Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Development of cortical circuits: Lessons from ocular dominance columns

Key Points

  • Neuronal development is divided into a sequence of events that leads from the initial specification of neuronal cell fate to the emergence of adult circuits. The initial organization of neural circuits relies on molecular cues that guide axons to generally appropriate regions, but the final specification of patterned connections is widely held to depend on patterns of neuronal activity generated by circuits that are intrinsic to the developing brain, or by early experience.

  • In the central nervous system, much of this sculpting of neuronal connections is thought to occur during 'critical periods', when circuits are particularly susceptible to external sensory inputs. Despite the powerful appeal of this model, and the experimental support that accumulated over several decades, recent findings indicate that some of the assumptions underlying the conventional formulation might need to be revised.

  • Hubel and Wiesel described ocular dominance columns in the early 1960s, noting that in the cat primary visual cortex, cells with similar eye preference were grouped together into columns, and eye dominance shifted periodically across the cortex. They distinguished between the innate mechanisms guiding the initial formation of cortical functional architecture, and the experience-dependent, competition-based mechanisms responsible for later modification during the critical period.

  • A substantial alteration in this formulation occurred when transneuronal transport techniques made it possible to directly visualize ocular dominance columns. It was suggested that the precise organization of columns in layer 4 was not innately specified, but was gradually moulded by correlation-based synaptic competition.

  • Early work in macaque monkeys indicated that thalamocortical afferents are arranged into functional columns by the time of birth. Retinal waves — spontaneously generated, correlated patterns of activity that course across the neonatal retina — could provide the patterns of activity necessary to segregate thalamic afferents in the cortex. However, if both eyes are removed before the layers in the lateral geniculate nucleus (LGN) have segregated, columns of layer-specific LGN afferents still form in the cortex, perhaps indicating a role for correlated activity in the LGN.

  • Stryker and Harris used tetrodotoxin to block retinal activity in cats from postnatal day 14 (P14) to P45. In treated animals, there was no evidence of segregated columns at P45, indicating that blocking retinal activity prevented the normal activity-driven competition that should have resulted in segregation. However, it is now clear that geniculocortical afferents are already segregated by P14, so the activity blockade probably desegregated columns that were already present.

  • A model emerges in which columns form well before the critical period and with limited production of exuberant projections. During this initial stage, ocular dominance columns do not seem to respond to changes in activity as predicted by simple Hebbian rules. The main role of visual experience during the critical period might be to reinforce and augment an already appropriately situated set of basic connections, rather than to instruct their de novo formation.

  • To unravel how, or whether, activity cues and molecular patterning information interact to drive column formation will require a leap of faith that such patterning information actually exists. Some 40 years after Hubel and Wiesel suggested innate mechanisms for the development of cortical functional architecture, an intriguing system of specification remains to be fully elucidated.


The development of ocular dominance columns has served as a Rosetta stone for understanding the mechanisms that guide the construction of cortical circuits. Traditionally, the emergence of ocular dominance columns was thought to be closely tied to the critical period, during which columnar architecture is highly susceptible to alterations in visual input. However, recent findings in cats, monkeys and ferrets indicate that columns develop far earlier, more rapidly and with considerably greater precision than was previously suspected. These observations indicate that the initial establishment of cortical functional architecture, and its subsequent plasticity during the critical period, are distinct developmental phases that might reflect distinct mechanisms.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Segregation of eye-specific information at the early stages of visual processing.
Figure 2: Early developmental organization of ocular dominance columns.
Figure 3: Contralateral bias of spontaneous activity in ferret LGN.
Figure 4: Timeline of ferret ocular dominance column development.


  1. 1

    Cowan, W. M. in International Review of Physiology, Neurophysiology III (ed. Porter, R.) 149–191 (Univ. Park Press, Baltimore, 1978).

    Google Scholar 

  2. 2

    Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Swindale, N. V. The development of topography in the visual cortex — a review of models. Netw. Comput. Neural Syst. 7, 161–247 (1996).

    CAS  Google Scholar 

  4. 4

    Stryker, M. P. & Harris, W. A. Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. J. Neurosci. 6, 2117–2133 (1986).The first (and only) experiments to directly test the role of activity in the initial formation of ocular dominance columns.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Erwin, E. & Miller, K. D. Correlation-based development of ocularly matched orientation and ocular dominance maps: determination of required input activities. J. Neurosci. 18, 9870–9895 (1998).

    CAS  PubMed  Google Scholar 

  6. 6

    Sur, M. & Leamey, C. A. Development and plasticity of cortical areas and networks. Nature Rev. Neurosci. 2, 251–262 (2001).

    CAS  Google Scholar 

  7. 7

    Weliky, M. Correlated neuronal activity and visual cortical development. Neuron 27, 427–430 (2000).

    CAS  PubMed  Google Scholar 

  8. 8

    Miller, K. D. in Self-Organizing Brain: from Growth Cones to Functional Networks (eds Vanpelt, J. et al.) 303–318 (Elsevier Science, Amsterdam, The Netherlands, 1994).

    Google Scholar 

  9. 9

    Miller, K. D., Keller, J. B. & Stryker, M. P. Ocular dominance column development: analysis and simulation. Science 245, 605–615 (1989).

    CAS  PubMed  Google Scholar 

  10. 10

    Constantine-Paton, M., Cline, H. T. & Debski, E. Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annu. Rev. Neurosci. 13, 129–154 (1990).

    CAS  PubMed  Google Scholar 

  11. 11

    Wong, R. O. The role of spatio-temporal firing patterns in neuronal development of sensory systems. Curr. Opin. Neurobiol. 3, 595–601 (1993).

    CAS  PubMed  Google Scholar 

  12. 12

    Wiesel, T. N. & Hubel, D. H. Single cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017 (1963).

    CAS  PubMed  Google Scholar 

  13. 13

    Wiesel, T. N. & Hubel, D. H. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J. Neurophysiol. 28, 1029–1040 (1965).

    CAS  PubMed  Google Scholar 

  14. 14

    Hubel, D. H. & Wiesel, T. N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. (Lond.) 206, 419–436 (1970).

    CAS  PubMed Central  Google Scholar 

  15. 15

    Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    CAS  Google Scholar 

  16. 16

    Hubel, D. H. & Wiesel, T. N. Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol. 26, 994–1002 (1963).In this classic paper, Hubel and Wiesel describe the initial state of columnar systems in the immature striate cortex, and conclude that functional architecture is innate.

    CAS  PubMed  Google Scholar 

  17. 17

    Wiesel, T. N. & Hubel, D. H. Ordered arrangement of orientation columns in monkeys lacking visual experience. J. Comp. Neurol. 158, 307–318 (1974).

    CAS  Google Scholar 

  18. 18

    Wiesel, T. N. & Hubel, D. H. Extent of recovery from the effects of visual deprivation in kittens. J. Neurophysiol. 28, 1060–1072 (1965).

    CAS  PubMed  Google Scholar 

  19. 19

    Wiesel, T. N., Hubel, D. H. & Lam, D. M. K. Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport. Brain Res. 79, 273–279 (1974).

    CAS  PubMed  Google Scholar 

  20. 20

    LeVay, S., Hubel, D. H. & Wiesel, T. N. The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain. J. Comp. Neurol. 159, 559–576 (1975).

    CAS  PubMed  Google Scholar 

  21. 21

    Hubel, D. H. & Wiesel, T. N. Ferrier lecture. Functional architecture of the macaque monkey visual cortex. Proc. R. Soc. Lond. B 198, 1–59 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    LeVay, S., Wiesel, T. N. & Hubel, D. The development of ocular dominance columns in normal and visually deprived monkeys. J. Comp. Neurol. 191, 1–51 (1980).

    CAS  PubMed  Google Scholar 

  23. 23

    LeVay, S., Stryker, M. P. & Shatz, C. J. Ocular dominance columns and their development in layer IV of the cat's visual cortex: a quantitative study. J. Comp. Neurol. 179, 223–244 (1978).A seminal paper that provided the first ever view of the pattern of developing ocular dominance columns, and provided the experimental underpinning of most subsequent theories of column formation.

    CAS  PubMed  Google Scholar 

  24. 24

    Hubel, D. H., Wiesel, T. N. & LeVay, S. Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci 278, 377–409 (1977).

    CAS  PubMed  Google Scholar 

  25. 25

    Wiesel, T. N. & Hubel, D. H. Single cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017 (1963).

    CAS  PubMed  Google Scholar 

  26. 26

    Von der Malsberg, C. & Willshaw, D. J. A mechanism for producing continuous neural mappings: ocularity dominance stripes and ordered retino-tectal projections. Exp. Brain Res. (Suppl. 1), 463–469 (1976).

  27. 27

    Swindale, N. V. A model for the formation of ocular dominance stripes. Proc R Soc Lond B Biol Sci 208, 243–264 (1980).

    CAS  PubMed  Google Scholar 

  28. 28

    Jones, D. G., Van Sluyters, R. C. & Murphy, K. M. A computational model for the overall pattern of ocular dominance. J. Neurosci. 11, 3794–3808 (1991).

    CAS  PubMed  Google Scholar 

  29. 29

    Rakic, P. Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 261, 467–471 (1976).

    CAS  PubMed  Google Scholar 

  30. 30

    Des Rosiers, M. H. et al. Functional plasticity in the immature striate cortex of the monkey shown by the [14C]deoxyglucose method. Science 200, 447–449 (1978).Using improved autoradiographic techniques, this paper conclusively showed that ocular dominance columns can emerge fully without visual experience.

    CAS  PubMed  Google Scholar 

  31. 31

    Horton, J. C. & Hocking, D. R. An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience. J. Neurosci. 16, 1791–1807 (1996).

    CAS  PubMed  Google Scholar 

  32. 32

    Mastronarde, D. N. Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X- and Y-cells. J. Neurophysiol. 49, 303–324 (1983).

    CAS  PubMed  Google Scholar 

  33. 33

    Maffei, L. & Galli-Resta, L. Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life. Proc. Natl Acad. Sci. USA 87, 2861–2864 (1990).

    CAS  PubMed  Google Scholar 

  34. 34

    Galli, L. & Maffei, L. Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science 242, 90–91 (1988).

    CAS  Google Scholar 

  35. 35

    Meister, M., Wong, R. O., Baylor, D. A. & Shatz, C. J. Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252, 939–943 (1991).Using a technically advanced microelectrode array, this paper revealed that spontaneous action potentials in the previsual retina are organized into wave-like patterns. These patterns could provide cues for competitive interactions in the thalamus and cortex.

    CAS  PubMed  Google Scholar 

  36. 36

    Wong, R. O., Meister, M. & Shatz, C. J. Transient period of correlated bursting activity during development of the mammalian retina. Neuron 11, 923–938 (1993).

    CAS  PubMed  Google Scholar 

  37. 37

    Wong, R. O. L., Chernjavsky, A., Smith, S. J. & Shatz, C. J. Early functional neural networks in the developing retina. Nature 374, 716–718 (1995).

    CAS  PubMed  Google Scholar 

  38. 38

    Wong, R. O. L. & Oakley, D. M. Changing patterns of spontaneous bursting activity of on and off retinal ganglion cells during development. Neuron 16, 1087–1095 (1996).

    CAS  PubMed  Google Scholar 

  39. 39

    Penn, A. A., Riquelme, P. A., Feller, M. B. & Shatz, C. J. Competition in retinogeniculate patterning driven by spontaneous activity. Science 279, 2108–2112 (1998).Blocking retinal waves (see reference 35 ) in one retina leads to laminar rearrangements in the LGN that are reminiscent of the effects of activity imbalances in ocular dominance column formation.

    CAS  PubMed  Google Scholar 

  40. 40

    Mooney, R., Penn, A. A., Gallego, R. & Shatz, C. J. Thalamic relay of spontaneous retinal activity prior to vision. Neuron 17, 863–874 (1996).

    CAS  PubMed  Google Scholar 

  41. 41

    Mooney, R., Madison, D. V. & Shatz, C. J. Enhancement of transmission at the developing retinogeniculate synapse. Neuron 10, 815–825 (1993).

    CAS  PubMed  Google Scholar 

  42. 42

    Weliky, M. & Katz, L. C. Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo. Science 285, 599–604 (1999).Recordings from multielectrode arrays in the LGN of awake ferrets revealed patterns of activity that were better correlated within than between eyes, consistent with the predictions of retinal recordings (see reference 35 ). However, significant differences were noted in the strength of ipsilateral and contralateral retinal inputs.

    CAS  Google Scholar 

  43. 43

    Crair, M. C., Gillespie, D. C. & Stryker, M. P. The role of visual experience in the development of columns in cat visual cortex. Science 279, 566–570 (1998).Using optical and single-unit recording techniques, the authors show that neurons in the developing cortex are initially activated almost exclusively by the contralateral eye, with ipsilateral eye responses developing much later and only with visual experience. They conclude that the intercalation of ipsilateral responses is unlikely to reflect Hebbian competition.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Crowley, J. C. & Katz, L. C. Development of ocular dominance columns in the absence of retinal input. Nature Neurosci. 2, 1125–1130 (1999).Early eye removal does not seem to prevent the formation of segregated patterns of columns in the cortex. The authors argue that retinal activity might not be necessary for segregation, and propose that activity-independent cues might be involved.

    CAS  Google Scholar 

  45. 45

    Sretavan, D. W. & Shatz, C. J. Prenatal development of retinal ganglion cell axons: segregation into eye-specific layers within the cat's lateral geniculate nucleus. J. Neurosci. 6, 234–251 (1986).

    CAS  PubMed  Google Scholar 

  46. 46

    Garraghty, P. E., Shatz, C. J., Sretavan, D. W. & Sur, M. Axon arbors of X and Y retinal ganglion cells are differentially affected by prenatal disruption of binocular inputs. Proc Natl Acad Sci U S A 85, 7361–7365 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Garraghty, P. E., Shatz, C. J. & Sur, M. Prenatal disruption of binocular interactions creates novel lamination in the cat's lateral geniculate nucleus. Vis. Neurosci. 1, 93–102 (1988).

    CAS  PubMed  Google Scholar 

  48. 48

    Crair, M. C., Horton, J. C., Antonini, A. & Stryker, M. P. Emergence of ocular dominance columns in cat visual cortex by 2 weeks of age. J. Comp. Neurol. 430, 235–249 (2001).Revising earlier work (for example, see reference 23 ), this paper shows that ocular dominance columns in cats emerge before the critical period, consistent with results in primates and ferrets.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Sretavan, D. W., Shatz, C. J. & Stryker, M. P. Modification of retinal ganglion cell axon morphology by prenatal infusion of tetrodotoxin. Nature 336, 468–471 (1988).

    CAS  PubMed  Google Scholar 

  50. 50

    Antonini, A. & Stryker, M. P. Development of individual geniculocortical arbors in cat striate cortex and effects of binocular impulse blockade. J. Neurosci. 13, 3549–3573 (1993).

    CAS  PubMed  Google Scholar 

  51. 51

    Reh, T. A. & Constantine-Paton, M. Eye-specific segregation requires neural activity in three-eyed Rana pipiens. J. Neurosci. 5, 1132–1143 (1985).The striking pattern of ocular dominance stripes in frog optic tectum, induced by transplanting a third eye, has served as a model for column development in the cortex. This paper shows that retinal activity is the crucial feature for inducing the segregation of eye-specific stripes.

    CAS  PubMed  Google Scholar 

  52. 52

    Frank, E. The influence of neuronal activity on patterns of synaptic connections. Trends Neurosci. 10, 188–190 (1989).

    Google Scholar 

  53. 53

    Chapman, B. Necessity for afferent activity to maintain eye-specific segregation in ferret lateral geniculate nucleus. Science 287, 2479–2482 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Berardi, N., Pizzorusso, T. & Maffei, L. Critical periods during sensory development. Curr. Opin. Neurobiol. 10, 138–145 (2000).

    CAS  PubMed  Google Scholar 

  55. 55

    Finney, E. M. & Shatz, C. J. Establishment of patterned thalamocortical connections does not require nitric oxide synthase. J. Neurosci. 18, 8826–8838 (1998).

    CAS  Google Scholar 

  56. 56

    Ruthazer, E. S., Baker, G. E. & Stryker, M. P. Development and organization of ocular dominance bands in primary visual cortex of the sable ferret. J. Comp. Neurol. 407, 151–165 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Issa, N. P., Trachtenberg, J. T., Chapman, B., Zahs, K. R. & Stryker, M. P. The critical period for ocular dominance plasticity in ferret visual cortex. J. Neurosci. 19, 6965–6978 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Crowley, J. C. & Katz, L. C. Early development of ocular dominance columns. Science 290, 1321–1324 (2000).By using direct injections of tracers into the developing LGN, the authors show that ocular dominance columns develop much earlier and much more rapidly than was previously believed, and with a surprising degree of specificity.

    CAS  Google Scholar 

  59. 59

    Chiu, C. & Weliky, M. Spontaneous activity in developing ferret visual cortex in vivo. J. Neurosci. 21, 8906–8914 (2001).

    CAS  PubMed  Google Scholar 

  60. 60

    Quinlan, E. M., Philpot, B. D., Huganir, R. L. & Bear, M. F. Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nature Neurosci. 2, 352–357 (1999).

    CAS  PubMed  Google Scholar 

  61. 61

    Bear, M. F. & Rittenhouse, C. D. Molecular basis for induction of ocular dominance plasticity. J. Neurobiol. 41, 83–91 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Wiesel, T. N. Postnatal development of the visual cortex and the influence of environment. Nature 299, 583–591 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Purves, D. & LaMantia, A. S. Construction of modular circuits in the mammalian brain. Cold Spring Harb. Symp. Quant. Biol. 55, 445–452 (1990).

    CAS  PubMed  Google Scholar 

  64. 64

    Purves, D., Riddle, D. R. & LaMantia, A. S. Iterated patterns of brain circuitry (or how the cortex gets its spots). Trends Neurosci. 15, 362–368 (1992).

    CAS  PubMed  Google Scholar 

  65. 65

    Purves, D., White, L. E. & Riddle, D. R. Is neural development Darwinian? Trends Neurosci. 19, 460–464 (1996).

    CAS  PubMed  Google Scholar 

  66. 66

    Fregnac, Y. & Imbert, M. Early development of visual cortical cells in normal and dark-reared kittens: relationship between orientation selectivity and ocular dominance. J. Physiol. (Lond.) 278, 27–44 (1978).

    CAS  Google Scholar 

  67. 67

    Fagiolini, M. & Hensch, T. K. Inhibitory threshold for critical-period activation in primary visual cortex. Nature 404, 183–186 (2000).

    CAS  PubMed  Google Scholar 

  68. 68

    Trachtenberg, J. T., Trepel, C. & Stryker, M. P. Rapid extragranular plasticity in the absence of thalamocortical plasticity in the developing primary visual cortex. Science 287, 2029–2032 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Johnson, J. K. & Casagrande, V. A. Prenatal development of axon outgrowth and connectivity in the ferret visual system. Vis. Neurosci. 10, 117–130 (1993).

    CAS  Google Scholar 

  70. 70

    Herrmann, K., Antonini, A. & Shatz, C. J. Ultrastructural evidence for synaptic interactions between thalamocortical axons and subplate neurons. Eur. J. Neurosci. 6, 1729–1742 (1994).

    CAS  Google Scholar 

  71. 71

    Wong, R. O. L. Retinal waves and visual system development. Annu. Rev. Neurosci. 22, 29–47 (1999).

    CAS  Google Scholar 

  72. 72

    Ghosh, A. Subplate neurons and the patterning of thalamocortial connections. Ciba Found. Symp. 193, 150–172; discussion 192–199 (1995). | PubMed |

    CAS  PubMed  Google Scholar 

  73. 73

    Ghosh, A. & Shatz, C. J. Involvement of subplate neurons in the formation of ocular dominance columns. Science 255, 1441–1443 (1992).

    CAS  PubMed  Google Scholar 

  74. 74

    Katz, L. C., Weliky, M. & Crowley, J. C. in The New Cognitive Neurosciences (ed. Gazzaniga, M. S.) 199–212 (MIT Press, Cambridge, Massachusetts, 1999).

    Google Scholar 

  75. 75

    Mason, C. A. & Sretavan, D. W. Glia, neurons, and axon pathfinding during optic chiasm development. Curr. Opin. Neurobiol. 7, 647–653 (1997).

    CAS  PubMed  Google Scholar 

  76. 76

    Meissirel, C., Wikler, K. C., Chalupa, L. M. & Rakic, P. Early divergence of magnocellular and parvocellular functional subsystems in the embryonic primate visual system. Proc. Natl Acad. Sci. USA 94, 5900–5905 (1997).

    CAS  PubMed  Google Scholar 

  77. 77

    Chalupa, L. M., Meissirel, C. & Lia, B. Specificity of retinal ganglion cell projections in the embryonic rhesus monkey. Perspect. Dev. Neurobiol. 3, 223–231 (1996).

    CAS  PubMed  Google Scholar 

  78. 78

    Casagrande, V. A. & Condo, G. J. Is binocular competition essential for layer formation in the lateral geniculate nucleus? Brain Behav. Evol. 31, 198–208 (1988).

    CAS  PubMed  Google Scholar 

  79. 79

    Williams, R. W., Hogan, D. & Garraghty, P. E. Target recognition and visual maps in the thalamus of achiasmatic dogs. Nature 367, 637–639 (1994).

    CAS  PubMed  Google Scholar 

  80. 80

    Donoghue, M. J. & Rakic, P. Molecular gradients and compartments in the embryonic primate cerebral cortex. Cereb. Cortex 9, 586–600 (1999).

    CAS  PubMed  Google Scholar 

  81. 81

    Dyck, R. H. & Cynader, M. S. An interdigitated columnar mosaic of cytochrome oxidase, zinc, and neurotransmitter-related molecules in cat and monkey visual cortex. Proc Natl Acad Sci U S A 90, 9066–9069 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Trepel, C., Duffy, K. R., Pegado, V. D. & Murphy, K. M. Patchy distribution of NMDAR1 subunit immunoreactivity in developing visual cortex. J. Neurosci. 18, 3404–3415 (1998).

    CAS  PubMed  Google Scholar 

  83. 83

    Gordon, J. A. & Stryker, M. P. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J. Neurosci. 16, 3274–3286 (1996).

    CAS  PubMed  Google Scholar 

  84. 84

    Weliky, M. & Katz, L. C. Disruption of orientation tuning in visual cortex by artificially correlated neuronal activity. Nature 386, 680–685 (1997).

    CAS  Google Scholar 

  85. 85

    Constantine-Paton, M. & Law, M. I. Eye-specific termination bands in tecta of three-eyed frogs. Science 202, 639–641 (1978).

    CAS  Google Scholar 

  86. 86

    Constantine-Paton, M. in The Organization of the Cerebral Cortex: Proceedings of a Neurosciences Research Program Colloquium (eds Schmitt, F. O., Worden, F. G., Adelman, G. & Dennis, S. G.) 47–67 (MIT Press, Cambridge, Massachusetts, 1981).

    Google Scholar 

  87. 87

    Boss, V. C. & Schmidt, J. T. Activity and the formation of ocular dominance patches in dually innervated tectum of goldfish. J. Neurosci. 4, 2891–2905 (1984).

    CAS  PubMed  Google Scholar 

  88. 88

    Cline, H. T., Debski, E. A. & Constantine-Paton, M. N-methyl-d-aspartate receptor antagonist desegregates eye-specific stripes. Proc. Natl Acad. Sci. USA 84, 4342–4345 (1987).

    CAS  Google Scholar 

  89. 89

    Cline, H. T. & Constantine-Paton, M. NMDA receptor antagonists disrupt the retinotectal topographic map. Neuron 3, 413–426 (1989).

    CAS  PubMed  Google Scholar 

  90. 90

    Law, M. I. & Constantine-Paton, M. Anatomy and physiology of experimentally produced striped tecta. J. Neurosci. 1, 741–759 (1981).

    CAS  PubMed  Google Scholar 

  91. 91

    Shatz, C. J. Emergence of order in visual system development. Proc Natl Acad Sci U S A 93, 602–608 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Catalano, S. M., Robertson, R. T. & Killackey, H. P. Rapid alteration of thalamocortical axon morphology follows peripheral damage in the neonatal rat. Proc Natl Acad Sci U S A 92, 2549–2552 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Catalano, S. M., Robertson, R. T. & Killackey, H. P. Individual axon morphology and thalamocortical topography in developing rat somatosensory cortex. J. Comp. Neurol. 367, 36–53 (1996).

    CAS  PubMed  Google Scholar 

  94. 94

    Agmon, A., Yang, L. T., O'Dowd, D. K. & Jones, G. E. Organized growth of thalamocortical axons from the deep tier of terminations into layer IV of developing mouse barrel cortex. J. Neurosci. 13, 5365–5382 (1993).

    CAS  PubMed  Google Scholar 

  95. 95

    Senft, S. L. & Woolsey, T. A. Growth of thalamic afferents into mouse barrel cortex. Cereb. Cortex 1, 308–335 (1991).

    CAS  PubMed  Google Scholar 

  96. 96

    O'Leary, D. M., Borngasser, D. J., Fox, K. & Schlagger, B. L. in Symposium on the Development of the Cerebral Cortex No. 193 (eds Bock, G. R. & Cardew, G.) 214–222 (John Wiley & Sons, Inc., New York, 1995).

    Google Scholar 

  97. 97

    Chiaia, N. L. et al. Postnatal blockade of cortical activity by tetrodotoxin does not disrupt the formation of vibrissa-related patterns in the rat's somatosensory cortex. Brain Res. Dev. Brain Res. 66, 244–250 (1992).

    CAS  Google Scholar 

  98. 98

    Chiaia, N. L. et al. Effects of postnatal blockade of cortical activity with tetrodotoxin upon the development and plasticity of vibrissa-related patterns in the somatosensory cortex of hamsters. Somatosens. Mot. Res. 11, 219–228 (1994).

    CAS  PubMed  Google Scholar 

  99. 99

    Iwasato, T. et al. Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 406, 726–731 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Vassar, R. et al. Topographic organization of sensory projections to the olfactory bulb. Cell 79, 981–991 (1994).

    CAS  PubMed  Google Scholar 

  101. 101

    Mombaerts, P. et al. Visualizing an olfactory sensory map. Cell 87, 675–686 (1996).

    CAS  PubMed  Google Scholar 

  102. 102

    Ressler, K. J., Sullivan, S. L. & Buck, L. B. Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79, 1245–1255 (1994).

    CAS  PubMed  Google Scholar 

  103. 103

    Belluscio, L., Gold, G. H., Nemes, A. & Axel, R. Mice deficient in Golf are anosmic. Neuron 20, 69–81 (1998).

    CAS  PubMed  Google Scholar 

  104. 104

    Lin, D. M. et al. Formation of precise connections in the olfactory bulb occurs in the absence of odorant-evoked neuronal activity. Neuron 26, 69–80 (2000).

    CAS  Google Scholar 

  105. 105

    Bulfone, A. et al. An olfactory sensory map develops in the absence of normal projection neurons or GABAergic interneurons. Neuron 21, 1273–1282 (1998).

    CAS  Google Scholar 

  106. 106

    Zheng, C. et al. Peripheral olfactory projections are differentially affected in mice deficient in a cyclic nucleotide-gated channel subunit. Neuron 26, 81–91 (2000).

    CAS  PubMed  Google Scholar 

  107. 107

    Zhao, H. & Reed, R. R. X inactivation of the OCNC1 channel gene reveals a role for activity-dependent competition in the olfactory system. Cell 104, 651–660 (2001).

    CAS  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Lawrence C. Katz.

Related links

Related links


cortical barrels: maps and plasticity

cortical plasticity: use-dependent remodelling

neural activity and the development of brain circuits

visual system development in vertebrates



Orientation tuning is a property of visual cortical neurons that allows the detection of lines and edges within visual scenes by encoding their orientations. Neurons that share the same orientation tuning are grouped into orientation columns.


On the same side of the body.


On the opposite side of the body.


Removal of the eyeballs.


A neurotoxin derived from the Fugu, or puffer fish, which specifically and reversibly blocks voltage-gated sodium channels.


An experimental rearing condition in which the only light to which an animal is exposed is stroboscopic (flashing). This provides correlated stimulation of the two eyes.


An experimental condition in which an animal is reared in total darkness so that only endogenous activity is present in the developing visual system.


A cylindrical column of neurons found in the rodent neocortex. Each barrel receives sensory input from a single whisker follicle, and the topographical organization of the barrels corresponds precisely to the arrangement of whisker follicles on the face.


A family of membrane receptors, the intracellular domains of which catalyse the phosphorylation, by ATP, of specific tyrosine residues on their target proteins.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Katz, L., Crowley, J. Development of cortical circuits: Lessons from ocular dominance columns. Nat Rev Neurosci 3, 34–42 (2002).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing