Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Social cognition in schizophrenia

Key Points

  • Social cognitive impairment is a core feature of schizophrenia and is closely related to the impaired daily functioning of people who have this disorder.

  • Several social cognitive subprocesses have been studied in individuals with schizophrenia, including face perception, voice perception, motor resonance, affect sharing, mentalizing, emotion experience and emotion regulation.

  • Each of these social subprocesses is associated with particular neural systems. These systems are partly distinct but also contain some regions that overlap with systems involved in other social cognitive processes.

  • People with schizophrenia consistently show impairment in reflective aspects of social processing, including face perception, voice perception, mentalizing and emotion regulation.

  • By contrast, aspects of reflexive social cognition, including motor resonance, affect sharing and emotion experience, seem to be relatively intact in these individuals.

  • Empathy is an example of a complex social cognitive function that is impaired in individuals with schizophrenia and incorporates several specific social cognitive subprocesses, including social cue perception, affect sharing, mentalizing and emotion regulation, among others.

Abstract

Individuals with schizophrenia exhibit impaired social cognition, which manifests as difficulties in identifying emotions, feeing connected to others, inferring people's thoughts and reacting emotionally to others. These social cognitive impairments interfere with social connections and are strong determinants of the degree of impaired daily functioning in such individuals. Here, we review recent findings from the fields of social cognition and social neuroscience and identify the social processes that are impaired in schizophrenia. We also consider empathy as an example of a complex social cognitive function that integrates several social processes and is impaired in schizophrenia. This information may guide interventions to improve social cognition in patients with this disorder.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Brain regions associated with social processes.
Figure 2: Social cognitive processes in schizophrenia.

References

  1. 1

    McGrath, J., Saha, S., Chant, D. & Welham, J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol. Rev. 30, 67–76 (2008).

    PubMed  Google Scholar 

  2. 2

    World Health Organization. The global burden of disease: 2004 update (World Health Organization, 2008).

  3. 3

    Bora, E., Yucel, M. & Pantelis, C. Cognitive functioning in schizophrenia, schizoaffective disorder and affective psychoses: meta-analytic study. Br. J. Psychiatry 195, 475–482 (2009).

    PubMed  Google Scholar 

  4. 4

    Gold, J. M. & Green, M. F. in Comprehensive Textbook of Psychiatry (eds Sadock, B. J. & Sadock, V. A.) 1436–1448 (Lippincott, 2004).

    Google Scholar 

  5. 5

    Green, M. F. & Harvey, P. D. Cognition in schizophrenia: past, present, and future. Cognition 1, e1–e9 (2014).

    Google Scholar 

  6. 6

    Green, M. F. What are the functional consequences of neurocognitive deficits in schizophrenia? Am. J. Psychiatry 153, 321–330 (1996).

    CAS  PubMed  Google Scholar 

  7. 7

    Green, M. F., Kern, R. S., Braff, D. L. & Mintz, J. Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the 'right stuff'? Schizophr. Bull. 26, 119–136 (2000).

    CAS  PubMed  Google Scholar 

  8. 8

    Fett, A. K. et al. The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: a meta-analysis. Neurosci. Biobehavioral Rev. 35, 573–588 (2011). A quantitative literature review demonstrating that social cognitive impairments account for a greater proportion of variance in functional outcome than non-social cognitive impairments in schizophrenia.

    Google Scholar 

  9. 9

    Green, M. F., Hellemann, G., Horan, W. P., Lee, J. & Wynn, J. K. From perception to functional outcome in schizophrenia: modeling the role of ability and motivation. Arch. General Psychiatry 69, 1216–1624 (2012).

    Google Scholar 

  10. 10

    Green, M. F., Olivier, B., Crawley, J. N., Penn, D. L. & Silverstein, S. Social cognition in schizophrenia: recommendations from the MATRICS New Approaches Conference. Schizophr. Bull. 31, 882–887 (2005).

    PubMed  Google Scholar 

  11. 11

    Green, M. F. et al. Social cognition in schizophrenia: an NIMH workshop on definitions, assessment, and research opportunities. Schizophr. Bull. 34, 1211–1220 (2008).

    PubMed  PubMed Central  Google Scholar 

  12. 12

    Green, M. F., Lee, J. & Ochsner, K. N. Adapting social neuroscience measures for schizophrenia clinical trials, part 1: ferrying paradigms across perilous waters. Schizophr. Bull. 39, 1192–1200 (2013). A recent application of social cognitive neuroscience concepts and methods to research in schizophrenia.

    PubMed  PubMed Central  Google Scholar 

  13. 13

    Ochsner, K. N. The social-emotional processing stream: five core constructs and their translational potential for schizophrenia and beyond. Biol. Psychiatry 64, 48–61 (2008).

    PubMed  PubMed Central  Google Scholar 

  14. 14

    Dore, B. P., Zerubavel, N. & Ochsner, K. N. in APA Handbook of Personality and Social Psychology: Vol 1. Attitudes and Social Cognition (eds Mikulincer, M. & Shaver, P. R.) 693–720 (American Psychological Association, 2015).

    Google Scholar 

  15. 15

    Lieberman, M. D. in Handbook of Social Psychology 5th edn (eds Fiske, S. T., Gilbert, D. T. & Lindzey, G.) 143–193 (McGraw-Hill, 2010).

    Google Scholar 

  16. 16

    Atkinson, A. P. & Adolphs, R. The neuropsychology of face perception: beyond simple dissociations and functional selectivity. Phil. Trans. R. Soc. 366, 1726–1738 (2011).

    Google Scholar 

  17. 17

    Haxby, J. V., Hoffman, E. A. & Gobbini, M. I. Human neural systems for face recognition and social communication. Biol. Psychiatry 51, 59–67 (2002).

    PubMed  Google Scholar 

  18. 18

    Vuilleumier, P. & Pourtois, G. Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging. Neuropsychologia 45, 174–194 (2007).

    PubMed  Google Scholar 

  19. 19

    Sabatinelli, D. et al. Emotional perception: meta-analyses of face and natural scene processing. Neuroimage 54, 2524–2533 (2011).

    PubMed  Google Scholar 

  20. 20

    Bortolon, C., Capdevielle, D. & Raffard, S. Face recognition in schizophrenia disorder: a comprehensive review of behavioral, neuroimaging and neurophysiological studies. Neurosci. Biobehavioral Rev. 53, 79–107 (2015).

    Google Scholar 

  21. 21

    Darke, H., Peterman, J. S., Park, S., Sundram, S. & Carter, O. Are patients with schizophrenia impaired in processing non-emotional features of human faces? Frontiers Psychol. 4, 529 (2013).

    Google Scholar 

  22. 22

    Yoon, J. H., D'Esposito, M. & Carter, C. S. Preserved function of the fusiform face area in schizophrenia as revealed by fMRI. Psychiatry Res. Neuroimag. 148, 205–216 (2006).

    Google Scholar 

  23. 23

    Walther, S. et al. Encoding deficit during face processing within the right fusiform face area in schizophrenia. Psychiatry Res. Neuroimag. 172, 184–191 (2009).

    Google Scholar 

  24. 24

    Yoon, J. H. et al. Multivariate pattern analysis of functional magnetic resonance imaging data reveals deficits in distributed representations in schizophrenia. Biol. Psychiatry 64, 1035–1041 (2008).

    PubMed  PubMed Central  Google Scholar 

  25. 25

    Savla, G. N., Vella, L., Armstrong, C. C., Penn, D. L. & Twamley, E. W. Deficits in domains of social cognition in schizophrenia: a meta-analysis of the empirical evidence. Schizophr. Bull. 39, 979–992 (2013). A quantitative literature review of five social cognitive subprocesses, and potential moderators of these subprocesses, in schizophrenia.

    PubMed  Google Scholar 

  26. 26

    Kohler, C. G., Walker, J. B., Martin, E. A., Healey, K. M. & Moberg, P. J. Facial emotion perception in schizophrenia: a meta-analytic review. Schizophr. Bull. 36, 1009–1019 (2010).

    PubMed  Google Scholar 

  27. 27

    Delvecchio, G., Sugranyes, G. & Frangou, S. Evidence of diagnostic specificity in the neural correlates of facial affect processing in bipolar disorder and schizophrenia: a meta-analysis of functional imaging studies. Psychol. Med. 43, 553–569 (2013).

    CAS  PubMed  Google Scholar 

  28. 28

    Li, H., Chan, R. C., McAlonan, G. M. & Gong, Q. Y. Facial emotion processing in schizophrenia: a meta-analysis of functional neuroimaging data. Schizophr. Bull. 36, 1029–1039 (2010).

    PubMed  Google Scholar 

  29. 29

    Taylor, S. F. et al. Meta-analysis of functional neuroimaging studies of emotion perception and experience in schizophrenia. Biol. Psychiatry 71, 136–145 (2012). Using a meta-analytic approach, this study provides a quantitative summary of neural mechanisms of emotion perception and emotion experience in schizophrenia.

    PubMed  Google Scholar 

  30. 30

    McCleery, A. et al. Meta-analysis of face processing event-related potentials in schizophrenia. Biol. Psychiatry 77, 116–126 (2015). This meta-analysis reviews event-related potential studies of face processing by examining N170 and N250 in schizophrenia.

    PubMed  Google Scholar 

  31. 31

    Anticevic, A. et al. Amygdala recruitment in schizophrenia in response to aversive emotional material: a meta-analysis of neuroimaging studies. Schizophr. Bull. 38, 608–621 (2012).

    PubMed  Google Scholar 

  32. 32

    Bentin, S., Allison, T., Puce, A., Perez, E. & McCarthy, G. Electrophysiological studies of face perception in humans. J. Cogn. Neurosci. 8, 551–565 (1996).

    PubMed  PubMed Central  Google Scholar 

  33. 33

    Marinkovic, K. & Halgren, E. Human brain potentials related to the emotional expression, repetition, and gender of faces. Psychobiology 26, 348–356 (1998).

    Google Scholar 

  34. 34

    Castagna, F. et al. Prosody recognition and audiovisual emotion matching in schizophrenia: the contribution of cognition and psychopathology. Psychiatry Res. 205, 192–198 (2013).

    PubMed  Google Scholar 

  35. 35

    Kantrowitz, J. T. et al. Reduction in tonal discriminations predicts receptive emotion processing deficits in schizophrenia and schizoaffective disorder. Schizoph. Bull. 39, 86–93 (2013).

    PubMed  Google Scholar 

  36. 36

    Leitman, D. I. et al. The neural substrates of impaired prosodic detection in schizophrenia and its sensorial antecedents. Am. J. Psychiatry 164, 474–482 (2007).

    PubMed  Google Scholar 

  37. 37

    Witteman, J., Van Heuven, V. J. & Schiller, N. O. Hearing feelings: a quantitative meta-analysis on the neuroimaging literature of emotional prosody perception. Neuropsychologia 50, 2752–2763 (2012).

    PubMed  Google Scholar 

  38. 38

    Gold, R. et al. Auditory emotion recognition impairments in schizophrenia: relationship to acoustic features and cognition. Am. J. Psychiatry 169, 424–432 (2012).

    PubMed  Google Scholar 

  39. 39

    Leitman, D. I. et al. Sensory contributions to impaired prosodic processing in schizophrenia. Biol. Psychiatry 58, 56–61 (2005).

    PubMed  Google Scholar 

  40. 40

    Mitchell, R. L., Elliott, R., Barry, M., Cruttenden, A. & Woodruff, P. W. Neural response to emotional prosody in schizophrenia and in bipolar affective disorder. Br. J. Psychiatry 184, 223–230 (2004).

    PubMed  Google Scholar 

  41. 41

    Leitman, D. I. et al. Not pitch perfect: sensory contributions to affective communication impairment in schizophrenia. Biol. Psychiatry 70, 611–618 (2011).

    PubMed  Google Scholar 

  42. 42

    Iacoboni, M. Imitation, empathy, and mirror neurons. Annu. Rev. Psycholol. 60, 653–670 (2009).

    Google Scholar 

  43. 43

    Zaki, J. & Ochsner, K. The neuroscience of empathy: progress, pitfalls and promise. Nat. Neurosci. 15, 675–680 (2012).

    CAS  PubMed  Google Scholar 

  44. 44

    Decety, J. & Grezes, J. The power of simulation: imagining one's own and other's behavior. Brain Res. 1079, 4–14 (2006).

    CAS  PubMed  Google Scholar 

  45. 45

    Zaki, J. Empathy: a motivated account. Psychol. Bull. 140, 1608–1647 (2014).

    PubMed  Google Scholar 

  46. 46

    Matthews, N., Gold, B. J., Sekuler, R. & Park, S. Gesture imitation in schizophrenia. Schizophr. Bull. 39, 94–101 (2013).

    PubMed  Google Scholar 

  47. 47

    Varcin, K. J., Bailey, P. E. & Henry, J. D. Empathic deficits in schizophrenia: the potential role of rapid facial mimicry. J. Int. Neuropsychol. Soc. 16, 621–629 (2010).

    PubMed  Google Scholar 

  48. 48

    Wojakiewicz, A. et al. Alteration of pain recognition in schizophrenia. Eur. J. Pain 17, 1385–1392 (2013).

    CAS  PubMed  Google Scholar 

  49. 49

    Uithol, S., van Rooij, I., Bekkering, H. & Haselager, P. Understanding motor resonance. Social Neurosci. 6, 388–397 (2011).

    Google Scholar 

  50. 50

    Rizzolatti, G., Fogassi, L. & Gallese, V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nat. Rev. Neurosci. 2, 661–670 (2001).

    CAS  PubMed  Google Scholar 

  51. 51

    Molenberghs, P., Cunnington, R. & Mattingley, J. B. Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neurosci. Biobehav. Rev. 36, 341–349 (2012).

    PubMed  Google Scholar 

  52. 52

    Pineda, J. A. The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”. Brain Res. Brain Res. Rev. 50, 57–68 (2005).

    PubMed  Google Scholar 

  53. 53

    McCormick, L. M. et al. Mirror neuron function, psychosis, and empathy in schizophrenia. Psychiatry Res. 201, 233–239 (2012).

    PubMed  PubMed Central  Google Scholar 

  54. 54

    Singh, F., Pineda, J. & Cadenhead, K. S. Association of impaired EEG mu wave suppression, negative symptoms and social functioning in biological motion processing in first episode of psychosis. Schizophr. Res. 130, 182–186 (2011).

    PubMed  PubMed Central  Google Scholar 

  55. 55

    Horan, W. P., Pineda, J. A., Wynn, J. K., Iacoboni, M. & Green, M. F. Some markers of mirroring appear intact in schizophrenia: evidence from mu suppression. Cogn. Affect. Behav. Neurosci. 14, 1049–1060 (2014).

    PubMed  Google Scholar 

  56. 56

    Mitra, S., Nizamie, S. H., Goyal, N. & Tikka, S. K. Mu-wave activity in schizophrenia: evidence of a dysfunctional mirror neuron system from an Indian study. Indian J. Psychol. Med. 36, 276–281 (2014).

    PubMed  PubMed Central  Google Scholar 

  57. 57

    Kato, Y. et al. Magnetoencephalography study of right parietal lobe dysfunction of the evoked mirror neuron system in antipsychotic-free schizophrenia. PLoS ONE 6, e28087 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Schurmann, M. et al. Manifest disease and motor cortex reactivity in twins discordant for schizophrenia. Br. J. Psychiatry 191, 178–179 (2007).

    PubMed  Google Scholar 

  59. 59

    Enticott, P. G. et al. Reduced motor facilitation during action observation in schizophrenia: a mirror neuron deficit? Schizophr. Res. 102, 116–121 (2008).

    PubMed  Google Scholar 

  60. 60

    Mehta, U. M., Thirthalli, J., Basavaraju, R., Gangadhar, B. N. & Pascual-Leone, A. Reduced mirror neuron activity in schizophrenia and its association with theory of mind deficits: evidence from a transcranial magnetic stimulation study. Schizophr. Bull. 40, 1083–1094 (2014).

    PubMed  Google Scholar 

  61. 61

    Thakkar, K. N., Peterman, J. S. & Park, S. Altered brain activation during action imitation and observation in schizophrenia: a translational approach to investigating social dysfunction in schizophrenia. Am. J. Psychiatry 171, 539–548 (2014).

    PubMed  PubMed Central  Google Scholar 

  62. 62

    Horan, W. P. et al. Self-reported empathy and neural activity during action imitation and observation in schizophrenia. NeuroImage. Clin. 5, 100–108 (2014). This study demonstrates comparable activation patterns in people with schizophrenia and in healthy comparison groups in key mirror neuron system regions during observation and execution of simple finger movements and complex facial emotion expressions.

    PubMed  PubMed Central  Google Scholar 

  63. 63

    Lamm, C., Decety, J. & Singer, T. Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. Neuroimage 54, 2492–2502 (2011).

    PubMed  Google Scholar 

  64. 64

    Achim, A. M., Ouellet, R., Roy, M. A. & Jackson, P. L. Assessment of empathy in first-episode psychosis and meta-analytic comparison with previous studies in schizophrenia. Psychiatry Res. 190, 3–8 (2011).

    PubMed  Google Scholar 

  65. 65

    Michaels, T. M. et al. Cognitive empathy contributes to poor social functioning in schizophrenia: evidence from a new self-report measure of cognitive and affective empathy. Psychiatry Res. 220, 803–810 (2014).

    PubMed  Google Scholar 

  66. 66

    Corbera, S., Ikezawa, S., Bell, M. D. & Wexler, B. E. Physiological evidence of a deficit to enhance the empathic response in schizophrenia. Eur. Psychiatry 29, 463–472 (2014).

    CAS  PubMed  Google Scholar 

  67. 67

    Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y. & Plumb, I. The 'Reading the Mind in the Eyes' test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism. J. Child Psychol. Psychiatry 42, 241–251 (2001).

    CAS  PubMed  Google Scholar 

  68. 68

    Frith, C. D. The cognitive neuropsychology of schizophrenia (Lawrence Erlbaum Associates, 1992).

    Google Scholar 

  69. 69

    Castelli, F., Happe, F., Frith, U. & Frith, C. Movement and mind: a functional imaging study of perception and interpretation of complex intentional movement patterns. Neuroimage 12, 314–325 (2000).

    CAS  PubMed  Google Scholar 

  70. 70

    Carrington, S. J. & Bailey, A. J. Are there theory of mind regions in the brain? A review of the neuroimaging literature. Hum. Brain Mapp. 30, 2313–2335 (2009).

    PubMed  Google Scholar 

  71. 71

    Schurz, M., Radua, J., Aichhorn, M., Richlan, F. & Perner, J. Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci. Biobehavioral Rev. 42, 9–34 (2014).

    Google Scholar 

  72. 72

    Schaafsma, S. M., Pfaff, D. W., Spunt, R. P. & Adolphs, R. Deconstructing and reconstructing theory of mind. Trends Cogn. Sci. 19, 65–72 (2015).

    PubMed  Google Scholar 

  73. 73

    Mars, R. B. et al. Connectivity-based subdivisions of the human right 'temporoparietal junction area': evidence for different areas participating in different cortical networks. Cereb. Cortex 22, 1894–1903 (2012).

    PubMed  Google Scholar 

  74. 74

    Carter, R. M., Bowling, D. L., Reeck, C. & Huettel, S. A. A distinct role of the temporal-parietal junction in predicting socially guided decisions. Science 337, 109–111 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    McCleery, J. P., Surtees, A. D., Graham, K. A., Richards, J. E. & Apperly, I. A. The neural and cognitive time course of theory of mind. J. Neurosci. 31, 12849–12854 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Eickhoff, S. B., Laird, A. R., Fox, P. T., Bzdok, D. & Hensel, L. Functional segregation of the human dorsomedial prefrontal cortex. Cereb. Cortex http://dx.doi.org/10.1093/cercor/bhu250 (2014).

  77. 77

    Spreng, R. N., Mar, R. A. & Kim, A. S. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J. Cogn. Neurosci. 21, 489–510 (2009).

    PubMed  Google Scholar 

  78. 78

    Lieberman, M. D. Social: Why our brains are wired to connect (Crown Publishers, 2013).

    Google Scholar 

  79. 79

    Bora, E., Yucel, M. & Pantelis, C. Theory of mind impairment in schizophrenia: meta-analysis. Schizophr. Res. 109, 1–9 (2009).

    PubMed  Google Scholar 

  80. 80

    Sprong, M., Schothorst, P., Vos, E., Hox, J. & van Engeland, H. Theory of mind in schizophrenia: meta-analysis. Br. J. Psychiatry 191, 5–13 (2007).

    PubMed  Google Scholar 

  81. 81

    Russell, T. A. et al. Exploring the social brain in schizophrenia: left prefrontal underactivation during mental state attribution. Am. J. Psychiatry 157, 2040–2042 (2000).

    CAS  PubMed  Google Scholar 

  82. 82

    Eack, S. M., Wojtalik, J. A., Newhill, C. E., Keshavan, M. S. & Phillips, M. L. Prefrontal cortical dysfunction during visual perspective-taking in schizophrenia. Schizophr. Res. 150, 491–497 (2013).

    PubMed  Google Scholar 

  83. 83

    Lee, J., Quintana, J., Nori, P. & Green, M. F. Theory of mind in schizophrenia: exploring neural mechanisms of belief attribution. Social Neurosci. 6, 569–581 (2011).

    Google Scholar 

  84. 84

    Dodell-Feder, D., Tully, L. M., Lincoln, S. H. & Hooker, C. I. The neural basis of theory of mind and its relationship to social functioning and social anhedonia in individuals with schizophrenia. NeuroImage. Clin. 4, 154–163 (2014).

    PubMed  Google Scholar 

  85. 85

    Walter, H. et al. Dysfunction of the social brain in schizophrenia is modulated by intention type: an fMRI study. Social Cogn. Affect. Neurosci. 4, 166–176 (2009). This study demonstrates that types of intention modulate neural regions associated with mentalizing in healthy controls but not in individuals with schizophrenia.

    Google Scholar 

  86. 86

    Das, P., Lagopoulos, J., Coulston, C. M., Henderson, A. F. & Malhi, G. S. Mentalizing impairment in schizophrenia: a functional MRI study. Schizophr. Res. 134, 158–164 (2012).

    PubMed  Google Scholar 

  87. 87

    de Achaval, D. et al. Decreased activity in right-hemisphere structures involved in social cognition in siblings discordant for schizophrenia. Schizophr. Res. 134, 171–179 (2012).

    PubMed  Google Scholar 

  88. 88

    Brune, M. et al. An fMRI study of theory of mind in schizophrenic patients with 'passivity' symptoms. Neuropsychologia 46, 1992–2001 (2008).

    PubMed  Google Scholar 

  89. 89

    Frith, C. D. Schizophrenia and theory of mind. Psychol. Med. 34, 385–389 (2004).

    CAS  PubMed  Google Scholar 

  90. 90

    Ciaramidaro, A. et al. Schizophrenia and autism as contrasting minds: neural evidence for the hypo-hyper-intentionality hypothesis. Schizophr. Bull. 41, 171–179 (2015).

    PubMed  Google Scholar 

  91. 91

    Pedersen, A. et al. Theory of mind in patients with schizophrenia: is mentalizing delayed? Schizophr. Res. 137, 224–229 (2012). This study shows that individuals with schizophrenia may be slower at engaging neural regions associated with mentalizing when inferring the thoughts of others.

    PubMed  Google Scholar 

  92. 92

    Kober, H. et al. Functional grouping and cortical–subcortical interactions in emotion: a meta-analysis of neuroimaging studies. Neuroimage 42, 998–1031 (2008).

    PubMed  PubMed Central  Google Scholar 

  93. 93

    Satpute, A. B., Wilson-Mendenhall, C. D., Kleckner, I. R. & Barrett, L. F. in Brain Mapping: An Encyclopedic Reference (ed. Toga, A. W.) 65–72 (2015).

    Google Scholar 

  94. 94

    Lindquist, K. A., Satpute, A. B., Wager, T. D., Weber, J. & Barrett, L. F. The brain basis of positive and negative affect: evidence from a meta-analysis of the human neuroimaging literature. Cereb. Cortex http://dx.doi.org/10.1093/cercor/bhv001 (2015).

  95. 95

    Wager, T. D. et al. A Bayesian model of category-specific emotional brain responses. PLoS Comput. Biol. 11, e1004066 (2015).

    PubMed  PubMed Central  Google Scholar 

  96. 96

    Cohen, A. S. & Minor, K. S. Emotional experience in patients with schizophrenia revisited: meta-analysis of laboratory studies. Schizophr. Bull. 36, 143–150 (2010).

    PubMed  Google Scholar 

  97. 97

    Kring, A. M. & Elis, O. Emotion deficits in people with schizophrenia. Annu. Rev. Clin. Psychol. 9, 409–433 (2013). This article comprehensively reviews the literature on emotion experience in schizophrenia across self-reporting, physiological and neuroimaging methods.

    PubMed  Google Scholar 

  98. 98

    Hajcak, G., Weinberg, A., MacNamara, A. & Foti, D. in The Oxford Handbook of Event-Related Potential Components (eds Luck, S. J. & Kappenman, E. S.) 441–472 (Oxford Univ. Press, 2011).

    Google Scholar 

  99. 99

    Horan, W. P., Wynn, J. K., Kring, A. M., Simons, R. F. & Green, M. F. Electrophysiological correlates of emotional responding in schizophrenia. J. Abnormal Psycholol. 119, 18–30 (2010).

    Google Scholar 

  100. 100

    Horan, W. P., Foti, D., Hajcak, G., Wynn, J. K. & Green, M. F. Intact motivated attention in schizophrenia: evidence from event-related potentials. Schizophr. Res. 135, 95–99 (2012).

    PubMed  Google Scholar 

  101. 101

    Pinheiro, A. P. et al. Visual emotional information processing in male schizophrenia patients: combining ERP, clinical and behavioral evidence. Neurosci. Lett. 550, 75–80 (2013).

    CAS  PubMed  Google Scholar 

  102. 102

    Holt, D. J. et al. Increased medial temporal lobe activation during the passive viewing of emotional and neutral facial expressions in schizophrenia. Schizophr. Res. 82, 153–162 (2006).

    PubMed  Google Scholar 

  103. 103

    Hall, J. et al. Overactivation of fear systems to neutral faces in schizophrenia. Biol. Psychiatry 64, 70–73 (2008).

    PubMed  Google Scholar 

  104. 104

    Patrick, R. E., Kiang, M. & Christensen, B. K. Neurophysiological correlates of emotional directed-forgetting in persons with schizophrenia: an event-related brain potential study. Int. J. Psychophysiol. http://dx.doi.org/10.1016/j.ijpsycho.2015.01.006 (2015).

  105. 105

    Gross, J. J. Emotion regulation: taking stock and moving forward. Emotion 13, 359–365 (2013).

    PubMed  Google Scholar 

  106. 106

    Buhle, J. T. et al. Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cereb. Cortex 24, 2981–2990 (2014).

    PubMed  Google Scholar 

  107. 107

    Ochsner, K. N., Silvers, J. A. & Buhle, J. T. Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann. NY Acad. Sci. 1251, E1–E24 (2012).

    PubMed  Google Scholar 

  108. 108

    Kohn, N. et al. Neural network of cognitive emotion regulation — an ALE meta-analysis and MACM analysis. Neuroimage 87, 345–355 (2014).

    CAS  PubMed  Google Scholar 

  109. 109

    Phelps, E. A. & LeDoux, J. E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48, 175–187 (2005).

    CAS  PubMed  Google Scholar 

  110. 110

    Horan, W. P., Hajcak, G., Wynn, J. K. & Green, M. F. Impaired emotion regulation in schizophrenia: evidence from event-related potentials. Psychol. Med. 43, 2377–2391 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Kimhy, D. et al. Emotion awareness and regulation in individuals with schizophrenia: implications for social functioning. Psychiatry Res. 200, 193–201 (2012).

    PubMed  PubMed Central  Google Scholar 

  112. 112

    Tabak, N. T. et al. Perceived emotional intelligence in schizophrenia and bipolar disorder: clinical and functional correlates. Schizophr. Res. 162, 189–195 (2015).

    PubMed  PubMed Central  Google Scholar 

  113. 113

    Livingston, R., Adam, B. S. & Bracha, S. Season of birth and neurodevelopmental disorders: summer birth is associated with dyslexia. J. Am. Acad. Child Adolesc. Psychiatry 32, 612–616 (1993).

    CAS  PubMed  Google Scholar 

  114. 114

    Henry, J. D., Rendell, P. G., Green, M. J., McDonald, S. & O'Donnell, M. Emotion regulation in schizophrenia: affective, social, and clinical correlates of suppression and reappraisal. J. Abnorm Psychol. 117, 473–478 (2008).

    PubMed  Google Scholar 

  115. 115

    Perry, Y., Henry, J. D., Nangle, M. R. & Grisham, J. R. Regulation of negative affect in schizophrenia: the effectiveness of acceptance versus reappraisal and suppression. J. Clin. Exp. Neuropsychol. 34, 497–508 (2012).

    PubMed  Google Scholar 

  116. 116

    Strauss, G. P. et al. Emotion regulation abnormalities in schizophrenia: cognitive change strategies fail to decrease the neural response to unpleasant stimuli. Schizophr. Bull. 39, 872–883 (2013).

    PubMed  PubMed Central  Google Scholar 

  117. 117

    Foti, D. & Hajcak, G. Deconstructing reappraisal: descriptions preceding arousing pictures modulate the subsequent neural response. J. Cogn. Neurosci. 20, 977–988 (2008).

    PubMed  Google Scholar 

  118. 118

    Morris, R. W., Sparks, A., Mitchell, P. B., Weickert, C. S. & Green, M. J. Lack of cortico-limbic coupling in bipolar disorder and schizophrenia during emotion regulation. Transl. Psychiatry 2, e90 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    van der Meer, L. et al. Neural correlates of emotion regulation in patients with schizophrenia and non-affected siblings. PLoS ONE 9, e99667 (2014).

    PubMed  PubMed Central  Google Scholar 

  120. 120

    Gee, D. G. et al. Altered age-related trajectories of amygdala-prefrontal circuitry in adolescents at clinical high risk for psychosis: a preliminary study. Schizophr. Res. 134, 1–9 (2012).

    PubMed  Google Scholar 

  121. 121

    Nuechterlein, K. H., Luck, S. J., Lustig, C. & Sarter, M. CNTRICS final task selection: control of attention. Schizophr. Bull. 35, 182–196 (2009).

    PubMed  PubMed Central  Google Scholar 

  122. 122

    Carter, C. S., Minzenberg, M., West, R. & Macdonald, A. 3rd. CNTRICS imaging biomarker selections: executive control paradigms. Schizophr. Bull. 38, 34–42 (2012).

    PubMed  Google Scholar 

  123. 123

    Strauss, G. P. et al. Cognition-emotion interactions are modulated by working memory capacity in individuals with schizophrenia. Schizophr. Res. 141, 257–261 (2012).

    PubMed  PubMed Central  Google Scholar 

  124. 124

    Tully, L. M., Lincoln, S. H. & Hooker, C. I. Lateral prefrontal cortex activity during cognitive control of emotion predicts response to social stress in schizophrenia. NeuroImage Clin. 6, 43–53 (2014).

    PubMed  PubMed Central  Google Scholar 

  125. 125

    Anticevic, A., Repovs, G. & Barch, D. M. Emotion effects on attention, amygdala activation, and functional connectivity in schizophrenia. Schizophr. Bull. 38, 967–980 (2012).

    PubMed  Google Scholar 

  126. 126

    Kring, A. M. & Moran, E. K. Emotional response deficits in schizophrenia: insights from affective science. Schizophr. Bull. 34, 819–834 (2008).

    PubMed  PubMed Central  Google Scholar 

  127. 127

    Fusar-Poli, P. et al. Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J. Psychiatry Neurosci. 34, 418–432 (2009).

    PubMed  PubMed Central  Google Scholar 

  128. 128

    Stevens, J. S. & Hamann, S. Sex differences in brain activation to emotional stimuli: a meta-analysis of neuroimaging studies. Neuropsychologia 50, 1578–1593 (2012).

    PubMed  Google Scholar 

  129. 129

    Frank, C. K., Baron-Cohen, S. & Ganzel, B. L. Sex differences in the neural basis of false-belief and pragmatic language comprehension. Neuroimage 105, 300–311 (2015).

    PubMed  Google Scholar 

  130. 130

    Lieberman, M. D. in Fundamentals of Social Neuroscience (eds Harmon-Jones, E. & Winkelman, P.) 290–315 (Guilford, 2007).

    Google Scholar 

  131. 131

    Decety, J. & Jackson, P. L. The functional architecture of human empathy. Behav. Cogn. Neurosci. Rev. 3, 71–100 (2004).

    PubMed  Google Scholar 

  132. 132

    Singer, T. & Lamm, C. The social neuroscience of empathy. Ann. NY Acad. Sci. 1156, 81–96 (2009).

    PubMed  Google Scholar 

  133. 133

    Shamay-Tsoory, S. G. The neural bases for empathy. Neuroscientist 17, 18–24 (2011).

    PubMed  Google Scholar 

  134. 134

    Decety, J. Dissecting the neural mechanisms mediating empathy. Emotion Rev. 3, 92–108 (2011).

    Google Scholar 

  135. 135

    Decety, J. & Jackson, P. L. A social-neuroscience perspective on empathy. Curr. Direct. Psychol. Sci. 15, 54–58 (2006).

    Google Scholar 

  136. 136

    Morelli, S. A., Rameson, L. T. & Lieberman, M. D. The neural components of empathy: predicting daily prosocial behavior. Social Cogn. Affect. Neurosci. 9, 39–47 (2014).

    Google Scholar 

  137. 137

    Zaki, J., Bolger, N. & Ochsner, K. It takes two: the interpersonal nature of empathic accuracy. Psychol. Sci. 19, 399–404 (2008).

    PubMed  Google Scholar 

  138. 138

    Zaki, J., Weber, J., Bolger, N. & Ochsner, K. The neural bases of empathic accuracy. Proc. Natl Acad. Sci. USA 106, 11382–11387 (2009).

    CAS  PubMed  Google Scholar 

  139. 139

    Lee, J., Zaki, J., Harvey, P. O., Ochsner, K. & Green, M. F. Schizophrenia patients are impaired in empathic accuracy. Psychol. Med. 41, 2297–2304 (2011). This study demonstrates that people with schizophrenia show impaired empathic accuracy and benefit less than healthy controls from social cues when making empathic judgments.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Kern, R. S. et al. Adapting social neuroscience measures for schizophrenia clinical trials, part 2: trolling the depths of psychometric properties. Schizophr. Bull. 39, 1201–1210 (2013).

    PubMed  PubMed Central  Google Scholar 

  141. 141

    Harvey, P. O., Zaki, J., Lee, J., Ochsner, K. & Green, M. F. Neural substrates of empathic accuracy in people with schizophrenia. Schizophr. Bull. 39, 617–628 (2013).

    PubMed  Google Scholar 

  142. 142

    van den Heuvel, M. P. et al. Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry 70, 783–792 (2013).

    PubMed  Google Scholar 

  143. 143

    Cao, H. et al. Test-retest reliability of fMRI-based graph theoretical properties during working memory, emotion processing, and resting state. Neuroimage 84, 888–900 (2014).

    PubMed  Google Scholar 

  144. 144

    Friston, K. J. & Frith, C. D. Schizophrenia: a disconnection syndrome? Clin. Neurosci. 3, 89–97 (1995).

    CAS  PubMed  Google Scholar 

  145. 145

    Hoffman, R. E. & Dobscha, S. K. Cortical pruning and the development of schizophrenia: a computer model. Schizophr. Bull. 15, 477–490 (1989).

    CAS  PubMed  Google Scholar 

  146. 146

    Glausier, J. R. & Lewis, D. A. Dendritic spine pathology in schizophrenia. Neuroscience 251, 90–107 (2013).

    CAS  PubMed  Google Scholar 

  147. 147

    Sweet, R. A., Henteleff, R. A., Zhang, W., Sampson, A. R. & Lewis, D. A. Reduced dendritic spine density in auditory cortex of subjects with schizophrenia. Neuropsychopharmacology 34, 374–389 (2009).

    PubMed  Google Scholar 

  148. 148

    van den Heuvel, M. P., Mandl, R. C., Stam, C. J., Kahn, R. S. & Hulshoff Pol, H. E. Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. J. Neurosci. 30, 15915–15926 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Du, F. et al. Myelin and axon abnormalities in schizophrenia measured with magnetic resonance imaging techniques. Biol. Psychiatry 74, 451–457 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150

    Uhlhaas, P. J. & Singer, W. Oscillations and neuronal dynamics in schizophrenia: the search for basic symptoms and translational opportunities. Biol. Psychiatry 77, 1001–1009 (2013).

    Google Scholar 

  151. 151

    Ferrarelli, F. et al. Reduced natural oscillatory frequency of frontal thalamocortical circuits in schizophrenia. Arch. General Psychiatry 69, 766–774 (2012).

    Google Scholar 

  152. 152

    Cuthbert, B. N. & Insel, T. R. Toward new approaches to psychotic disorders: the NIMH Research Domain Criteria project. Schizophr. Bull. 36, 1061–1062 (2010).

    PubMed  PubMed Central  Google Scholar 

  153. 153

    Cuthbert, B. N. The RDoC framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry 13, 28–35 (2014).

    PubMed  PubMed Central  Google Scholar 

  154. 154

    Holt-Lunstad, J., Smith, T. B. & Layton, J. B. Social relationships and mortality risk: a meta-analytic review. PLoS Med. 7, e1000316 (2010).

    PubMed  PubMed Central  Google Scholar 

  155. 155

    Steptoe, A., Shankar, A., Demakakos, P. & Wardle, J. Social isolation, loneliness, and all-cause mortality in older men and women. Proc. Natl Acad. Sci. USA 110, 5797–5801 (2013).

    CAS  PubMed  Google Scholar 

  156. 156

    Pantell, M. et al. Social isolation: a predictor of mortality comparable to traditional clinical risk factors. Am. J. Publ. Health 103, 2056–2062 (2013).

    Google Scholar 

  157. 157

    Cacioppo, J. T. & Hawkley, L. C. Perceived social isolation and cognition. Trends Cogn. Sci. 13, 447–454 (2009).

    PubMed  PubMed Central  Google Scholar 

  158. 158

    Kennedy, D. P. & Adolphs, R. Perception of emotions from facial expressions in high-functioning adults with autism. Neuropsychologia 50, 3313–3319 (2012).

    PubMed  PubMed Central  Google Scholar 

  159. 159

    Frith, U. Mind blindness and the brain in autism. Neuron 32, 969–979 (2001).

    CAS  PubMed  Google Scholar 

  160. 160

    Adenzato, M., Cavallo, M. & Enrici, I. Theory of mind ability in the behavioural variant of frontotemporal dementia: an analysis of the neural, cognitive, and social levels. Neuropsychologia 48, 2–12 (2010).

    PubMed  Google Scholar 

  161. 161

    Lazarus, S. A., Cheavens, J. S., Festa, F. & Zachary Rosenthal, M. Interpersonal functioning in borderline personality disorder: a systematic review of behavioral and laboratory-based assessments. Clin. Psychol. Rev. 34, 193–205 (2014).

    PubMed  Google Scholar 

  162. 162

    Lee, J. et al. Social and nonsocial cognition in bipolar disorder and schizophrenia: relative levels of impairment. Am. J. Psychiatry 170, 334–341 (2013).

    PubMed  Google Scholar 

  163. 163

    Keysers, C. & Gazzola, V. Dissociating the ability and propensity for empathy. Trends Cogn. Sci. 18, 163–166 (2014).

    PubMed  PubMed Central  Google Scholar 

  164. 164

    Decety, J., Skelly, L. R. & Kiehl, K. A. Brain response to empathy-eliciting scenarios involving pain in incarcerated individuals with psychopathy. JAMA Psychiatry 70, 638–645 (2013).

    PubMed  PubMed Central  Google Scholar 

  165. 165

    Kurtz, M. M. & Richardson, C. L. Social cognitive training for schizophrenia: a meta-analytic investigation of controlled research. Schizophr. Bull. 38, 1092–1104 (2012). This article reviews psychosocial intervention approaches that have been used to enhance social cognition in schizophrenia

    PubMed  Google Scholar 

  166. 166

    Penn, D. L., Roberts, D. L., Combs, D. & Sterne, A. Best practices: the development of the Social Cognition and Interaction Training program for schizophrenia spectrum disorders. Psychiatr. Services 58, 449–451 (2007).

    Google Scholar 

  167. 167

    Fletcher-Watson, S., McConnell, F., Manola, E. & McConachie, H. Interventions based on the Theory of Mind cognitive model for autism spectrum disorder (ASD). Cochrane Database Syst. Rev. 3, CD008785 (2014).

    Google Scholar 

  168. 168

    Horan, W. P. et al. Efficacy and specificity of social cognitive skills training for outpatients with psychotic disorders. J. Psychiatr. Res. 45, 1113–1122 (2011).

    PubMed  PubMed Central  Google Scholar 

  169. 169

    Neacsiu, A. D., Eberle, J. W., Kramer, R., Wiesmann, T. & Linehan, M. M. Dialectical behavior therapy skills for transdiagnostic emotion dysregulation: a pilot randomized controlled trial. Behav. Res. Ther. 59, 40–51 (2014).

    PubMed  Google Scholar 

  170. 170

    Khoury, B., Lecomte, T., Gaudiano, B. A. & Paquin, K. Mindfulness interventions for psychosis: a meta-analysis. Schizophr. Res. 150, 176–184 (2013).

    PubMed  Google Scholar 

  171. 171

    Meyer-Lindenberg, A., Domes, G., Kirsch, P. & Heinrichs, M. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat. Rev. Neurosci. 12, 524–538 (2011).

    CAS  PubMed  Google Scholar 

  172. 172

    Davis, M. C. et al. Oxytocin-augmented social cognitive skills training in schizophrenia. Neuropsychopharmacology 39, 2070–2077 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173

    Pedersen, C. A. et al. Intranasal oxytocin reduces psychotic symptoms and improves Theory of Mind and social perception in schizophrenia. Schizophr. Res. 132, 50–53 (2011).

    PubMed  Google Scholar 

  174. 174

    Fischer-Shofty, M. et al. Improving social perception in schizophrenia: the role of oxytocin. Schizophr. Res. 146, 357–362 (2013).

    CAS  PubMed  Google Scholar 

  175. 175

    American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 5th edn (American Psychiatric Association, 2013).

  176. 176

    Barch, D. M. et al. Logic and justification for dimensional assessment of symptoms and related clinical phenomena in psychosis: relevance to DSM-5. Schizophr. Res. 150, 15–20 (2013).

    PubMed  Google Scholar 

  177. 177

    Adolphs, R. The neurobiology of social cognition. Curr. Opin. Neurobiol. 11, 231–239 (2001).

    CAS  PubMed  Google Scholar 

  178. 178

    Adolphs, R. The social brain: neural basis of social knowledge. Annu. Rev. Psychol. 60, 693–716 (2009).

    PubMed  PubMed Central  Google Scholar 

  179. 179

    Van Overwalle, F. Social cognition and the brain: a meta-analysis. Hum. Brain Mapp. 30, 829–858 (2009).

    PubMed  Google Scholar 

  180. 180

    Ochsner, K. N. & Lieberman, M. D. The emergence of social cognitive neuroscience. Am. Psychol. 56, 717–734 (2001).

    CAS  PubMed  Google Scholar 

  181. 181

    Brunet-Gouet, E. & Decety, J. Social brain dysfunctions in schizophrenia: a review of neuroimaging studies. Psychiatry Res. 148, 75–92 (2006).

    PubMed  Google Scholar 

  182. 182

    Rimmele, U., Hediger, K., Heinrichs, M. & Klaver, P. Oxytocin makes a face in memory familiar. J. Neurosci. 29, 38–42 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. 183

    Rushworth, M. F., Mars, R. B. & Sallet, J. Are there specialized circuits for social cognition and are they unique to humans? Curr. Opin. Neurobiol. 23, 436–442 (2013).

    CAS  PubMed  Google Scholar 

  184. 184

    Adolphs, R. Social cognition and the human brain. Trends Cogn. Sci. 3, 469–479 (1999).

    CAS  PubMed  Google Scholar 

  185. 185

    Spunt, R. P. & Adolphs, R. Folk explanations of behavior: a specialized use of a domain-general mechanism. Psychol. Sci. 26, 724–736 (2015).

    PubMed  PubMed Central  Google Scholar 

  186. 186

    Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain's default network: anatomy, function, and relevance to disease. Ann. NY Acad. Sci. 1124, 1–38 (2008).

    PubMed  Google Scholar 

  187. 187

    Anticevic, A., Repovs, G., Shulman, G. L. & Barch, D. M. When less is more: TPJ and default network deactivation during encoding predicts working memory performance. Neuroimage 49, 2638–2648 (2010).

    PubMed  Google Scholar 

  188. 188

    Li, C. S., Yan, P., Bergquist, K. L. & Sinha, R. Greater activation of the 'default' brain regions predicts stop signal errors. Neuroimage 38, 640–648 (2007).

    PubMed  PubMed Central  Google Scholar 

  189. 189

    Sergi, M. J. et al. Social cognition in schizophrenia: relationships with neurocognition and negative symptoms. Schizophr. Res. 90, 316–324 (2007).

    PubMed  Google Scholar 

  190. 190

    Allen, D. N., Strauss, G. P., Donohue, B. & van Kammen, D. P. Factor analytic support for social cognition as a separable cognitive domain in schizophrenia. Schizophr. Res. 93, 325–333 (2007).

    PubMed  Google Scholar 

  191. 191

    Bell, M., Tsang, H. W., Greig, T. C. & Bryson, G. J. Neurocognition, social cognition, perceived social discomfort, and vocational outcomes in schizophrenia. Schizophr. Bull. 35, 738–747 (2009).

    PubMed  Google Scholar 

  192. 192

    Gottesman, I. I. & Gould, T. D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry 160, 636–645 (2003).

    PubMed  Google Scholar 

  193. 193

    Braff, D. L., Freedman, R., Schork, N. J. & Gottesman, I. I. Deconstructing schizophrenia: an overview of the use of endophenotypes in order to understand a complex disorder. Schizophr. Bull. 33, 21–32 (2007).

    PubMed  Google Scholar 

  194. 194

    Yalcin-Siedentopf, N. et al. Facial affect recognition in symptomatically remitted patients with schizophrenia and bipolar disorder. Schizophr. Res. 152, 440–445 (2014).

    PubMed  Google Scholar 

  195. 195

    Green, M. F. et al. Social cognition across phases of illness in schizophrenia. Schizophr. Bull. 38, 865–872 (2012). This study demonstrates comparable levels of social cognitive impairment in schizophrenia during the prodromal, recent-onset and chronic stages of the illness.

    PubMed  Google Scholar 

  196. 196

    Comparelli, A. et al. Emotion recognition impairment is present early and is stable throughout the course of schizophrenia. Schizophr. Res. 143, 65–69 (2013).

    PubMed  Google Scholar 

  197. 197

    Thompson, A. et al. Social cognition in clinical 'at risk' for psychosis and first episode psychosis populations. Schizophr. Res. 141, 204–209 (2012).

    PubMed  Google Scholar 

  198. 198

    Bora, E. & Pantelis, C. Theory of mind impairments in first-episode psychosis, individuals at ultra-high risk for psychosis and in first-degree relatives of schizophrenia: systematic review and meta-analysis. Schizophr. Res. 144, 31–36 (2013).

    PubMed  Google Scholar 

  199. 199

    Greenwood, T. A. et al. Initial heritability analyses of endophenotypic measures for schizophrenia: the consortium on the genetics of schizophrenia. Arch. General Psychiatry 64, 1242–1250 (2007).

    Google Scholar 

  200. 200

    Walter, H. et al. Effects of a genome-wide supported psychosis risk variant on neural activation during a theory-of-mind task. Mol. Psychiatry 16, 462–470 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Jimenez and J. Wynn for their comments on drafts of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael F. Green.

Ethics declarations

Competing interests

M.F.G. has been a paid consultant for AbbVie, DSP, Forum and Takeda, is a member of the Scientific Board of Mnemosyne and has received research funds from Amgen and Forum. W.P.H. and J.L. declare no competing interests.

PowerPoint slides

Glossary

Event-related potentials

(ERPs). A way of analysing electroencephalography (EEG) data during cognitive tasks by time-locking EEG activity to specific events (for example, stimulus onset or responses) and extracting neural activity that can be represented as waveforms that reflect certain sensory or cognitive processes.

N170

An event-related potential component that has a negative peak around 170 ms after stimulus presentation at occipitotemporal sites and is associated with processing the structural information of faces.

N250

An event-related potential component that has a negative peak around 250 ms after stimulus presentation at frontocentral sites and is associated with processing facial emotional information.

Prosody

The acoustic properties of speech that provide critical information beyond the meaning of words or grammatical structure, such as emotional state, emphasis, contrast and focus.

Magnetoencephalography

(MEG). A functional neuroimaging method that records magnetic fields produced by electrical currents in the brain to assess brain activity during rest or cognitive tasks; it generally has better temporal resolution than functional magnetic resonance imaging and better spatial resolution than electroencephalography.

Transcranial magnetic stimulation

(TMS). A non-invasive procedure that uses magnetic fields to stimulate small regions of the brain and can be used to probe the functional activity of specific brain regions.

Default mode network

A set of brain regions that are activated (as identified using functional magnetic resonance imaging) when individuals are in a resting state, not focusing on the outside world, and are deactivated when individuals direct attention to the outside world.

Cognitive reappraisal

A method of regulating emotion by construing an emotion-eliciting situation in a way that changes its meaning and emotional impact.

Electromyography

(EMG). A non-invasive procedure that measures the electrical activity produced by skeletal muscles and has been used to assess the activity of facial muscles related to social interaction.

Oxytocin

A neuropeptide that acts both as a hormone and a neurotransmitter and is known to play an important part in regulating mammalian social behaviours.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Green, M., Horan, W. & Lee, J. Social cognition in schizophrenia. Nat Rev Neurosci 16, 620–631 (2015). https://doi.org/10.1038/nrn4005

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing