., Schuchardt, J., Bunkowski, S., Kuhlmann, T. & Bruck, W. Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 123, 1174–1183 (2000).Shows that axonal damage correlates with macrophage and CD8+ T-cell infiltration.

    PubMed  Google Scholar 

  105. Neumann, H., Cavalie, A., Jenne, D. E. & Wekerle, H. Induction of MHC class I genes in neurons. Science 269, 549–552 (1995).

    CAS  PubMed  Google Scholar 

  106. Jurewicz, A., Biddison, W. E. & Antel, J. P. MHC class I-restricted lysis of human oligodendrocytes by myelin basic protein peptide-specific CD8 T lymphocytes. J. Immunol. 160, 3056–3059 (1998).

    CAS  PubMed  Google Scholar 

  107. Medana, I. et al. Fas ligand (CD95L) protects neurons against perforin-mediated T lymphocyte cytotoxicity. J. Immunol. 167, 674–681 (2001).

    CAS  PubMed  Google Scholar 

  108. Medana, I., Martinic, M. A., Wekerle, H. & Neumann, H. Transection of major histocompatibility complex class I-induced neurites by cytotoxic T lymphocytes. Am. J. Pathol. 159, 809–815 (2001).An in vitro study showing antigen-specific induction of neuronal spheroid formation by CD8+ T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Cortese, I. et al. CSF-enriched antibodies do not share specificities among MS patients. Multiple Sclerosis 4, 118–123 (1998).

    CAS  PubMed  Google Scholar 

  110. Niehaus, A. et al. Patients with active relapsing–remitting multiple sclerosis synthesize antibodies recognizing oligodendrocyte progenitor cell surface protein: implications for remyelination. Ann. Neurol. 48, 362–371 (2000).

    CAS  PubMed  Google Scholar 

  111. Foulds, K. E. et al. Cutting edge: CD4 and CD8 T cells are intrinsically different in their proliferative responses. J. Immunol. 168, 1528–1532 (2002).

    CAS  PubMed  Google Scholar 

  112. Kerschensteiner, M. et al. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J. Exp. Med. 189, 865–870 (1999).The first report on the potential of myelin-specific T cells to secrete neurotrophins.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Bieber, A. J., Warrington, A., Pease, L. R. & Rodriguez, M. Humoral autoimmunity as a mediator of CNS repair. Trends Neurosci. 24, 39–44 (2001).

    Google Scholar 

  114. Gilden, D. H. et al. Molecular immunologic strategies to identify antigens and B-cell responses unique to multiple sclerosis. Arch. Neurol. 58, 43–48 (2001).

    CAS  PubMed  Google Scholar 

  115. Burgoon, M. P., Owens, G. P., Carlson, S., Maybach, A. L. & Gilden, D. H. Antigen discovery in chronic human inflammatory central nervous system disease: panning phage-displayed antigen libraries identifies the targets of central nervous system-derived IgG in subacute sclerosing panencephalitis. J. Immunol. 167, 6009–6014 (2001).Successful identification of protein specificity of recombinantly expressed antibodies from the CNS of a patient with subacute sclerosing panencephalitis.

    CAS  PubMed  Google Scholar 

  116. Hiemstra, H. S. et al. The identification of CD4+ T cell epitopes with dedicated synthetic peptide libraries. Proc. Natl Acad. Sci. USA 94, 10313–10318 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Hemmer, B. et al. Identification of candidate T-cell epitopes and molecular mimics in chronic Lyme disease. Nature Med. 5, 1375–1382 (1999).Application of a new technology to identify epitope specificity of T cells from the CNS of a patient with chronic neuroborreliosis.

    CAS  PubMed  Google Scholar 

  118. Holler, P. D. et al. In vitro evolution of a T cell receptor with high affinity for peptide/MHC. Proc. Natl Acad. Sci. USA 97, 5387–5392 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Whitney, L. W. et al. Analysis of gene expression in mutiple sclerosis lesions using cDNA microarrays. Ann. Neurol. 46, 425–428 (1999).

    CAS  PubMed  Google Scholar 

  120. Chabas, D. et al. The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294, 1731–1735 (2001).A study of gene expression in MS lesions using a large-scale sequencing approach that was complemented by experiments in knockout animals.

    CAS  PubMed  Google Scholar 

  121. Noseworthy, J. H., Gold, R. & Hartung, H. P. Treatment of multiple sclerosis: recent trials and future perspectives. Curr. Opin. Neurol. 12, 279–293 (1999).

    CAS  PubMed  Google Scholar 

  122. Davis, M. M. et al. Ligand recognition by αβ T-cell receptors. Annu. Rev. Immunol. 16, 523–544 (1998).

    CAS  PubMed  Google Scholar 

  123. Lanzavecchia, A. & Sallusto, F. Regulation of T cell immunity by dendritic cells. Cell 106, 263–266 (2001).

    CAS  PubMed  Google Scholar 

  124. Mosmann, T. R. & Sad, S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. Today 17, 138–146 (1996).

    CAS  PubMed  Google Scholar 

  125. Rajewsky, K. Clonal selection and learning in the antibody system. Nature 381, 751–758 (1996).

    CAS  PubMed  Google Scholar 

  126. Calame, K. L. Plasma cells: finding new light at the end of B-cell development. Nature Immunol. 2, 1103–1108 (2001).

    CAS  Google Scholar 

  127. Aloisi, F. Immune function of microglia. Glia 36, 165–179 (2001).

    CAS  PubMed  Google Scholar 

  128. Cserr, H. F. & Knopf, P. M. Cervical lymphatics, the blood–brain barrier and the immunoreactivity of the brain: a new view. Immunol. Today 13, 507–512 (1992).

    CAS  PubMed  Google Scholar 

  129. Knopf, P. M. et al. Antigen-dependent intrathecal antibody synthesis in the normal rat brain: tissue entry and local retention of antigen-specific B cells. J. Immunol. 161, 692–701 (1998).A study of the humoral immune response after administration of antigen in the CNS.

    CAS  PubMed  Google Scholar 

  130. Archelos, J. J. & Hartung, H. P. The role of adhesion molecules in multiple sclerosis: biology, pathogenesis and therapeutic implications. Mol. Med. Today 3, 310–321 (1997).

    CAS  PubMed  Google Scholar 

  131. Archelos, J. J., Previtali, S. C. & Hartung, H. P. The role of integrins in immune-mediated diseases of the nervous system. Trends Neurosci. 22, 30–38 (1999).

    CAS  PubMed  Google Scholar 

  132. Kieseier, B. C., Seifert, T., Giovannoni, G. & Hartung, H. P. Matrix metalloproteinases in inflammatory demyelination: targets for treatment. Neurology 53, 20–25 (1999).

    CAS  PubMed  Google Scholar 

  133. Flugel, A. et al. Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis. Immunity 14, 547–560 (2001).A study of the dynamics of T cells in EAE.

    CAS  PubMed  Google Scholar 

  134. Weller, R. O., Engelhardt, B. & Phillips, M. J. Lymphocyte targeting of the central nervous system: a review of afferent and efferent CNS-immune pathways. Brain Pathol. 6, 275–288 (1996).

    CAS  PubMed  Google Scholar 

  135. The Transatlantic Multiple Sclerosis Genetics Cooperative. A meta-analysis of genomic screens in multiple sclerosis. Multiple Sclerosis 7, 3–11 (2001).

Download references

Acknowledgements

Bernhard Hemmer is a Heisenberg Fellow of the Deutsche Forschungsgemeinschaft (DFG). We thank S. Cepok for comments on the manuscript. The Gemeinnützige Hertiestiftung and the DFG have continuously supported the research of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Peter Hartung.

Related links

Related links

DATABASES

LocusLink

brain-derived neurotrophic factor

CD4

CD8

HLA-DRB1

HLA-DQB1

IFN-β

IFN-γ

IgG1

IgG3

IgM

IL-2

IL-4

IL-5

IL-10

IL-13

insulin-like growth factor

MAG

MBP

MOG

neurotrophin 3

platelet-derived growth factor

PLP

TNF-α

TNF-β

OMIM

multiple sclerosis

subacute sclerosing panencephalitis

FURTHER INFORMATION

Encyclopedia of Life Sciences

microglia

nervous and immune system interactions

neuroimmunology

Glossary

FREUND'S ADJUVANT

An oil emulsion that contains an immunogen, an emulsifying agent and mycobacteria, which enhance the immune response to the immunogen.

ADOPTIVE TRANSFER

An immune response involving the transfer of immunocompetent cells from a primed donor to a non-immune recipient.

CD4+ T CELLS

A subset of T lymphocytes that carry the CD4 receptor and are essential for turning on antibody production, activating cytotoxic T cells and initiating other immune responses.

CYTOKINES

In general terms, cytokines are proteins made by cells that affect the behaviour of other cells. They are produced mainly by the immune system.

TH1 CELLS

A subset of T cells that secrete inflammatory cytokines.

CD8+ T CELLS

A subset of T lymphocytes that carry the CD8 receptor, such as cytotoxic T cells. The CD8 protein is the co-receptor for class I molecules of the major histocompatibility complex.

INNATE IMMUNITY

The early response of a host to infection. One of its main features is the pro-inflammatory response induced by antigen-presenting cells — macrophages, dendritic cells and, in the brain, microglial cells. This response is followed by an adaptive response that is mediated by clonal selection of lymphocytes, which leads to long-term immune protection.

SUBACUTE SCLEROSING PANENCEPHALITIS

A form of encephalitis that develops after the reactivation of a latent measles virus. It is characterized by progressive motor and mental deterioration, accompanied by myoclonus.

HTLV-I-ASSOCIATED MYELOPATHY

Also known as tropical spastic paraparesis, this progressive neurological disorder is associated with the human T lymphotropic virus type I, and is characterized by spasticity and hyperreflexia.

HUMORAL RESPONSE

An immune reaction that can be transferred with immune serum. In general, this term refers to immune resistance that results from the presence of specific antibodies.

EPSTEIN–BARR VIRUS

A herpesvirus that is the main cause of mononucleosis and is associated with several cancers, particularly lymphomas, in immunosuppressed people.

OLIGOCLONAL

Describes cells or members of a clone that share a specific feature.

INTRATHECAL

Within the meninges.

HEAVY CHAIN

All immunoglobulins have two types of chain — heavy (50–70 kDa) and light (25 kDa). The basic immunoglobulin unit consists of two heavy and two light chains.

CLONAL EXPANSION

The proliferation of antigen-specific lymphocytes from a single cell in response to antigenic stimulation. This expansion precedes their differentiation into effector cells.

COMPLEMENT CASCADE

The complement system is a set of plasma proteins that attack extracellular pathogens. The pathogen becomes coated with complement proteins that facilitate pathogen removal by phagocytes. Complement components are also involved in inflammation and tissue destruction.

ANTIGEN-PRESENTING CELLS

Specialized cells that present specific antigens to T cells. Macrophages and dendritic cells are the main antigen-presenting cells, but in the CNS the microglia have this role.

DENDRITIC CELLS

Also known as interdigitating reticular cells because of their branched morphology, dendritic cells are the most potent stimulators of T-cell responses.

MAJOR HISTOCOMPATIBILITY COMPLEX

(MHC). There are two classes of MHC molecules. MHC class I molecules are present at the surface of most cells and present proteins generated in the cytosol to T lymphocytes. MHC class II molecules are expressed only at the surface of activated antigen-presenting cells, and they present peptides degraded in cellular vesicles to T cells.

FAS

A transmembrane protein that mediates apoptosis and might be involved in the negative selection of autoreactive T cells in the thymus.

EXPRESSION LIBRARY

A gene library that allows the cloning of genes on the basis of the transfection of a large number of cells with cDNA in an expression vector and subsequent screening for a functional property.

PHAGE DISPLAY LIBRARY

A gene library that encodes fusion proteins of a foreign sequence and a coat protein of a phage. When cloned, the phage is said to display the foreign protein.

COMBINATORIAL PEPTIDE LIBRARY

A collection of large numbers of peptides that is a very useful in the fields of drug discovery and structural biology.

MICROARRAY

A device that is used to interrogate complex nucleic acid samples by hybridization. It makes i t possible to count the number of different RNA or cDNA molecules that are present in a sample as a preparative stage for their subsequent characterization.

GLATIRAMER ACETATE

A synthetic protein that simulates myelin basic protein, a component of myelin. Through a mechanism that is not completely understood, this drug seems to block T cells by acting as a myelin decoy. A further mode of action seems to be stimulation of T suppressor cells that travel to the CNS and provide 'bystander suppression'.

CHEMOKINES

Small, secreted proteins that stimulate the motile behaviour of leukocytes.

LOD SCORE

Base 10 'logarithm of the odds', or 'log-odds'. A method of hypothesis testing that is defined as the logarithm of the ratio between likelihoods under the null and alternative hypotheses.

LINKAGE DISEQUILIBRIUM

A condition in which the frequency of a particular haplotype for two loci is significantly greater than that expected from the product of the observed allelic frequencies at each locus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemmer, B., Archelos, J. & Hartung, HP. New concepts in the immunopathogenesis of multiple sclerosis. Nat Rev Neurosci 3, 291–301 (2002). https://doi.org/10.1038/nrn784

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn784

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing