Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dysregulation and restoration of translational homeostasis in fragile X syndrome

Key Points

  • Fragile X syndrome (FXS) is an X-linked heritable form of intellectual disability with a high incidence of autism spectrum disorder (ASD) characteristics. FXS is recognized as the most commonly inherited form of intellectual disability and ASD.

  • FXS is a CGG-repeat disease that causes silencing of the fragile X mental retardation 1 (FMR1) gene and loss of its protein product, FMR protein (FMRP).

  • FMRP is an mRNA-binding protein that mainly acts as a translational repressor. Excessive basal protein synthesis has been reported in FXS model mice that lack Fmr1 as well as in cells from individuals with FXS.

  • Ten studies have reported genetic rescue of FXS pathophysiologies in Fmr1-knockout mice. Eight of these genetic rescues normalize excessive protein synthesis in the FXS model mice, consistent with the hypothesis that resetting translational homeostasis is central to the rescue mechanisms.

  • If resetting translational homeostasis is central to the rescue of FXS pathophysiologies, it suggests that there are specific mRNAs whose translation is elevated in FXS and normalized in the genetic rescues. These mRNAs are likely to have profound implications for the aetiology of FXS.

Abstract

Fragile X syndrome (FXS), the most-frequently inherited form of intellectual disability and the most-prevalent single-gene cause of autism, results from a lack of fragile X mental retardation protein (FMRP), an RNA-binding protein that acts, in most cases, to repress translation. Multiple pharmacological and genetic manipulations that target receptors, scaffolding proteins, kinases and translational control proteins can rescue neuronal morphology, synaptic function and behavioural phenotypes in FXS model mice, presumably by reducing excessive neuronal translation to normal levels. Such rescue strategies might also be explored in the future to identify the mRNAs that are critical for FXS pathophysiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Translational control pathways that are dysregulated in FXS.
Figure 2: FMRP may stall polyribosomes to reduce the rate of translation elongation.
Figure 3: Involvement of CPEB in mediating FMRP activity.
Figure 4: Identification of dysregulated mRNAs that are rescued by pharmacological or genetic manipulations in FXS model mice.

Similar content being viewed by others

References

  1. Martin, J. P. & Bell, J. A. Pedigree of mental defect showing sex-linkage. J. Neurol. Psychiatry 6, 154–157 (1943).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lubs, H. A. A marker X chromosome. Am. J. Hum. Genet. 21, 231–244 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Santoro, M. R., Bray, S. M. & Warren, S. T. Molecular mechanisms of fragile X syndrome: a twenty-year perspective. Annu. Rev. Pathol. 7, 219–245 (2012).

    CAS  PubMed  Google Scholar 

  4. Nelson, D. L., Orr, H. T. & Warren, S. T. The unstable repeats—three evolving faces of neurological disease. Neuron 77, 825–843 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Darnell, J. C. & Klann, E. The translation of translational control by FMRP: therapeutic targets for FXS. Nat. Neurosci. 16, 1530–1536 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dolen, G. et al. Correction of fragile X syndrome in mice. Neuron 56, 955–962 (2007).Describes the first genetic rescue of multiple FXS pathophysiologies accomplished with reduction of mGluR5.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Qin, M. et al. Altered cerebral protein synthesis in fragile X syndrome: studies in human subjects and knockout mice. J. Cereb. Blood Flow Metab. 33, 499–507 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Udagawa, T. et al. Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology. Nat. Med. 19, 1473–1477 (2013). Demonstrates that genetic reduction of CPEB1 prevents multiple FXS-associated phenotypes.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hou, L. et al. Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression. Neuron 51, 441–454 (2006).

    CAS  PubMed  Google Scholar 

  10. Muddashetty, R. S., Kelic, S., Gross, C., Xu, M. & Bassell, G. J. Dysregulated metabotropic glutamate receptor-dependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome. J. Neurosci. 27, 5338–5348 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Weiler, I. J. et al. Fragile X mental retardation protein is necessary for neurotransmitter-activated protein translation at synapses. Proc. Natl Acad. Sci. USA 101, 17504–17509 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fernandez-Moya, S. M., Bauer, K. E. & Kiebler, M. A. Meet the players: local translation at the synapse. Front. Mol. Neurosci. 7, 84 (2014).

    PubMed  PubMed Central  Google Scholar 

  13. Hutten, S., Sharangdhar, T. & Kiebler, M. Unmasking the messenger. RNA Biol. 11, 992–997 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. Auerbach, B. D., Osterweil, E. K. & Bear, M. F. Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 480, 63–68 (2011). Shows that genetic reduction of TSC2 ameliorates FXS pathophysiologies.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bhattacharya, A. et al. Genetic removal of p70 S6 kinase 1 corrects molecular, synaptic, and behavioral phenotypes in fragile X syndrome mice. Neuron 76, 325–337 (2012). Reveals that genetic removal of S6K1 prevents multiple FXS-associated phenotypes.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gkogkas, C. G. et al. Pharmacogenetic inhibition of eIF4E-dependent Mmp9 mRNA translation reverses fragile X syndrome-like phenotypes. Cell Rep. 9, 1742–1755 (2014). Shows that genetic reduction and pharmacological inhibition of MNK1 and MNK2, and genetic reduction of phosphorylated eIF4E, can correct several FXS pathophysiologies.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ronesi, J. A. et al. Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome. Nat. Neurosci. 15, 431–440, (2012). Demonstrates that disrupting HOMER1A prevents multiple FXS pathophysiologies.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gross, C. et al. Increased expression of the PI3K enhancer PIKE mediates deficits in synaptic plasticity and behavior in fragile X syndrome. Cell Rep. 11, 727–736 (2015). Describes how reducing elevated PIKE levels in models of FXS rescues associated phenotypes.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gross, C. et al. Selective role of the catalytic PI3K subunit p110b in impaired higher-order cognition in fragile x syndrome. Cell Rep. 11, 681–688 (2015). Shows that genetic reduction of the PI3K subunit p110β ameliorates FXS-associated phenotypes.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sidhu, H., Dansie, L. E., Hickmott, P. W., Ethell, D. W. & Ethell, I. M. Genetic removal of matrix metalloproteinase 9 rescues the symptoms of fragile X syndrome in a mouse model. J. Neurosci. 34, 9867–9879 (2014). Demonstrates that genetically reducing MMP9 prevents FXS pathophysiologies.

    PubMed  PubMed Central  Google Scholar 

  21. Busquets-Garcia, A. et al. Targeting the endocannabinoid system in the treatment of fragile X syndrome. Nat. Med. 19, 603–607 (2013). Shows that genetic reduction, as well as pharmacological inhibition, of CB1R prevents and rescues FXS-associated pathophysiologies.

    CAS  PubMed  Google Scholar 

  22. Feng, Y. et al. Translational suppression by trinucleotide repeat expansion at FMR1. Science 268, 731–734 (1995).

    CAS  PubMed  Google Scholar 

  23. Gross, C. et al. Excess phosphoinositide 3-kinase subunit synthesis and activity as a novel therapeutic target in fragile X syndrome. J. Neurosci. 30, 10624–10638 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Grosset, C. et al. A mechanism for translationally coupled mRNA turnover: interaction between the poly(A) tail and a c-fos RNA coding determinant via a protein complex. Cell 103, 29–40 (2000).

    CAS  PubMed  Google Scholar 

  25. Zhang, Y. Q. et al. Protein expression profiling of the Drosophila fragile X mutant brain reveals up-regulation of monoamine synthesis. Mol. Cell Proteom. 4, 278–290 (2005).

    CAS  Google Scholar 

  26. Groppo, R. & Richter, J. D. Translational control from head to tail. Curr. Opin. Cell Biol. 21, 444–451 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hinnebusch, A. G. The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem. 83, 779–812 (2014).

    CAS  PubMed  Google Scholar 

  28. Fabian, M. R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010).

    CAS  PubMed  Google Scholar 

  29. Gingras, A. C. et al. Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev. 15, 2852–2864 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Waskiewicz, A. J. et al. Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol. Cell. Biol. 19, 1871–1880 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Schenck, A. et al. CYFIP/Sra-1 controls neuronal connectivity in Drosophila and links the Rac1 GTPase pathway to the fragile X protein. Neuron 38, 887–898 (2003).

    CAS  PubMed  Google Scholar 

  32. Schenck, A., Bardoni, B., Moro, A., Bagni, C. & Mandel, J. L. A highly conserved protein family interacting with the fragile X mental retardation protein (FMRP) and displaying selective interactions with FMRP-related proteins FXR1P and FXR2P. Proc. Natl Acad. Sci. USA 98, 8844–8849 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Napoli, I. et al. The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell 134, 1042–1054 (2008).

    CAS  PubMed  Google Scholar 

  34. De Rubeis, S. et al. CYFIP1 coordinates mRNA translation and cytoskeleton remodeling to ensure proper dendritic spine formation. Neuron 79, 1169–1182 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Genheden, M. et al. BDNF stimulation of protein synthesis in cortical neurons requires the MAP kinase-interacting kinase MNK1. J. Neurosci. 35, 972–984 (2015).

    PubMed  PubMed Central  Google Scholar 

  36. Panja, D. et al. Two-stage translational control of dentate gyrus LTP consolidation is mediated by sustained BDNF–TrkB signaling to MNK. Cell Rep. 9, 1430–1445 (2014).

    CAS  PubMed  Google Scholar 

  37. Sharma, A. et al. Dysregulation of mTOR signaling in fragile X syndrome. J. Neurosci. 30, 694–702 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Edbauer, D. et al. Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65, 373–384 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jin, P., Alisch, R. S. & Warren, S. T. RNA and microRNAs in fragile X mental retardation. Nat. Cell Biol. 6, 1048–1053 (2004).

    CAS  PubMed  Google Scholar 

  40. Jin, P. et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat. Neurosci. 7, 113–117 (2004).

    CAS  PubMed  Google Scholar 

  41. Muddashetty, R. S. et al. Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation and mGluR signaling. Mol. Cell 42, 673–688 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu, X. L., Li, Y., Wang, F. & Gao, F. B. The steady-state level of the nervous-system-specific microRNA-124a is regulated by dFMR1 in Drosophila. J. Neurosci. 28, 11883–11889 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang, Y. et al. The bantam microRNA is associated with Drosophila fragile X mental retardation protein and regulates the fate of germline stem cells. PLoS Genet. 5, e1000444 (2009).

    PubMed  PubMed Central  Google Scholar 

  44. Cheever, A. & Ceman, S. Translation regulation of mRNAs by the fragile X family of proteins through the microRNA pathway. RNA Biol. 6, 175–178 (2009).

    CAS  PubMed  Google Scholar 

  45. Kenny, P. J. et al. MOV10 and FMRP regulate AGO2 association with microRNA recognition elements. Cell Rep. 9, 1729–1741 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Darnell, J. C. et al. Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 107, 489–499 (2001).

    CAS  PubMed  Google Scholar 

  47. Menon, L., Mader, S. A. & Mihailescu, M. R. Fragile X mental retardation protein interactions with the microtubule associated protein 1B RNA. RNA 14, 1644–1655 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Menon, L. & Mihailescu, M. R. Interactions of the G quartet forming semaphorin 3F RNA with the RGG box domain of the fragile X protein family. Nucleic Acids Res. 35, 5379–5392 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Schaeffer, C. et al. The fragile X mental retardation protein binds specifically to its mRNA via a purine quartet motif. EMBO J. 20, 4803–4813 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Subramanian, M. et al. G-quadruplex RNA structure as a signal for neurite mRNA targeting. EMBO Rep. 12, 697–704 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zalfa, F. et al. A new function for the fragile X mental retardation protein in regulation of PSD-95 mRNA stability. Nat. Neurosci. 10, 578–587 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. John, B. et al. Human microRNA targets. PLoS Biol. 2, e363 (2004).

    PubMed  PubMed Central  Google Scholar 

  53. Stefanovic, S., Bassell, G. J. & Mihailescu, M. R. G quadruplex RNA structures in PSD-95 mRNA: potential regulators of miR-125a seed binding accessibility. RNA 21, 48–60 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. Liu, T. et al. A microRNA profile in Fmr1 knockout mice reveals microRNA expression alterations with possible roles in fragile X syndrome. Mol. Neurobiol. 51, 1053–1063 (2014).

    PubMed  Google Scholar 

  55. Halevy, T., Czech, C. & Benvenisty, N. Molecular mechanisms regulating the defects in fragile X syndrome neurons derived from human pluripotent stem cells. Stem Cell Rep. 4, 37–46 (2015).

    CAS  Google Scholar 

  56. Ceman, S. et al. Phosphorylation influences the translation state of FMRP-associated polyribosomes. Hum. Mol. Genet. 12, 3295–3305 (2003).

    CAS  PubMed  Google Scholar 

  57. Nalavadi, V. C., Muddashetty, R. S., Gross, C. & Bassell, G. J. Dephosphorylation-induced ubiquitination and degradation of FMRP in dendrites: a role in immediate early mGluR-stimulated translation. J. Neurosci. 32, 2582–2587 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Narayanan, U. et al. FMRP phosphorylation reveals an immediate-early signaling pathway triggered by group I mGluR and mediated by PP2A. J. Neurosci. 27, 14349–14357 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Niere, F., Wilkerson, J. R. & Huber, K. M. Evidence for a fragile X mental retardation protein-mediated translational switch in metabotropic glutamate receptor-triggered Arc translation and long-term depression. J. Neurosci. 32, 5924–5936 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, Y., Tang, W., Zhang, L. R. & Zhang, C. Y. FMRP regulates miR196a-mediated repression of HOXB8 via interaction with the AGO2 MID domain. Mol. Biosyst. 10, 1757–1764 (2014).

    CAS  PubMed  Google Scholar 

  61. Corbin, F. et al. The fragile X mental retardation protein is associated with poly(A)+ mRNA in actively translating polyribosomes. Hum. Mol. Genet. 6, 1465–1472 (1997).

    CAS  PubMed  Google Scholar 

  62. Khandjian, E. W. et al. Biochemical evidence for the association of fragile X mental retardation protein with brain polyribosomal ribonucleoparticles. Proc. Natl Acad. Sci. USA 101, 13357–13362 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Stefani, G., Fraser, C. E., Darnell, J. C. & Darnell, R. B. Fragile X mental retardation protein is associated with translating polyribosomes in neuronal cells. J. Neurosci. 24, 9272–9276 (2004).

    Google Scholar 

  64. Licatalosi, D. D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    CAS  PubMed  Google Scholar 

  66. Darnell, J. C. et al. Kissing complex RNAs mediate6interaction between the fragile-X mental retardation protein KH2 domain and brain polyribosomes. Genes Dev. 19, 903–918 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Darnell, J. C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011). Identifies over 800 FMRP target mRNAs and demonstrates that FMRP stalls polysomes on several of these target mRNAs.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ascano, M. Jr et al. FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 492, 382–386 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen, E., Sharma, M. R., Shi, X., Agrawal, R. K. & Joseph, S. Fragile X mental retardation protein regulates translation by binding directly to the ribosome. Mol. Cell 54, 407–417 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Bordeleau, M. E. et al. Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A. Nat. Chem. Biol. 2, 213–220 (2006).

    CAS  PubMed  Google Scholar 

  71. Dolen, G. & Bear, M. F. Role for metabotropic glutamate receptor 5 (mGluR5) in the pathogenesis of fragile X syndrome. J. Physiol. 586, 1503–1508 (2008).

    CAS  PubMed  Google Scholar 

  72. Bear, M. F., Huber, K. M. & Warren, S. T. The mGluR theory of fragile X mental retardation. Trends Neurosci. 27, 370–377 (2004).

    CAS  PubMed  Google Scholar 

  73. Chuang, S. C. et al. Prolonged epileptiform discharges induced by altered group I metabotropic glutamate receptor-mediated synaptic responses in hippocampal slices of a fragile X mouse model. J. Neurosci. 25, 8048–8055 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yan, Q. J., Rammal, M., Tranfaglia, M. & Bauchwitz, R. P. Suppression of two major fragile X syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology 49, 1053–1066 (2005).

    CAS  PubMed  Google Scholar 

  75. Chang, S. et al. Identification of small molecules rescuing fragile X syndrome phenotypes in Drosophila. Nat. Chem. Biol. 4, 256–263 (2008).

    CAS  PubMed  Google Scholar 

  76. Michalon, A. et al. Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron 74, 49–56 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Osterweil, E. K., Krueger, D. D., Reinhold, K. & Bear, M. F. Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J. Neurosci. 30, 15616–15627 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Bhakar, A. L., Dolen, G. & Bear, M. F. The pathophysiology of fragile X (and what it teaches us about synapses). Annu. Rev. Neurosci. 35, 417–443 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Braat, S. & Kooy, R. F. Insights into GABAergic system deficits in fragile X syndrome lead to clinical trials. Neuropharmacology 88, 48–54 (2014).

    PubMed  Google Scholar 

  80. Henderson, C. et al. Reversal of disease-related pathologies in the fragile X mouse model by selective activation of GABAB receptors with arbaclofen. Sci. Transl Med. 4, 152ra128 (2012).

    PubMed  PubMed Central  Google Scholar 

  81. Heulens, I., D'Hulst, C., Van Dam, D., De Deyn, P. P. & Kooy, R. F. Pharmacological treatment of fragile X syndrome with GABAergic drugs in a knockout mouse model. Behav. Brain Res. 229, 244–249 (2012).

    CAS  PubMed  Google Scholar 

  82. Gatto, C. L., Pereira, D. & Broadie, K. GABAergic circuit dysfunction in the Drosophila fragile X syndrome model. Neurobiol. Dis. 65, 142–159 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Berry-Kravis, E. M. et al. Effects of STX209 (arbaclofen) on neurobehavioral function in children and adults with fragile X syndrome: a randomized, controlled, phase 2 trial. Sci. Transl Med. 4, 152ra127 (2012).

    PubMed  Google Scholar 

  84. Gomez-Mancilla, B. et al. Development of mavoglurant and its potential for the treatment of fragile X syndrome. Expert Opin. Investig. Drugs 23, 125–134 (2014).

    CAS  PubMed  Google Scholar 

  85. Jacquemont, S. et al. The challenges of clinical trials in fragile X syndrome. Psychopharmacology (Berl.) 231, 1237–1250 (2014).

    CAS  Google Scholar 

  86. Raught, B. et al. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J. 23, 1761–1769 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Waskiewicz, A. J., Flynn, A., Proud, C. G. & Cooper, J. A. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 16, 1909–1920 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Osterweil, E. K. et al. Lovastatin corrects excess protein synthesis and prevents epileptogenesis in a mouse model of fragile X syndrome. Neuron 77, 243–250 (2013). Demonstrates that a drug widely prescribed for the treatment of high cholesterol can reduce excessive protein synthesis and prevent audiogenic seizures in a mouse model of FXS.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, W. et al. The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr. Biol. 15, 1961–1967 (2005).

    CAS  PubMed  Google Scholar 

  90. Ivshina, M., Lasko, P. & Richter, J. D. Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annu. Rev. Cell Dev. Biol. 30, 393–415 (2014).

    CAS  PubMed  Google Scholar 

  91. Wu, L. et al. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of α-CaMKII mRNA at synapses. Neuron 21, 1129–1139 (1998).

    CAS  PubMed  Google Scholar 

  92. Zearfoss, N. R., Alarcon, J. M., Trifilieff, P., Kandel, E. & Richter, J. D. A molecular circuit composed of CPEB-1 and c-Jun controls growth hormone-mediated synaptic plasticity in the mouse hippocampus. J. Neurosci. 28, 8502–8509 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Miyashiro, K. Y. et al. RNA cargoes associating with FMRP reveal deficits in cellular functioning in Fmr1 null mice. Neuron 37, 417–431 (2003).

    CAS  PubMed  Google Scholar 

  94. Gross, C. & Bassell, G. J. Excess protein synthesis in FXS patient lymphoblastoid cells can be rescued with a p110β-selective inhibitor. Mol. Med. 18, 336–345 (2012).

    CAS  PubMed  Google Scholar 

  95. Kumari, D. et al. Identification of fragile X syndrome-specific molecular markers in human fibroblasts: a useful model to test the efficacy of therapeutic drugs. Hum. Mutat. 35, 1485–1494 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Giuffrida, R. et al. A reduced number of metabotropic glutamate subtype 5 receptors are associated with constitutive homer proteins in a mouse model of fragile X syndrome. J. Neurosci. 25, 8908–8916 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bilousova, T. V. et al. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J. Med. Genet. 46, 94–102 (2009).

    CAS  PubMed  Google Scholar 

  98. Leigh, M. J. et al. A randomized double-blind, placebo-controlled trial of minocycline in children and adolescents with fragile X syndrome. J. Dev. Behav. Pediatr. 34, 147–155 (2013).

    PubMed  PubMed Central  Google Scholar 

  99. Janusz, A. et al. The fragile X mental retardation protein regulates matrix metalloproteinase 9 mRNA at synapses. J. Neurosci. 33, 18234–18241 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Tang, A. H. & Alger, B. E. Homer protein-metabotropic glutamate receptor binding regulates endocannabinoid signaling and affects hyperexcitability in a mouse model of fragile X syndrome. J. Neurosci. 35, 3938–3945 (2015).

    CAS  PubMed  Google Scholar 

  101. Dolan, B. M. et al. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by the small-molecule PAK inhibitor FRAX486. Proc. Natl Acad. Sci. USA 110, 5671–5676 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Goebel-Goody, S. M. et al. Genetic manipulation of STEP reverses behavioral abnormalities in a fragile X syndrome mouse model. Genes Brain Behav. 11, 586–600 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Mines, M. A. & Jope, R. S. Glycogen synthase kinase-3: a promising therapeutic target for fragile X syndrome. Front. Mol. Neurosci. 4, 35 (2011).

    PubMed  PubMed Central  Google Scholar 

  104. Franklin, A. V. et al. Glycogen synthase kinase-3 inhibitors reverse deficits in long-term potentiation and cognition in fragile X mice. Biol. Psychiatry 75, 198–206 (2014).

    CAS  PubMed  Google Scholar 

  105. Guo, W. et al. Inhibition of GSK3β improves hippocampus-dependent learning and rescues neurogenesis in a mouse model of fragile X syndrome. Hum. Mol. Genet. 21, 681–691 (2012).

    CAS  PubMed  Google Scholar 

  106. Westmark, C. J. et al. Reversal of fragile X phenotypes by manipulation of AβPP/Aβ levels in Fmr1KO mice. PLoS ONE 6, e26549 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Brown, V. et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107, 477–487 (2001).

    CAS  PubMed  Google Scholar 

  108. Mili, S. & Steitz, J. A. Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA 10, 1692–1694 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zalfa, F. et al. The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell 112, 317–327 (2003).

    CAS  PubMed  Google Scholar 

  110. Liao, L., Park, S. K., Xu, T., Vanderklish, P. & Yates, J. R. 3rd. Quantitative proteomic analysis of primary neurons reveals diverse changes in synaptic protein content in fmr1 knockout mice. Proc. Natl Acad. Sci. USA 105, 15281–15286 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Pasciuto, E. & Bagni, C. SnapShot: FMRP mRNA targets and diseases. Cell 158, 1446–1446.e1 (2014).

    CAS  PubMed  Google Scholar 

  112. Hoeffer, C. A. et al. Altered mTOR signaling and enhanced CYFIP2 expression levels in subjects with fragile X syndrome. Genes Brain Behav. 11, 332–341 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Doers, M. E. et al. iPSC-derived forebrain neurons from FXS individuals show defects in initial neurite outgrowth. Stem Cells Dev. 23, 1777–1787 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Sheridan, S. D. et al. Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome. PLoS ONE 6, e26203 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kumari, D. et al. High-throughput screening to identify compounds that increase fragile X mental retardation protein expression in neural stem cells differentiated from fragile X syndrome patient-derived induced pluripotent stem cells. Stem Cells Transl Med. 4, 800–808 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Gross, C., Yao, X., Pong, D. L., Jeromin, A. & Bassell, G. J. Fragile X mental retardation protein regulates protein expression and mRNA translation of the potassium channel Kv4.2. J. Neurosci. 31, 5693–5698 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Lee, H. Y. et al. Bidirectional regulation of dendritic voltage-gated potassium channels by the fragile X mental retardation protein. Neuron 72, 630–642 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Routh, B. N., Johnston, D. & Brager, D. H. Loss of functional A-type potassium channels in the dendrites of CA1 pyramidal neurons from a mouse model of fragile X syndrome. J. Neurosci. 33, 19442–19450 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Strumbos, J. G., Brown, M. R., Kronengold, J., Polley, D. B. & Kaczmarek, L. K. Fragile X mental retardation protein is required for rapid experience-dependent regulation of the potassium channel Kv3.1b. J. Neurosci. 30, 10263–10271 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Brager, D. H., Akhavan, A. R. & Johnston, D. Impaired dendritic expression and plasticity of h-channels in the fmr1−/y mouse model of fragile X syndrome. Cell Rep. 1, 225–233 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Brown, M. R. et al. Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack. Nat. Neurosci. 13, 819–821 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Deng, P. Y. et al. FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels. Neuron 77, 696–711 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Myrick, L. K. et al. Independent role for presynaptic FMRP revealed by an FMR1 missense mutation associated with intellectual disability and seizures. Proc. Natl Acad. Sci. USA 112, 949–956 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Ferron, L., Nieto-Rostro, M., Cassidy, J. S. & Dolphin, A. C. Fragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density. Nat. Commun. 5, 3628 (2014).

    PubMed  Google Scholar 

  125. Tsai, P. & Sahin, M. Mechanisms of neurocognitive dysfunction and therapeutic considerations in tuberous sclerosis complex. Curr. Opin. Neurol. 24, 106–113 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Hoeffer, C. A. & Klann, E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 33, 67–75 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Fragile X Syndrome Research Center grant HD082013 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Klann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Alternative splicing

A form of nuclear pre-mRNA splicing in which different exons can be included into the mature mRNA.

RNA editing

A post-transcriptional event in which ribonucleotides are modified; for example, from adenosine to inosine or from cytosine to uridine.

RNA-induced silencing complex

(RISC). A complex of a microRNA and Argonaute (plus associated factors, such as GW182) that silences mRNA expression by inhibiting translation and/or causing mRNA instability.

G-quartet

A guanosine-containing quadruplex structure in RNA that is thought to be a binding site for fragile X mental retardation protein.

Induced pluripotent stem cell

(iPSC). A type of stem cell that is produced by transducing a differentiated cell with certain transcription factors. iPSCs have the potential to be converted into any terminally differentiated cell type.

Polyribosomes

Functional units of protein synthesis made of several ribosomes attached along the length of an mRNA molecule.

Cis

A chemical term denoting a structure in which, for example, two atoms reside on the same side of a particular structure (in contrast to trans, which refers to atoms on different sides of a structure). In molecular biology, cis refers to a sequence of DNA or RNA that often serves as a binding site for a trans-acting factor, such as a protein.

Long-term depression

(LTD). A form of synaptic plasticity that results in a long-lasting decrease in the strength of synaptic transmission. LTD is exaggerated in fragile X mental retardation 1-knockout mice.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richter, J., Bassell, G. & Klann, E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat Rev Neurosci 16, 595–605 (2015). https://doi.org/10.1038/nrn4001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn4001

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing