The neural bases of emotion regulation


Emotions are powerful determinants of behaviour, thought and experience, and they may be regulated in various ways. Neuroimaging studies have implicated several brain regions in emotion regulation, including the ventral anterior cingulate and ventromedial prefrontal cortices, as well as the lateral prefrontal and parietal cortices. Drawing on computational approaches to value-based decision-making and reinforcement learning, we propose a unifying conceptual framework for understanding the neural bases of diverse forms of emotion regulation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A valuation perspective on emotional reactivity and regulation.
Figure 2: Regions implicated in emotion regulation.
Figure 3: Schematic of model-based and model-free emotion regulation.
Figure 4: Example of emotion regulation as a decision-making process.


  1. 1

    Gross, J. J. Handbook of Emotion Regulation 2nd edn (Guilford, 2014).

    Google Scholar 

  2. 2

    Aldao, A., Nolen-Hoeksema, S. & Schweizer, S. Emotion-regulation strategies across psychopathology: a meta-analytic review. Clin. Psychol. Rev. 30, 217–237 (2010).

    PubMed  Google Scholar 

  3. 3

    Mauss, I. B., Levenson, R. W., McCarter, L., Wilhelm, F. H. & Gross, J. J. The tie that binds? Coherence among emotion experience, behavior, and physiology. Emotion 5, 175–190 (2005).

    PubMed  Google Scholar 

  4. 4

    Lang, P. J., Greenwald, M. K., Bradley, M. M. & Hamm, A. O. Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology 30, 261–273 (1993).

    CAS  PubMed  Google Scholar 

  5. 5

    Bradley, M. M., Codispoti, M., Cuthbert, B. N. & Lang, P. J. Emotion and motivation I: defensive and appetitive reactions in picture processing. Emotion 1, 276–298 (2001).

    CAS  PubMed  Google Scholar 

  6. 6

    Rangel, A., Camerer, C. & Montague, P. R. A framework for studying the neurobiology of value-based decision making. Nat. Rev. Neurosci. 9, 545–556 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Gross, J. J. Emotion regulation: current status and future prospects. Psychol. Inquiry 26, 1–26 (2015).

    Google Scholar 

  8. 8

    Ochsner, K. N. in Handbook of Emotion Regulation 2nd edn (ed. Gross, J. J.) 23–42 (Guilford Press, 2014).

    Google Scholar 

  9. 9

    Sabatinelli, D. et al. Emotional perception: meta-analyses of face and natural scene processing. NeuroImage 54, 2524–2533 (2011).

    PubMed  Google Scholar 

  10. 10

    Mechias, M. L., Etkin, A. & Kalisch, R. A meta-analysis of instructed fear studies: implications for conscious appraisal of threat. NeuroImage 49, 1760–1768 (2010).

    PubMed  Google Scholar 

  11. 11

    Costafreda, S. G., Brammer, M. J., David, A. S. & Fu, C. H. Predictors of amygdala activation during the processing of emotional stimuli: a meta-analysis of 385 PET and fMRI studies. Brain Res. Rev. 58, 57–70 (2008).

    PubMed  Google Scholar 

  12. 12

    Murphy, F. C., Nimmo-Smith, I. & Lawrence, A. D. Functional neuroanatomy of emotions: a meta-analysis. Cogn. Affect. Behav. Neurosci. 3, 207–233 (2003).

    PubMed  Google Scholar 

  13. 13

    Wager, T. D. et al. in Handbook of Emotions 3rd edn (eds Lewis, M. et al.) 249–271 (Guilford Press, 2008).

    Google Scholar 

  14. 14

    McHugh, S. B. et al. Aversive prediction error signals in the amygdala. J. Neurosci. 34, 9024–9033 (2014).

    PubMed  PubMed Central  Google Scholar 

  15. 15

    Li, S. S. & McNally, G. P. The conditions that promote fear learning: prediction error and Pavlovian fear conditioning. Neurobiol. Learn. Mem. 108, 14–21 (2014).

    PubMed  Google Scholar 

  16. 16

    McNally, G. P., Johansen, J. P. & Blair, H. T. Placing prediction into the fear circuit. Trends Neurosci. 34, 283–292 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Furlong, T. M., Cole, S., Hamlin, A. S. & McNally, G. P. The role of prefrontal cortex in predictive fear learning. Behav. Neurosci. 124, 574–586 (2010).

    PubMed  Google Scholar 

  18. 18

    Spoormaker, V. I. et al. The neural correlates of negative prediction error signaling in human fear conditioning. NeuroImage 54, 2250–2256 (2011).

    CAS  PubMed  Google Scholar 

  19. 19

    Cauda, F. et al. Meta-analytic clustering of the insular cortex: characterizing the meta-analytic connectivity of the insula when involved in active tasks. NeuroImage 62, 343–355 (2012).

    PubMed  PubMed Central  Google Scholar 

  20. 20

    Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506 (2011).

    PubMed  Google Scholar 

  21. 21

    Beissner, F., Meissner, K., Bar, K. J. & Napadow, V. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J. Neurosci. 33, 10503–10511 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Gyurak, A., Gross, J. J. & Etkin, A. Explicit and implicit emotion regulation: a dual-process framework. Cogn. Emotion 25, 400–412 (2011).

    Google Scholar 

  23. 23

    Buhle, J. T. et al. Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cereb. Cortex 24, 2981–2990 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. 24

    Kohn, N. et al. Neural network of cognitive emotion regulation — an ALE meta-analysis and MACM analysis. NeuroImage 87, 345–355 (2014).

    CAS  PubMed  Google Scholar 

  25. 25

    Sotres-Bayon, F. & Quirk, G. J. Prefrontal control of fear: more than just extinction. Curr. Opin. Neurobiol. 20, 231–235 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Quirk, G. J., Garcia, R. & González-Lima, F. Prefrontal mechanisms in extinction of conditioned fear. Biol. Psychiatry 60, 337–343 (2006).

    PubMed  Google Scholar 

  27. 27

    Maren, S. & Quirk, G. J. Neuronal signalling of fear memory. Nat. Rev. Neurosci. 5, 844–852 (2004).

    CAS  PubMed  Google Scholar 

  28. 28

    Schiller, D., Levy, I., Niv, Y., LeDoux, J. E. & Phelps, E. A. From fear to safety and back: reversal of fear in the human brain. J. Neurosci. 28, 11517–11525 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Lissek, S. et al. Neural substrates of classically conditioned fear-generalization in humans: a parametric fMRI study. Soc. Cogn. Affect. Neurosci. 9, 1134–1142 (2013).

    PubMed  PubMed Central  Google Scholar 

  30. 30

    Greenberg, T., Carlson, J. M., Cha, J., Hajcak, G. & Mujica-Parodi, L. R. Ventromedial prefrontal cortex reactivity is altered in generalized anxiety disorder during fear generalization. Depress. Anxiety 30, 242–250 (2013).

    PubMed  Google Scholar 

  31. 31

    Nili, U., Goldberg, H., Weizman, A. & Dudai, Y. Fear thou not: activity of frontal and temporal circuits in moments of real-life courage. Neuron 66, 949–962 (2010).

    CAS  PubMed  Google Scholar 

  32. 32

    Mobbs, D. et al. When fear is near: threat imminence elicits prefrontal–periaqueductal gray shifts in humans. Science 317, 1079–1083 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Egner, T., Etkin, A., Gale, S. & Hirsch, J. Dissociable neural systems resolve conflict from emotional versus nonemotional distracters. Cereb. Cortex 18, 1475–1484 (2008).

    PubMed  Google Scholar 

  34. 34

    Etkin, A., Egner, T., Peraza, D. M., Kandel, E. R. & Hirsch, J. Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron 51, 871–882 (2006).

    CAS  PubMed  Google Scholar 

  35. 35

    Etkin, A., Prater, K. E., Hoeft, F., Menon, V. & Schatzberg, A. F. Failure of anterior cingulate activation and connectivity with the amygdala during implicit regulation of emotional processing in generalized anxiety disorder. Am. J. Psychiatry 167, 545–554 (2010).

    PubMed  PubMed Central  Google Scholar 

  36. 36

    Kerns, J. G. et al. Anterior cingulate conflict monitoring and adjustments in control. Science 303, 1023–1026 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704–1711 (2005).

    CAS  PubMed  Google Scholar 

  38. 38

    Dayan, P. & Niv, Y. Reinforcement learning: the good, the bad and the ugly. Curr. Opin. Neurobiol. 18, 185–196 (2008).

    CAS  PubMed  Google Scholar 

  39. 39

    Rushworth, M. F. & Behrens, T. E. Choice, uncertainty and value in prefrontal and cingulate cortex. Nat. Neurosci. 11, 389–397 (2008).

    CAS  PubMed  Google Scholar 

  40. 40

    Rushworth, M. F., Noonan, M. P., Boorman, E. D., Walton, M. E. & Behrens, T. E. Frontal cortex and reward-guided learning and decision-making. Neuron 70, 1054–1069 (2011).

    CAS  PubMed  Google Scholar 

  41. 41

    Doya, K. Modulators of decision making. Nat. Neurosci. 11, 410–416 (2008).

    CAS  PubMed  Google Scholar 

  42. 42

    Bartra, O., McGuire, J. T. & Kable, J. W. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage 76, 412–427 (2013).

    PubMed  PubMed Central  Google Scholar 

  43. 43

    Clithero, J. A. & Rangel, A. Informatic parcellation of the network involved in the computation of subjective value. Soc. Cogn. Affect. Neurosci. 9, 1289–1302 (2013).

    PubMed  PubMed Central  Google Scholar 

  44. 44

    Chase, H. W., Kumar, P., Eickhoff, S. B. & Dombrovski, A. Y. Reinforcement learning models and their neural correlates: an activation likelihood estimation meta-analysis. Cogn. Affect. Behav. Neurosci. 15, 435–459 (2015).

    PubMed  PubMed Central  Google Scholar 

  45. 45

    Lee, S. W., Shimojo, S. & O'Doherty, J. P. Neural computations underlying arbitration between model-based and model-free learning. Neuron 81, 687–699 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Smittenaar, P., FitzGerald, T. H., Romei, V., Wright, N. D. & Dolan, R. J. Disruption of dorsolateral prefrontal cortex decreases model-based in favor of model-free control in humans. Neuron 80, 914–919 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Otto, A. R., Gershman, S. J., Markman, A. B. & Daw, N. D. The curse of planning: dissecting multiple reinforcement-learning systems by taxing the central executive. Psychol. Sci. 24, 751–761 (2013).

    PubMed  Google Scholar 

  48. 48

    Otto, A. R., Raio, C. M., Chiang, A., Phelps, E. A. & Daw, N. D. Working-memory capacity protects model-based learning from stress. Proc. Natl Acad. Sci. USA 110, 20941–20946 (2013).

    CAS  PubMed  Google Scholar 

  49. 49

    Dixon, M. L. & Christoff, K. The lateral prefrontal cortex and complex value-based learning and decision making. Neurosci. Biobehav. Rev. 45, 9–18 (2014).

    PubMed  Google Scholar 

  50. 50

    Hutcherson, C. A., Plassmann, H., Gross, J. J. & Rangel, A. Cognitive regulation during decision making shifts behavioral control between ventromedial and dorsolateral prefrontal value systems. J. Neurosci. 32, 13543–13554 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Etkin, A., Egner, T. & Kalisch, R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci. 15, 85–93 (2011).

    PubMed  Google Scholar 

  52. 52

    Etkin, A. & Wager, T. D. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry 164, 1476–1488 (2007).

    PubMed  PubMed Central  Google Scholar 

  53. 53

    Stroop, J. R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643–662 (1935).

    Google Scholar 

  54. 54

    Maier, M. E. & di Pellegrino, G. Impaired conflict adaptation in an emotional task context following rostral anterior cingulate cortex lesions in humans. J. Cogn. Neurosci. 24, 2070–2079 (2012).

    PubMed  Google Scholar 

  55. 55

    McRae, K., Ciesielski, B. & Gross, J. J. Unpacking cognitive reappraisal: goals, tactics, and outcomes. Emotion 12, 250–255 (2012).

    PubMed  Google Scholar 

  56. 56

    McRae, K. et al. The neural bases of distraction and reappraisal. J. Cogn. Neurosci. 22, 248–262 (2010).

    PubMed  PubMed Central  Google Scholar 

  57. 57

    Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A. & Ochsner, K. N. Prefrontal–subcortical pathways mediating successful emotion regulation. Neuron 59, 1037–1050 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Lee, H., Heller, A. S., van Reekum, C. M., Nelson, B. & Davidson, R. J. Amygdala-prefrontal coupling underlies individual differences in emotion regulation. NeuroImage 62, 1575–1581 (2012).

    PubMed  PubMed Central  Google Scholar 

  59. 59

    Lapate, R. C. et al. Amygdalar function reflects common individual differences in emotion and pain regulation success. J. Cogn. Neurosci. 24, 148–158 (2012).

    PubMed  Google Scholar 

  60. 60

    Woo, C. W., Roy, M., Buhle, J. T. & Wager, T. D. Distinct brain systems mediate the effects of nociceptive input and self-regulation on pain. PLoS Biol. 13, e1002036 (2015).

    PubMed  PubMed Central  Google Scholar 

  61. 61

    Dosenbach, N. U. et al. Distinct brain networks for adaptive and stable task control in humans. Proc. Natl Acad. Sci. USA 104, 11073–11078 (2007).

    CAS  PubMed  Google Scholar 

  62. 62

    Dosenbach, N. U. et al. A core system for the implementation of task sets. Neuron 50, 799–812 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Niendam, T. A. et al. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn. Affect. Behav. Neurosci. 12, 241–268 (2012).

    PubMed  PubMed Central  Google Scholar 

  64. 64

    Schmeichel, B. J., Volokhov, R. N. & Demaree, H. A. Working memory capacity and the self-regulation of emotional expression and experience. J. Pers. Soc. Psychol. 95, 1526–1540 (2008).

    PubMed  Google Scholar 

  65. 65

    Feeser, M., Prehn, K., Kazzer, P., Mungee, A. & Bajbouj, M. Transcranial direct current stimulation enhances cognitive control during emotion regulation. Brain Stimul. 7, 105–112 (2014).

    PubMed  Google Scholar 

  66. 66

    Raio, C. M., Orederu, T. A., Palazzolo, L., Shurick, A. A. & Phelps, E. A. Cognitive emotion regulation fails the stress test. Proc. Natl Acad. Sci. USA 110, 15139–15144 (2013).

    CAS  PubMed  Google Scholar 

  67. 67

    Lupien, S. J., Gillin, C. J. & Hauger, R. L. Working memory is more sensitive than declarative memory to the acute effects of corticosteroids: a dose-response study in humans. Behav. Neurosci. 113, 420–430 (1999).

    CAS  PubMed  Google Scholar 

  68. 68

    Schoofs, D., Wolf, O. T. & Smeets, T. Cold pressor stress impairs performance on working memory tasks requiring executive functions in healthy young men. Behav. Neurosci. 123, 1066–1075 (2009).

    PubMed  Google Scholar 

  69. 69

    Qin, S., Hermans, E. J., van Marle, H. J., Luo, J. & Fernández, G. Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex. Biol. Psychiatry 66, 25–32 (2009).

    PubMed  Google Scholar 

  70. 70

    Goldin, P. R., McRae, K., Ramel, W. & Gross, J. J. The neural bases of emotion regulation: reappraisal and suppression of negative emotion. Biol. Psychiatry 63, 577–586 (2008).

    PubMed  Google Scholar 

  71. 71

    Vanderhasselt, M. A., Kuhn, S. & De Raedt, R. 'Put on your poker face': neural systems supporting the anticipation for expressive suppression and cognitive reappraisal. Soc. Cogn. Affect. Neurosci. 8, 903–910 (2013).

    PubMed  Google Scholar 

  72. 72

    Wager, T. D. et al. An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368, 1388–1397 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Kriegeskorte, N., Mur, M. & Bandettini, P. Representational similarity analysis — connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2, 4 (2008).

    PubMed  PubMed Central  Google Scholar 

  74. 74

    Winecoff, A. et al. Ventromedial prefrontal cortex encodes emotional value. J. Neurosci. 33, 11032–11039 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Delgado, M. R., Nearing, K. I., Ledoux, J. E. & Phelps, E. A. Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron 59, 829–838 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Rescorla, R. A. & Wagner, A. R. in Classical Conditioning II: Current Theory and Research (eds Black, A. H. & Prokasy, W. F.) 64–99 (Appleton-Century Crofts, 1972).

    Google Scholar 

  77. 77

    Pearce, J. M. & Hall, G. A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol. Rev. 87, 532–552 (1980).

    CAS  PubMed  Google Scholar 

  78. 78

    Boll, S., Gamer, M., Gluth, S., Finsterbusch, J. & Buchel, C. Separate amygdala subregions signal surprise and predictiveness during associative fear learning in humans. Eur. J. Neurosci. 37, 758–767 (2013).

    PubMed  Google Scholar 

  79. 79

    Li, J., Schiller, D., Schoenbaum, G., Phelps, E. A. & Daw, N. D. Differential roles of human striatum and amygdala in associative learning. Nat. Neurosci. 14, 1250–1252 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Watanabe, N., Sakagami, M. & Haruno, M. Reward prediction error signal enhanced by striatum–amygdala interaction explains the acceleration of probabilistic reward learning by emotion. J. Neurosci. 33, 4487–4493 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Staudinger, M. R., Erk, S., Abler, B. & Walter, H. Cognitive reappraisal modulates expected value and prediction error encoding in the ventral striatum. NeuroImage 47, 713–721 (2009).

    PubMed  Google Scholar 

  82. 82

    Gu, X., Kirk, U., Lohrenz, T. M. & Montague, P. R. Cognitive strategies regulate fictive, but not reward prediction error signals in a sequential investment task. Hum. Brain Mapp. 35, 3738–3749 (2014).

    PubMed  Google Scholar 

  83. 83

    Silvetti, M., Alexander, W., Verguts, T. & Brown, J. W. From conflict management to reward-based decision making: actors and critics in primate medial frontal cortex. Neurosci. Biobehav. Rev. 46, 44–57 (2014).

    PubMed  Google Scholar 

  84. 84

    Rutledge, R. B., Skandali, N., Dayan, P. & Dolan, R. J. A computational and neural model of momentary subjective well-being. Proc. Natl Acad. Sci. USA 111, 12252–12257 (2014).

    CAS  PubMed  Google Scholar 

  85. 85

    Sheppes, G., Scheibe, S., Suri, G. & Gross, J. J. Emotion-regulation choice. Psychol. Sci. 22, 1391–1396 (2011).

    PubMed  Google Scholar 

  86. 86

    Sheppes, G. et al. Emotion regulation choice: a conceptual framework and supporting evidence. J. Exp. Psychol. Gen. 143, 163–181 (2014).

    PubMed  Google Scholar 

  87. 87

    Milad, M. R. et al. Deficits in conditioned fear extinction in obsessive-compulsive disorder and neurobiological changes in the fear circuit. JAMA Psychiatry 70, 608–618; quiz 554 (2013).

    PubMed  Google Scholar 

  88. 88

    Milad, M. R. et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol. Psychiatry 66, 1075–1082 (2009).

    PubMed  PubMed Central  Google Scholar 

  89. 89

    Etkin, A. & Schatzberg, A. F. Common abnormalities and disorder-specific compensation during implicit regulation of emotional processing in generalized anxiety and major depressive disorders. Am. J. Psychiatry 168, 968–978 (2011).

    PubMed  Google Scholar 

  90. 90

    Greening, S. G., Osuch, E. A., Williamson, P. C. & Mitchell, D. G. The neural correlates of regulating positive and negative emotions in medication-free major depression. Soc. Cogn. Affect. Neurosci. 9, 628–637 (2014).

    PubMed  Google Scholar 

  91. 91

    Kanske, P., Heissler, J., Schonfelder, S. & Wessa, M. Neural correlates of emotion regulation deficits in remitted depression: the influence of regulation strategy, habitual regulation use, and emotional valence. NeuroImage 61, 686–693 (2012).

    PubMed  Google Scholar 

  92. 92

    Smoski, M. J., Keng, S. L., Schiller, C. E., Minkel, J. & Dichter, G. S. Neural mechanisms of cognitive reappraisal in remitted major depressive disorder. J. Affect. Disord. 151, 171–177 (2013).

    PubMed  PubMed Central  Google Scholar 

  93. 93

    Johnstone, T., van Reekum, C. M., Urry, H. L., Kalin, N. H. & Davidson, R. J. Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. J. Neurosci. 27, 8877–8884 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Dillon, D. G. & Pizzagalli, D. A. Evidence of successful modulation of brain activation and subjective experience during reappraisal of negative emotion in unmedicated depression. Psychiatry Res. 212, 99–107 (2013).

    PubMed  PubMed Central  Google Scholar 

  95. 95

    Ball, T. M., Ramsawh, H. J., Campbell-Sills, L., Paulus, M. P. & Stein, M. B. Prefrontal dysfunction during emotion regulation in generalized anxiety and panic disorders. Psychol. Med. 43, 1475–1486 (2013).

    PubMed  Google Scholar 

  96. 96

    Goldin, P. R., Manber, T., Hakimi, S., Canli, T. & Gross, J. J. Neural bases of social anxiety disorder: emotional reactivity and cognitive regulation during social and physical threat. Arch. Gen. Psychiatry 66, 170–180 (2009).

    PubMed  PubMed Central  Google Scholar 

  97. 97

    Goldin, P. R., Manber-Ball, T., Werner, K., Heimberg, R. & Gross, J. J. Neural mechanisms of cognitive reappraisal of negative self-beliefs in social anxiety disorder. Biol. Psychiatry 66, 1091–1099 (2009).

    PubMed  PubMed Central  Google Scholar 

  98. 98

    New, A. S. et al. A functional magnetic resonance imaging study of deliberate emotion regulation in resilience and posttraumatic stress disorder. Biol. Psychiatry 66, 656–664 (2009).

    PubMed  Google Scholar 

  99. 99

    Rabinak, C. A. et al. Focal and aberrant prefrontal engagement during emotion regulation in veterans with posttraumatic stress disorder. Depress. Anxiety 31, 851–861 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references


A.E. is funded by the Sierra-Pacific Mental Illness Research, Education and Clinical Center (MIRECC) at the Veterans Affairs Palo Alto Healthcare System. A.E. and J.J.G. are funded by US National Institutes of Health grants R01MH091860 and R21MH097984. C.B. is funded by European Research Council (ERC) grant ERC-2010-AdG_20100407 and the German Research Foundation (DFG; SFB TRR 58).

Author information



Corresponding author

Correspondence to Amit Etkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides


Computational modelling

The application of algorithms representing functions computed by the brain to explain observed behaviour through latent variables.

Conditioned stimulus

(CS). A previously neutral stimulus that takes on aversive or rewarding properties after being associated with an unconditioned stimulus.

Limbic regions

Deep brain structures (for example, the amygdala, ventral striatum and brain stem nuclei) involved in emotional and motivational processes.

Prediction errors

Discrepancies between experienced stimuli and expectations about them.

Reinforcement learning

An area of study describing changes in behaviour driven by the experience of rewards or punishments.

Transcranial magnetic stimulation

(TMS). A method for non-invasive stimulation of the brain using a focal pulsed magnetic field, which can be used to excite or inhibit brain activity.

Unconditioned stimulus

(US). A naturally aversive or rewarding stimulus.


A dimensionless 'universal currency' that denotes the relative 'good for me' or 'bad for me' motivational relevance of a stimulus or action.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Etkin, A., Büchel, C. & Gross, J. The neural bases of emotion regulation. Nat Rev Neurosci 16, 693–700 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing