Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genomic integrity and the ageing brain

Key Points

  • Although ageing is a difficult concept to define biologically, the accumulation of unrepaired DNA damage and the accompanying loss of genomic integrity are now regarded as signatures of ageing.

  • DNA damage in neurons probably begins accumulating even during the developmental process, and is also a by-product of normal physiological functions such as gene transcription and enhanced neuronal activity.

  • Neurons are permanently postmitotic and therefore cannot perform double-stranded break repair through the more accurate homologous recombination pathway. Consequently, neurons adopt a selective repair approach in which genes that are actively transcribed are repaired more than elements in the rest of the genome.

  • Neither the transcriptional programme nor the activity pattern of any two neurons is likely to be identical. Therefore, the regions of aggressive DNA repair, as well as those that are poorly maintained, probably vary from cell to cell.

  • The clear implication of this genetic heterogeneity is that with age, the genome of each and every neuron in the brain evolves a unique configuration of 'stress marks'. These differences may lead to regionally variable genetic patterns that are somatic in origin and may underlie the different molecular phenotypes observed in different neurodegenerative diseases.

  • Many researchers have commented on the relationship between mutations in components of the DNA repair machinery and the occurrence of major developmental abnormalities and syndromes that include premature ageing. However, little is known about the DNA repair capacity of the cells of the ageing brain.

  • As DNA repair is a lifelong process and because an early developmental arrest would mask the consequences of a somatically acquired loss of DNA repair fidelity, virtually nothing is known about how non-genomic factors, such as a gradual change in cellular signalling, epigenetic landscape, or even the expression pattern of non-protein coding miRNAs, may better explain the cause of various ageing-related neurodegenerative disorders.

Abstract

DNA damage is correlated with and may drive the ageing process. Neurons in the brain are postmitotic and are excluded from many forms of DNA repair; therefore, neurons are vulnerable to various neurodegenerative diseases. The challenges facing the field are to understand how and when neuronal DNA damage accumulates, how this loss of genomic integrity might serve as a 'time keeper' of nerve cell ageing and why this process manifests itself as different diseases in different individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA breakage is a part of normal development.
Figure 2: Causes of DNA damage in the developing, mature and ageing nervous system.
Figure 3: Neurodegeneration in ageing neurons resulting from a reduction of DNA integrity.
Figure 4: DNA damage and the onset of specific neurodegenerative diseases.

Similar content being viewed by others

References

  1. Kirkwood, T. B. Understanding the odd science of aging. Cell 120, 437–447 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. d'Adda di Fagagna, F., Teo, S. H. & Jackson, S. P. Functional links between telomeres and proteins of the DNA-damage response. Genes Dev. 18, 1781–1799 (2004).

    Article  PubMed  Google Scholar 

  3. Harper, J. W. & Elledge, S. J. The DNA damage response: ten years after. Mol. Cell 28, 739–745 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Gillet, L. C. & Scharer, O. D. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem. Rev. 106, 253–276 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Fousteri, M., Vermeulen, W., van Zeeland, A. A. & Mullenders, L. H. Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol. Cell 23, 471–482 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Dinant, C., Houtsmuller, A. B. & Vermeulen, W. Chromatin structure and DNA damage repair. Epigenetics Chromatin 1, 9 (2008). This review provides insight into how the chromatin remodelling response to DNA damage can assist in DNA repair.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McKinnon, P. J. Maintaining genome stability in the nervous system. Nat. Neurosci. 16, 1523–1529 (2013). This review, together with reference 61, provides important information on how DNA damage response and repair pathways have indispensible roles in neural development and the preservation of homeostasis and function in brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. d'Adda di Fagagna, F. Living on a break: cellular senescence as a DNA-damage response. Nat. Rev. Cancer 8, 512–522 (2008). This review highlights cellular senescence as a DNA damage response, which plays a part in ageing and cancer development.

    Article  CAS  PubMed  Google Scholar 

  10. Childs, B. G., Baker, D. J., Kirkland, J. L., Campisi, J. & van Deursen, J. M. Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep. 15, 1139–1153 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coppede, F. & Migliore, L. DNA damage and repair in Alzheimer's disease. Curr. Alzheimer Res. 6, 36–47 (2009). Together with references 12–16, this work provides evidence for inadequate DNA repair as one of the potential causes of Alzheimer disease.

    Article  CAS  PubMed  Google Scholar 

  12. Herrup, K., Li, J. & Chen, J. The role of ATM and DNA damage in neurons: upstream and downstream connections. DNA Repair (Amst.) 12, 600–604 (2013).

    Article  CAS  Google Scholar 

  13. Iourov, I. Y., Vorsanova, S. G., Liehr, T. & Yurov, Y. B. Aneuploidy in the normal, Alzheimer's disease and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobiol. Dis. 34, 212–220 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Kruman, I. I. et al. Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron 41, 549–561 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Lovell, M. A. & Markesbery, W. R. Oxidative damage in mild cognitive impairment and early Alzheimer's disease. J. Neurosci. Res. 85, 3036–3040 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Weissman, L., de Souza-Pinto, N. C., Mattson, M. P. & Bohr, V. A. DNA base excision repair activities in mouse models of Alzheimer's disease. Neurobiol. Aging 30, 2080–2081 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Baudat, F., Imai, Y. & de Massy, B. Meiotic recombination in mammals: localization and regulation. Nat. Rev. Genet. 14, 794–806 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Chun, J. J., Schatz, D. G., Oettinger, M. A., Jaenisch, R. & Baltimore, D. The recombination activating gene-1 (RAG-1) transcript is present in the murine central nervous system. Cell 64, 189–200 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. McGowan, P. O., Hope, T. A., Meck, W. H., Kelsoe, G. & Williams, C. L. Impaired social recognition memory in recombination activating gene 1-deficient mice. Brain Res. 1383, 187–195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cushman, J., Lo, J., Huang, Z., Wasserfall, C. & Petitto, J. M. Neurobehavioral changes resulting from recombinase activation gene 1 deletion. Clin. Vaccine Immunol. 10, 13–18 (2003).

    Article  CAS  Google Scholar 

  21. Colón-Cesario, M. et al. An inhibitor of DNA recombination blocks memory consolidation, but not reconsolidation, in context fear conditioning. J. Neurosci. 26, 5524–5533 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Abeliovich, A. et al. On somatic recombination in the central nervous system of transgenic mice. Science 257, 404–410 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Herrup, K. & Yang, Y. Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat. Rev. Neurosci. 8, 368–378 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Guarente, L. Sirtuins, aging, and medicine. N. Engl. J. Med. 364, 2235–2244 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. TenNapel, M. J. et al. SIRT6 minor allele genotype is associated with >5-year decrease in lifespan in an aged cohort. PLoS ONE 9, e115616 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McConnell, M. J. et al. Mosaic copy number variation in human neurons. Science 342, 632–637 (2013). This study identifies the presence of aneuploidy and subchromosomal copy number variations in neurons obtained from human-induced pluripotent stem cell lines and postmortem human brains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rehen, S. K. et al. Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc. Natl Acad. Sci. USA 98, 13361–13366 (2001). This study provides evidence that as many as one-third of the neuroblasts in the developing brain are aneuploid and, together with references 28–36, it also provides evidence that aneuploid postmitotic neurons are a part of the normal mature brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kingsbury, M. A. et al. Aneuploid neurons are functionally active and integrated into brain circuitry. Proc. Natl Acad. Sci. USA 102, 6143–6147 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaushal, D. et al. Alteration of gene expression by chromosome loss in the postnatal mouse brain. J. Neurosci. 23, 5599–5606 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang, Y., Geldmacher, D. S. & Herrup, K. DNA replication precedes neuronal cell death in Alzheimer's disease. J. Neurosci. 21, 2661–2668 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rehen, S. K. et al. Constitutional aneuploidy in the normal human brain. J. Neurosci. 25, 2176–2180 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mosch, B. et al. Aneuploidy and DNA replication in the normal human brain and Alzheimer's disease. J. Neurosci. 27, 6859–6867 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Iourov, I. Y., Vorsanova, S. G., Liehr, T., Kolotii, A. D. & Yurov, Y. B. Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain. Hum. Mol. Genet. 18, 2656–2669 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Vorsanova, S. G., Yurov, Y. B. & Iourov, I. Y. Human interphase chromosomes: a review of available molecular cytogenetic technologies. Mol. Cytogenet. 3, 1 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Westra, J. W. et al. Neuronal DNA content variation (DCV) with regional and individual differences in the human brain. J. Comp. Neurol. 518, 3981–4000 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yurov, Y. B. et al. The variation of aneuploidy frequency in the developing and adult human brain revealed by an interphase FISH study. J. Histochem. Cytochem. 53, 385–390 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. McConnell, M. J. et al. Failed clearance of aneuploid embryonic neural progenitor cells leads to excess aneuploidy in the Atm-deficient but not the Trp53-deficient adult cerebral cortex. J. Neurosci. 24, 8090–8096 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nordberg, A. Toward an early diagnosis and treatment of Alzheimer's disease. Int. Psychogeriatr. 15, 223–237 (2003).

    Article  PubMed  Google Scholar 

  39. Thomas, P. & Fenech, M. Chromosome 17 and 21 aneuploidy in buccal cells is increased with ageing and in Alzheimer's disease. Mutagenesis 23, 57–65 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Faggioli, F., Wang, T., Vijg, J. & Montagna, C. Chromosome-specific accumulation of aneuploidy in the aging mouse brain. Hum. Mol. Genet. 21, 5246–5253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Katyal, S. et al. Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes. Nat. Neurosci. 17, 813–821 (2014). This paper supports the hypothesis that the level of transcription activity in neurons can lead to DNA damage though topoisomerase I cleavage complexes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Suberbielle, E. et al. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat. Neurosci. 16, 613–621 (2013). This study provides multiple lines of evidence to suggest that a transient increase in neuronal double-stranded breaks is induced in response to even normal levels of brain activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takubo, K. et al. Changes of telomere length with aging. Geriatr. Gerontol. Int. 10, S197–S206 (2010).

    Article  PubMed  Google Scholar 

  44. Nelson, N. D. & Bertuch, A. A. Dyskeratosis congenita as a disorder of telomere maintenance. Mutat. Res. 730, 43–51 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Jaskelioff, M. et al. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469, 102–106 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Lee, J. et al. Telomerase deficiency affects normal brain functions in mice. Neurochem. Res. 35, 211–218 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Smith, J. A., Park, S., Krause, J. S. & Banik, N. L. Oxidative stress, DNA damage, and the telomeric complex as therapeutic targets in acute neurodegeneration. Neurochem. Int. 62, 764–775 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Robin, J. D. et al. Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances. Genes Dev. 28, 2464–2476 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stavenhagen, J. B. & Zakian, V. A. Yeast telomeres exert a position effect on recombination between internal tracts of yeast telomeric DNA. Genes Dev. 12, 3044–3058 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tham, W. H. & Zakian, V. A. Transcriptional silencing at Saccharomyces telomeres: implications for other organisms. Oncogene 21, 512–521 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Pandita, T. K. ATM function and telomere stability. Oncogene 21, 611–618 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, Y., Zhou, J. & Lim, C. U. The role of NBS1 in DNA double strand break repair, telomere stability, and cell cycle checkpoint control. Cell Res. 16, 45–54 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Digweed, M., Reis, A. & Sperling, K. Nijmegen breakage syndrome: consequences of defective DNA double strand break repair. Bioessays 21, 649–656 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Opresko, P. L., Cheng, W. H., von Kobbe, C., Harrigan, J. A. & Bohr, V. A. Werner syndrome and the function of the Werner protein; what they can teach us about the molecular aging process. Carcinogenesis 24, 791–802 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. McKinnon, P. J. ATM and ataxia telangiectasia. EMBO Rep. 5, 772–776 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, J. et al. Telomere dysfunction of lymphocytes in patients with Alzheimer disease. Cogn. Behav. Neurol. 16, 170–176 (2003).

    Article  PubMed  Google Scholar 

  57. Honig, L. S., Schupf, N., Lee, J. H., Tang, M. X. & Mayeux, R. Shorter telomeres are associated with mortality in those with APOE ε4 and dementia. Ann. Neurol. 60, 181–187 (2006).

    Article  PubMed  Google Scholar 

  58. Nouspikel, T. & Hanawalt, P. C. Terminally differentiated human neurons repair transcribed genes but display attenuated global DNA repair and modulation of repair gene expression. Mol. Cell. Biol. 20, 1562–1570 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bishop, N. A., Lu, T. & Yankner, B. A. Neural mechanisms of ageing and cognitive decline. Nature 464, 529–535 (2010). In this paper, the authors review the molecular correlates of brain ageing and how they affect the function of the organ.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Robbins, J. H. Xeroderma pigmentosum. Defective DNA repair causes skin cancer and neurodegeneration. JAMA 260, 384–388 (1988).

    Article  CAS  PubMed  Google Scholar 

  61. McKinnon, P. J. DNA repair deficiency and neurological disease. Nat. Rev. Neurosci. 10, 100–112 (2009). This paper extensively reviews a wide range of mutations in DNA damage-response proteins and argues for their central role in triggering different neurodegenerative disorders.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sykora, P. et al. DNA polymerase β deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes. Nucleic Acids Res. 43, 943–959 (2015). This study demonstrates that a modest decrease in base excision repair capacity can render the brain more vulnerable to Alzheimer disease-related molecular and celllular phenotypes.

    Article  CAS  PubMed  Google Scholar 

  63. Borgesius, N. Z. et al. Accelerated age-related cognitive decline and neurodegeneration, caused by deficient DNA repair. J. Neurosci. 31, 12543–12553 (2011). This study demonstrates a causal relationship between accumulated, unrepaired DNA damage and age-dependent cognitive decline and neurodegeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vegh, M. J. et al. Synaptic proteome changes in a DNA repair deficient Ercc1 mouse model of accelerated aging. J. Proteome Res. 11, 1855–1867 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Gu, Y. et al. Defective embryonic neurogenesis in Ku-deficient but not DNA-dependent protein kinase catalytic subunit-deficient mice. Proc. Natl Acad. Sci. USA 97, 2668–2673 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gao, Y. et al. A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 95, 891–902 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Frank, K. M. et al. DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway. Mol. Cell 5, 993–1002 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Dobbin, M. M. et al. SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons. Nat. Neurosci. 16, 1008–1015 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jacobsen, E., Beach, T., Shen, Y., Li, R. & Chang, Y. Deficiency of the Mre11 DNA repair complex in Alzheimer's disease brains. Brain Res. Mol. Brain Res. 128, 1–7 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Shackelford, D. A. DNA end joining activity is reduced in Alzheimer's disease. Neurobiol. Aging 27, 596–605 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Kanungo, J. DNA-dependent protein kinase and DNA repair: relevance to Alzheimer's disease. Alzheimers Res. Ther. 5, 13 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Trovesi, C., Manfrini, N., Falcettoni, M. & Longhese, M. P. Regulation of the DNA damage response by cyclin-dependent kinases. J. Mol. Biol. 425, 4756–4766 (2013). This study, together with references 74–81, demonstrates that cell cycle control and DNA damage repair proteins are intricately linked in cycling cells.

    Article  CAS  PubMed  Google Scholar 

  73. Ferretti, L. P., Lafranchi, L. & Sartori, A. A. Controlling DNA-end resection: a new task for CDKs. Front. Genet. 4, 99 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Falck, J., Coates, J. & Jackson, S. P. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434, 605–611 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Bartek, J. & Lukas, J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol. 19, 238–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nat. Rev. Cancer 3, 155–168 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Jowsey, P. et al. Characterisation of the sites of DNA damage-induced 53BP1 phosphorylation catalysed by ATM and ATR. DNA Repair (Amst.) 6, 1536–1544 (2007).

    Article  CAS  Google Scholar 

  78. Bakkenist, C. J. & Kastan, M. B. Initiating cellular stress responses. Cell 118, 9–17 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Fernandez-Capetillo, O. et al. DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat. Cell Biol. 4, 993–997 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Celeste, A. et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat. Cell Biol. 5, 675–679 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Yang, Y. & Herrup, K. Cell division in the CNS: protective response or lethal event in post-mitotic neurons? Biochim. Biophys. Acta 1772, 457–466 (2007). This paper, together with references 83–94, reviews how cell cycle re-entry in postmitotic neurons is correlated to a higher risk for neurodegeneration.

    Article  CAS  PubMed  Google Scholar 

  82. Herrup, K. & Busser, J. C. The induction of multiple cell cycle events precedes target-related neuronal death. Development 121, 2385–2395 (1995).

    CAS  PubMed  Google Scholar 

  83. Busser, J., Geldmacher, D. S. & Herrup, K. Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer's disease brain. J. Neurosci. 18, 2801–2807 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ranganathan, S. & Bowser, R. Alterations in G1 to S phase cell-cycle regulators during amyotrophic lateral sclerosis. Am. J. Pathol. 162, 823–835 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ranganathan, S., Scudiere, S. & Bowser, R. Hyperphosphorylation of the retinoblastoma gene product and altered subcellular distribution of E2F-1 during Alzheimer's disease and amyotrophic lateral sclerosis. J. Alzheimers Dis. 3, 377–385 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Yang, Y. & Herrup, K. Loss of neuronal cell cycle control in ataxia-telangiectasia: a unified disease mechanism. J. Neurosci. 25, 2522–2529 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Burns, K. A. et al. Nestin–CreER mice reveal DNA synthesis by nonapoptotic neurons following cerebral ischemia hypoxia. Cereb. Cortex 17, 2585–2592 (2007).

    Article  PubMed  Google Scholar 

  88. Hoglinger, G. U. et al. The pRb/E2F cell-cycle pathway mediates cell death in Parkinson's disease. Proc. Natl Acad. Sci. USA 104, 3585–3590 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. West, A. B., Dawson, V. L. & Dawson, T. M. To die or grow: Parkinson's disease and cancer. Trends Neurosci. 28, 348–352 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Love, S. Neuronal expression of cell cycle-related proteins after brain ischaemia in man. Neurosci. Lett. 353, 29–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Jordan-Sciutto, K. L., Wang, G., Murphey-Corb, M. & Wiley, C. A. Cell cycle proteins exhibit altered expression patterns in lentiviral-associated encephalitis. J. Neurosci. 22, 2185–2195 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yang, Y., Mufson, E. J. & Herrup, K. Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer's disease. J. Neurosci. 23, 2557–2563 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Katchanov, J. et al. Mild cerebral ischemia induces loss of cyclin-dependent kinase inhibitors and activation of cell cycle machinery before delayed neuronal cell death. J. Neurosci. 21, 5045–5053 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Potter, H. Review and hypothesis: Alzheimer disease and Down syndrome — chromosome 21 nondisjunction may underlie both disorders. Am. J. Hum. Genet. 48, 1192–1200 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Arendt, T., Bruckner, M. K., Mosch, B. & Losche, A. Selective cell death of hyperploid neurons in Alzheimer's disease. Am. J. Pathol. 177, 15–20 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Herrup, K. & Yang, Y. Pictures in molecular medicine: contemplating Alzheimer's disease as cancer: a loss of cell-cycle control. Trends Mol. Med. 7, 527 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Herrup, K., Neve, R., Ackerman, S. L. & Copani, A. Divide and die: cell cycle events as triggers of nerve cell death. J. Neurosci. 24, 9232–9239 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen, R. Z., Pettersson, U., Beard, C., Jackson-Grusby, L. & Jaenisch, R. DNA hypomethylation leads to elevated mutation rates. Nature 395, 89–93 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Morano, A. et al. Targeted DNA methylation by homology-directed repair in mammalian cells. Transcription reshapes methylation on the repaired gene. Nucleic Acids Res. 42, 804–821 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Xu, G. L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402, 187–191 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Irier, H. A. & Jin, P. Dynamics of DNA methylation in aging and Alzheimer's disease. DNA Cell Biol. 31, S42–S48 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Tan, L. & Shi, Y. G. Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 139, 1895–1902 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chouliaras, L. et al. Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer's disease patients. Neurobiol. Aging 34, 2091–2099 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jakovcevski, M. & Akbarian, S. Epigenetic mechanisms in neurological disease. Nat. Med. 18, 1194–1204 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Sen, S. P. & De Benedetti, A. TLK1B promotes repair of UV-damaged DNA through chromatin remodeling by Asf1. BMC Mol. Biol. 7, 37 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shimada, M. et al. Chk1 is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression. Cell 132, 221–232 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Sanders, S. L. et al. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119, 603–614 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Botuyan, M. V. et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127, 1361–1373 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kim, J. et al. Tudor, MBT and chromo domains gauge the degree of lysine methylation. EMBO Rep. 7, 397–403 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Du, L. L., Nakamura, T. M. & Russell, P. Histone modification-dependent and -independent pathways for recruitment of checkpoint protein Crb2 to double-strand breaks. Genes Dev. 20, 1583–1596 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Huyen, Y. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432, 406–411 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Ramanathan, B. & Smerdon, M. J. Changes in nuclear protein acetylation in U.V.-damaged human cells. Carcinogenesis 7, 1087–1094 (1986).

    Article  CAS  PubMed  Google Scholar 

  115. Ramanathan, B. & Smerdon, M. J. Enhanced DNA repair synthesis in hyperacetylated nucleosomes. J. Biol. Chem. 264, 11026–11034 (1989).

    CAS  PubMed  Google Scholar 

  116. Li, J. et al. Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia. Nat. Med. 18, 783–790 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Li, J. et al. EZH2-mediated H3K27 trimethylation mediates neurodegeneration in ataxia-telangiectasia. Nat. Neurosci. 16, 1745–1753 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ogawa, O. et al. Ectopic localization of phosphorylated histone H3 in Alzheimer's disease: a mitotic catastrophe? Acta Neuropathol. 105, 524–528 (2003).

    CAS  PubMed  Google Scholar 

  119. Zhang, K. et al. Targeted proteomics for quantification of histone acetylation in Alzheimer's disease. Proteomics 12, 1261–1268 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Guan, J. S. et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459, 55–60 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Graff, J. et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483, 222–226 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Su, Y. et al. Lithium, a common drug for bipolar disorder treatment, regulates amyloid-β precursor protein processing. Biochemistry 43, 6899–6908 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M. & Tsai, L. H. Recovery of learning and memory is associated with chromatin remodelling. Nature 447, 178–182 (2007). This study identifies chromatin modification, in particular histone acetylation, as a major factor underlying improved learning behaviour and long-term memory that can be achieved through environmental enrichment.

    Article  CAS  PubMed  Google Scholar 

  124. Karagiannis, T. C. & Ververis, K. Potential of chromatin modifying compounds for the treatment of Alzheimer's disease. Pathobiol. Aging Age Relat. Dis. 2, 14980 (2012).

    Article  CAS  Google Scholar 

  125. Herskovits, A. Z. & Guarente, L. Sirtuin deacetylases in neurodegenerative diseases of aging. Cell Res. 23, 746–758 (2013). This review, together with reference 139, provides important details of how sirtuin deacetylases are implicated in different stress responses and neurodegenerative disorders.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Guarente, L. The logic linking protein acetylation and metabolism. Cell. Metab. 14, 151–153 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Donmez, G. The effects of SIRT1 on Alzheimer's disease models. Int. J. Alzheimers Dis. 2012, 509529 (2012).

    PubMed  PubMed Central  Google Scholar 

  128. Oberdoerffer, P. et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135, 907–918 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Narayan, P. J., Lill, C., Faull, R., Curtis, M. A. & Dragunow, M. Increased acetyl and total histone levels in post-mortem Alzheimer's disease brain. Neurobiol. Dis. 74, 281–294 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Wang, R. H. et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14, 312–323 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yuan, Z., Zhang, X., Sengupta, N., Lane, W. S. & Seto, E. SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol. Cell 27, 149–162 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Uhl, M. et al. Role of SIRT1 in homologous recombination. DNA Repair (Amst.) 9, 383–393 (2010).

    Article  CAS  Google Scholar 

  133. Jeong, J. et al. SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp. Mol. Med. 39, 8–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Fang, E. F. et al. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD+/SIRT1 reduction. Cell 157, 882–896 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Mao, Z. et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science 332, 1443–1446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Toiber, D. et al. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol. Cell 51, 454–468 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lutz, M. I., Milenkovic, I., Regelsberger, G. & Kovacs, G. G. Distinct patterns of sirtuin expression during progression of Alzheimer's disease. Neuromolecular Med. 16, 405–414 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Weir, H. J. et al. CNS SIRT3 expression is altered by reactive oxygen species and in Alzheimer's disease. PLoS ONE 7, e48225 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang, J., Markesbery, W. R. & Lovell, M. A. Increased oxidative damage in nuclear and mitochondrial DNA in mild cognitive impairment. J. Neurochem. 96, 825–832 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Mecocci, P., MacGarvey, U. & Beal, M. F. Oxidative damage to mitochondrial DNA is increased in Alzheimer's disease. Ann. Neurol. 36, 747–751 (1994).

    Article  CAS  PubMed  Google Scholar 

  142. Chen, J. J. & Yu, B. P. Alterations in mitochondrial membrane fluidity by lipid peroxidation products. Free Radic. Biol. Med. 17, 411–418 (1994).

    Article  CAS  PubMed  Google Scholar 

  143. Lovell, M. A. & Markesbery, W. R. Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer's disease. Nucleic Acids Res. 35, 7497–7504 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gredilla, R. DNA damage and base excision repair in mitochondria and their role in aging. J. Aging Res. 2011, 257093 (2010).

    PubMed  PubMed Central  Google Scholar 

  145. Merksamer, P. I. et al. The sirtuins, oxidative stress and aging: an emerging link. Aging (Albany NY) 5, 144–150 (2013).

    Article  CAS  Google Scholar 

  146. Brenmoehl, J. & Hoeflich, A. Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion 13, 755–761 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Kong, X. et al. Sirtuin 3, a new target of PGC-1α, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS ONE 5, e11707 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang, S. J. et al. Sirtuin 1 activation enhances the PGC-1α/mitochondrial antioxidant system pathway in status epilepticus. Mol. Med. Rep. 11, 521–526 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Pritchard, C. C., Cheng, H. H. & Tewari, M. MicroRNA profiling: approaches and considerations. Nat. Rev. Genet. 13, 358–369 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lee, H. J. Exceptional stories of microRNAs. Exp. Biol. Med. (Maywood) 238, 339–343 (2013).

    Article  CAS  Google Scholar 

  152. Abe, M. & Bonini, N. M. MicroRNAs and neurodegeneration: role and impact. Trends Cell Biol. 23, 30–36 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Liu, W. et al. MicroRNA-16 targets amyloid precursor protein to potentially modulate Alzheimer's-associated pathogenesis in SAMP8 mice. Neurobiol. Aging 33, 522–534 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Liu, C. G., Song, J., Zhang, Y. Q. & Wang, P. C. MicroRNA-193b is a regulator of amyloid precursor protein in the blood and cerebrospinal fluid derived exosomal microRNA-193b is a biomarker of Alzheimer's disease. Mol. Med. Rep. 10, 2395–2400 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Smith, P., Al Hashimi, A., Girard, J., Delay, C. & Hebert, S. S. In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs. J. Neurochem. 116, 240–247 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Wang, W. X. et al. The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of β-site amyloid precursor protein-cleaving enzyme 1. J. Neurosci. 28, 1213–1223 (2008). This review discusses recent findings on how miRNA interacts with the canonical DNA damage response and how the expression of miRNA is regulated in response to DNA damage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wan, G., Mathur, R., Hu, X., Zhang, X. & Lu, X. miRNA response to DNA damage. Trends Biochem. Sci. 36, 478–484 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hu, H., Du, L., Nagabayashi, G., Seeger, R. C. & Gatti, R. A. ATM is down-regulated by N-Myc-regulated microRNA-421. Proc. Natl Acad. Sci. USA 107, 1506–1511 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lal, A. et al. miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat. Struct. Mol. Biol. 16, 492–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Huan, L. C. et al. MicroRNA regulation of DNA repair gene expression in 4-aminobiphenyl-treated HepG2 cells. Toxicology 322, 69–77 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Yu, Y. et al. Context-dependent bidirectional regulation of the MutS homolog 2 by transforming growth factor β contributes to chemoresistance in breast cancer cells. Mol. Cancer Res. 8, 1633–1642 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Moskwa, P. et al. miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol. Cell 41, 210–220 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Sandoval, N. et al. Characterization of ATM gene mutations in 66 ataxia telangiectasia families. Hum. Mol. Genet. 8, 69–79 (1999).

    Article  CAS  PubMed  Google Scholar 

  164. Simone, N. L. et al. Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS ONE 4, e6377 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. He, L. et al. A microRNA component of the p53 tumour suppressor network. Nature 447, 1130–1134 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Wang, X. et al. miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer's disease, inhibits bcl2 translation. Brain Res. Bull. 80, 268–273 (2009).

    Article  CAS  PubMed  Google Scholar 

  167. Braun, C. J. et al. p53-responsive microRNAs 192 and 215 are capable of inducing cell cycle arrest. Cancer Res. 68, 10094–10104 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Yan, H. L. et al. Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J. 28, 2719–2732 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhang, X., Wan, G., Berger, F. G., He, X. & Lu, X. The ATM kinase induces microRNA biogenesis in the DNA damage response. Mol. Cell 41, 371–383 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cardinale, A. et al. Sublethal doses of β-amyloid peptide abrogate DNA-dependent protein kinase activity. J. Biol. Chem. 287, 2618–2631 (2012).

    Article  CAS  PubMed  Google Scholar 

  171. Wei, Y. et al. Binding to the minor groove of the double-strand, tau protein prevents DNA from damage by peroxidation. PLoS ONE 3, e2600 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Krylova, S. M. et al. Tau protein binds single-stranded DNA sequence specifically — the proof obtained in vitro with non-equilibrium capillary electrophoresis of equilibrium mixtures. FEBS Lett. 579, 1371–1375 (2005).

    Article  CAS  PubMed  Google Scholar 

  173. Lu, Y. et al. Hyperphosphorylation results in tau dysfunction in DNA folding and protection. J. Alzheimers Dis. 37, 551–563 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Bender, A. et al. TOM40 mediates mitochondrial dysfunction induced by α-synuclein accumulation in Parkinson's disease. PLoS ONE 8, e62277 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Jones, M. J., Goodman, S. J. & Kobor, M. S. DNA methylation and healthy human aging. Aging Cell http://dx.doi.org/10.1111/acel.12349 (2015).

  176. Gu, X., Sun, J., Li, S., Wu, X. & Li, L. Oxidative stress induces DNA demethylation and histone acetylation in SH-SY5Y cells: potential epigenetic mechanisms in gene transcription in Aβ production. Neurobiol. Aging 34, 1069–1079 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. Schwartz, E. I. et al. Cell cycle activation in postmitotic neurons is essential for DNA repair. Cell Cycle 6, 318–329 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Tomashevski, A., Webster, D. R., Grammas, P., Gorospe, M. & Kruman, I. I. Cyclin-C-dependent cell-cycle entry is required for activation of non-homologous end joining DNA repair in postmitotic neurons. Cell Death Differ. 17, 1189–1198 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Casafont, I., Palanca, A., Lafarga, V., Berciano, M. T. & Lafarga, M. Effect of ionizing radiation in sensory ganglion neurons: organization and dynamics of nuclear compartments of DNA damage/repair and their relationship with transcription and cell cycle. Acta Neuropathol. 122, 481–493 (2011).

    Article  CAS  PubMed  Google Scholar 

  180. Lukiw, W. J. Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus. Neuroreport 18, 297–300 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Sun, C. et al. miR-9 regulation of BRCA1 and ovarian cancer sensitivity to cisplatin and PARP inhibition. J. Natl Cancer Inst. 105, 1750–1758 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. Adlakha, Y. K. & Saini, N. miR-128 exerts pro-apoptotic effect in a p53 transcription-dependent and -independent manner via PUMA–Bak axis. Cell Death Dis. 4, e542 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Cogswell, J. P. et al. Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways. J. Alzheimers Dis. 14, 27–41 (2008).

    Article  CAS  PubMed  Google Scholar 

  184. Guo, P. et al. miR-26a enhances the radiosensitivity of glioblastoma multiforme cells through targeting of ataxia-telangiectasia mutated. Exp. Cell Res. 320, 200–208 (2014).

    Article  CAS  PubMed  Google Scholar 

  185. Huse, J. T. et al. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev. 23, 1327–1337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Di Francesco, A. et al. The DNA-damage response to γ-radiation is affected by miR-27a in A549 cells. Int. J. Mol. Sci. 14, 17881–17896 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kofman, A. V. et al. microRNA-34a promotes DNA damage and mitotic catastrophe. Cell Cycle 12, 3500–3511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Yamakuchi, M., Ferlito, M. & Lowenstein, C. J. miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl Acad. Sci. USA 105, 13421–13426 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Tazawa, H., Tsuchiya, N., Izumiya, M. & Nakagama, H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc. Natl Acad. Sci. USA 104, 15472–15477 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Le, M. T. et al. MicroRNA-125b is a novel negative regulator of p53. Genes Dev. 23, 862–876 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Liu, R. L., Dong, Y., Deng, Y. Z., Wang, W. J. & Li, W. D. Tumor suppressor miR-145 reverses drug resistance by directly targeting DNA damage-related gene RAD18 in colorectal cancer. Tumour Biol. 36, 5011–5019 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Chen, B., Duan, L., Yin, G., Tan, J. & Jiang, X. miR-381, a novel intrinsic WEE1 inhibitor, sensitizes renal cancer cells to 5-FU by up-regulation of Cdc2 activities in 786-O. J. Chemother. 25, 229–238 (2013).

    Article  CAS  PubMed  Google Scholar 

  193. Lajer, C. B. et al. The role of miRNAs in human papilloma virus (HPV)-associated cancers: bridging between HPV-related head and neck cancer and cervical cancer. Br. J. Cancer 106, 1526–1534 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Absalon, S., Kochanek, D. M., Raghavan, V. & Krichevsky, A. M. miR-26b, upregulated in Alzheimer's disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J. Neurosci. 33, 14645–14659 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Lin, F. et al. miR-26b promotes granulosa cell apoptosis by targeting ATM during follicular atresia in porcine ovary. PLoS ONE 7, e38640 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Shioya, M. et al. Aberrant microRNA expression in the brains of neurodegenerative diseases: miR-29a decreased in Alzheimer disease brains targets neurone navigator 3. Neuropathol. Appl. Neurobiol. 36, 320–330 (2010).

    Article  CAS  PubMed  Google Scholar 

  197. Park, S. Y., Lee, J. H., Ha, M., Nam, J. W. & Kim, V. N. miR-29 miRNAs activate p53 by targeting p85α and CDC42. Nat. Struct. Mol. Biol. 16, 23–29 (2009).

    Article  CAS  PubMed  Google Scholar 

  198. Park, J. K. et al. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor. Biochem. Biophys. Res. Commun. 406, 518–523 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Garcia, A. I. et al. Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol. Med. 3, 279–290 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Zhu, F. et al. MicroRNA-124 (miR-124) regulates Ku70 expression and is correlated with neuronal death induced by ischemia/reperfusion. J. Mol. Neurosci. 52, 148–155 (2014).

    Article  CAS  PubMed  Google Scholar 

  201. Huang, J. W. et al. Systematic screen identifies miRNAs that target RAD51 and RAD51D to enhance chemosensitivity. Mol. Cancer Res. 11, 1564–1573 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from The Hong Kong University of Science and Technology, the National Key Basic Research Program of China (2013CB530900), the Research Grants Council, the Hong Kong Special Administrative Region (HKUST12/CRF/13G and GRF660813), the US National Institutes of Health (NS70193), and the BrightFocus Foundation (A2012101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Herrup.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Senescence

A state of cell cycle arrest that can arise in proliferating cells after a finite number of cell divisions. Senescence can also occur prematurely in dividing cells as a result of stress or a detrimental environment.

Synapsis

The pairing of replicated homologous chromosomes during prophase I of meiosis.

Crossing over

The reciprocal exchange of genetic material between non-sister chromatids during synapsis of meiosis I.

V(D)J recombination

Also known as somatic recombination, this process occurs in B and T lymphocytes that are generated during early development via somatic assembly of component gene segments. V(D)J recombination enables diversity in the antigen recognition machinery.

Aneuploidy

The presence of an abnormal number of chromosomes in a cell.

Microaneuploidies

Genomic alterations that result in unbalanced copy numbers of subchromosomal regions.

Copy number variation

Refers to when the number of copies of a particular gene varies from one individual to the next.

Chromosomal mosaicism

Refers to when an individual has two or more cell populations with a different chromosomal makeup.

DNA supercoiling

Refers to the over- or under-winding of a DNA strand.

Hypomorphs

Mutations in genes that have a similar but weaker effect than the corresponding wild-type gene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chow, Hm., Herrup, K. Genomic integrity and the ageing brain. Nat Rev Neurosci 16, 672–684 (2015). https://doi.org/10.1038/nrn4020

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn4020

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing