Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

NaV1.9: a sodium channel linked to human pain

Abstract

The voltage-gated sodium channel NaV1.9 is preferentially expressed in nociceptors and has been shown in rodent models to have a major role in inflammatory and neuropathic pain. These studies suggest that by selectively targeting NaV1.9, it might be possible to ameliorate pain without inducing adverse CNS side effects such as sedation, confusion and addictive potential. Three recent studies in humans — two genetic and functional studies in rare genetic disorders, and a third study showing a role for NaV1.9 in painful peripheral neuropathy — have demonstrated that NaV1.9 plays an important part both in regulating sensory neuron excitability and in pain signalling. With this human validation, attention is turning to this channel as a potential therapeutic target for pain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of NaV1.9 in primary afferents.
Figure 2: NaV1.9 increases the excitability of DRG neurons.
Figure 3: Schematic diagram of the NaV1.9 channel and locations of substitutions identified in individuals with pain disorders.
Figure 4: Voltage-clamp and current-clamp analyses of NaV1.9 I381T mutant channels.

Similar content being viewed by others

References

  1. Catterall, W. A., Goldin, A. L. & Waxman, S. G. International Union of Pharmacology. XLVII. Nomenclature and structure–function relationships of voltage-gated sodium channels. Pharmacol. Rev. 57, 397–409 (2005).

    Article  CAS  Google Scholar 

  2. Dib-Hajj, S. D., Yang, Y., Black, J. A. & Waxman, S. G. The NaV1.7 sodium channel: from molecule to man. Nat. Rev. Neurosci. 14, 49–62 (2013).

    Article  CAS  Google Scholar 

  3. Faber, C. G. et al. Gain-of-function Nav1.8 mutations in painful neuropathy. Proc. Natl Acad. Sci. USA 109, 19444–19449 (2012).

    Article  CAS  Google Scholar 

  4. Huang, J. et al. Small-fiber neuropathy Nav1.8 mutation shifts activation to hyperpolarized potentials and increases excitability of dorsal root ganglion neurons. J. Neurosci. 33, 14087–14097 (2013).

    Article  CAS  Google Scholar 

  5. Han, C. et al. The G1662S NaV1.8 mutation in small fibre neuropathy: impaired inactivation underlying DRG neuron hyperexcitability. J. Neurol. Neurosurg. Psychiatry 85, 499–505 (2014).

    Article  Google Scholar 

  6. Huang, J. et al. Gain-of-function mutations in sodium channel Nav1.9 in painful neuropathy. Brain 137, 1627–1642 (2014).

    Article  Google Scholar 

  7. Leipold, E. et al. A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat. Genet. 45, 1399–1404 (2013).

    Article  CAS  Google Scholar 

  8. Zhang, X. Y. et al. Gain-of-function mutations in SCN11A cause familial episodic pain. Am. J. Hum. Genet. 93, 957–966 (2013).

    Article  CAS  Google Scholar 

  9. Han, C. et al. The domain II S4-S5 linker in Nav1.9: a missense mutation enhances activation, impairs fast inactivation, and produces human painful neuropathy. Neuromolecular Med. 17, 158–169 (2015).

    Article  CAS  Google Scholar 

  10. Dib-Hajj, S. D., Tyrrell, L., Black, J. A. & Waxman, S. G. NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proc. Natl Acad. Sci. USA 95, 8963–8968 (1998).

    Article  CAS  Google Scholar 

  11. Dib-Hajj, S. D. et al. Coding sequence, genomic organization, and conserved chromosomal localization of the mouse gene Scn11a encoding the sodium channel NaN. Genomics 59, 309–318 (1999).

    Article  CAS  Google Scholar 

  12. Dib-Hajj, S., Black, J. A., Cummins, T. R. & Waxman, S. G. NaN/Nav1.9: a sodium channel with unique properties. Trends Neurosci. 25, 253–259 (2002).

    Article  CAS  Google Scholar 

  13. Rugiero, F. et al. Selective expression of a persistent tetrodotoxin-resistant Na+ current and NaV1.9 subunit in myenteric sensory neurons. J. Neurosci. 23, 2715–2725 (2003).

    Article  CAS  Google Scholar 

  14. Fang, X. et al. The presence and role of the tetrodotoxin-resistant sodium channel Nav1.9 (NaN) in nociceptive primary afferent neurons. J. Neurosci. 22, 7425–7433 (2002).

    Article  CAS  Google Scholar 

  15. Fang, X. et al. Intense isolectin-B4 binding in rat dorsal root ganglion neurons distinguishes C-fiber nociceptors with broad action potentials and high Nav1.9 expression. J. Neurosci. 26, 7281–7292 (2006).

    Article  CAS  Google Scholar 

  16. Amaya, F. et al. The voltage-gated sodium channel Nav1.9 is an effector of peripheral inflammatory pain hypersensitivity. J. Neurosci. 26, 12852–12860 (2006).

    Article  CAS  Google Scholar 

  17. Herzog, R. I., Cummins, T. R. & Waxman, S. G. Persistent TTX-resistant Na+ current affects resting potential and response to depolarization in simulated spinal sensory neurons. J. Neurophysiol. 86, 1351–1364 (2001).

    Article  CAS  Google Scholar 

  18. Braz, J. M., Nassar, M. A., Wood, J. N. & Basbaum, A. I. Parallel “pain” pathways arise from subpopulations of primary afferent nociceptor. Neuron 47, 787–793 (2005).

    Article  CAS  Google Scholar 

  19. Stucky, C. L. & Lewin, G. R. Isolectin B4-positive and -negative nociceptors are functionally distinct. J. Neurosci. 19, 6497–6505 (1999).

    Article  CAS  Google Scholar 

  20. Hockley, J. R. et al. Multiple roles for NaV1.9 in the activation of visceral afferents by noxious inflammatory, mechanical, and human disease-derived stimuli. Pain 155, 1962–1975 (2014).

    Article  CAS  Google Scholar 

  21. Santarelli, V. P., Eastwood, A. L., Dougherty, D. A., Horn, R. & Ahern, C. A. A cation-π interaction discriminates among sodium channels that are either sensitive or resistant to tetrodotoxin block. J. Biol. Chem. 282, 8044–8051 (2007).

    Article  CAS  Google Scholar 

  22. Cummins, T. R. et al. A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J. Neurosci. 19, RC43 (1999).

    Article  CAS  Google Scholar 

  23. Maruyama, H. et al. Electrophysiological characterization of the tetrodotoxin-resistant Na+ channel, Nav1.9, in mouse dorsal root ganglion neurons. Pflugers Arch. 449, 76–87 (2004).

    Article  CAS  Google Scholar 

  24. Coste, B., Osorio, N., Padilla, F., Crest, M. & Delmas, P. Gating and modulation of presumptive NaV1.9 channels in enteric and spinal sensory neurons. Mol. Cell Neurosci. 26, 123–134 (2004).

    Article  CAS  Google Scholar 

  25. Scroggs, R. S. The distribution of low-threshold TTX-resistant Na+ currents in rat trigeminal ganglion cells. Neuroscience 222, 205–214 (2012).

    Article  CAS  Google Scholar 

  26. Dib-Hajj, S. D. et al. Two tetrodotoxin-resistant sodium channels in human dorsal root ganglion neurons. FEBS Lett. 462, 117–120 (1999).

    Article  CAS  Google Scholar 

  27. Priest, B. T. et al. Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior. Proc. Natl Acad. Sci. USA 102, 9382–9387 (2005).

    Article  CAS  Google Scholar 

  28. Ostman, J. A., Nassar, M. A., Wood, J. N. & Baker, M. D. GTP up-regulated persistent Na+ current and enhanced nociceptor excitability require NaV1.9. J. Physiol. 586, 1077–1087 (2007).

    Article  Google Scholar 

  29. Baker, M. D., Chandra, S. Y., Ding, Y., Waxman, S. G. & Wood, J. N. GTP-induced tetrodotoxin-resistant Na+ current regulates excitability in mouse and rat small diameter sensory neurones. J. Physiol. 548, 373–382 (2003).

    Article  CAS  Google Scholar 

  30. Harty, T. P. et al. NaV1.7 mutant A863P in erythromelalgia: effects of altered activation and steady-state inactivation on excitability of nociceptive dorsal root ganglion neurons. J. Neurosci. 26, 12566–12575 (2006).

    Article  CAS  Google Scholar 

  31. Vasylyev, D. V., Han, C., Zhao, P., Dib-Hajj, S. & Waxman, S. G. Dynamic-clamp analysis of wild-type hNaV1.7 and erythromelalgia mutant channel L858H. J. Neurophysiol. 111, 1429–1443 (2014).

    Article  CAS  Google Scholar 

  32. Copel, C. et al. Activation of neurokinin 3 receptor increases Nav1.9 current in enteric neurons. J. Physiol. 587, 1461–1479 (2009).

    Article  CAS  Google Scholar 

  33. Osorio, N., Korogod, S. & Delmas, P. Specialized functions of Nav1.5 and Nav1.9 channels in electrogenesis of myenteric neurons in intact mouse ganglia. J. Neurosci. 34, 5233–5244 (2014).

    Article  Google Scholar 

  34. Dib-Hajj, S. D., Cummins, T. R., Black, J. A. & Waxman, S. G. Sodium channels in normal and pathological pain. Annu. Rev. Neurosci. 33, 325–347 (2010).

    Article  CAS  Google Scholar 

  35. Qiu, F., Jiang, Y., Zhang, H., Liu, Y. & Mi, W. Increased expression of tetrodotoxin-resistant sodium channels Nav1.8 and Nav1.9 within dorsal root ganglia in a rat model of bone cancer pain. Neurosci. Lett. 512, 61–66 (2012).

    Article  CAS  Google Scholar 

  36. Petho, G. & Reeh, P. W. Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors. Physiol. Rev. 92, 1699–1775 (2012).

    Article  CAS  Google Scholar 

  37. Rush, A. M. & Waxman, S. G. PGE2 increases the tetrodotoxin-resistant Nav1.9 sodium current in mouse DRG neurons via G-proteins. Brain Res. 1023, 264–271 (2004).

    Article  CAS  Google Scholar 

  38. Binshtok, A. M. et al. Nociceptors are interleukin-1β sensors. J. Neurosci. 28, 14062–14073 (2008).

    Article  CAS  Google Scholar 

  39. Maingret, F. et al. Inflammatory mediators increase Nav1.9 current and excitability in nociceptors through a coincident detection mechanism. J. Gen. Physiol. 131, 211–225 (2008).

    Article  CAS  Google Scholar 

  40. Mogil, J. S. Animal models of pain: progress and challenges. Nat. Rev. Neurosci. 10, 283–294 (2009).

    Article  CAS  Google Scholar 

  41. Dib-Hajj, S. D. & Waxman, S. G. Translational pain research: lessons from genetics and genomics. Sci. Transl Med. 6, 249sr244 (2014).

    Article  Google Scholar 

  42. Black, J. A. & Waxman, S. G. Molecular identities of two tetrodotoxin-resistant sodium channels in corneal axons. Exp. Eye Res. 75, 193–199 (2002).

    Article  CAS  Google Scholar 

  43. Padilla, F. et al. Expression and localization of the Nav1.9 sodium channel in enteric neurons and in trigeminal sensory endings: Implication for intestinal reflex function and orofacial pain. Mol. Cell Neurosci. 35, 138–152 (2007).

    Article  CAS  Google Scholar 

  44. Belmonte, C. & Gallar, J. Cold thermoreceptors, unexpected players in tear production and ocular dryness sensations. Invest. Ophthalmol. Vis. Sci. 52, 3888–3892 (2011).

    Article  Google Scholar 

  45. Rosenthal, P. & Borsook, D. The corneal pain system. Part I: the missing piece of the dry eye puzzle. Ocul. Surf. 10, 2–14 (2012).

    Article  Google Scholar 

  46. Dib-Hajj, S. D. et al. Transfection of rat or mouse neurons by biolistics or electroporation. Nat. Protoc. 4, 1118–1126 (2009).

    Article  CAS  Google Scholar 

  47. Waxman, S. G. et al. Sodium channel genes in pain-related disorders: phenotype–genotype associations and recommendations for clinical use. Lancet Neurol. 13, 1152–1160 (2014).

    Article  CAS  Google Scholar 

  48. Faber, C. G. et al. Gain of function NaV1.7 mutations in idiopathic small fiber neuropathy. Ann. Neurol. 71, 26–39 (2012).

    Article  CAS  Google Scholar 

  49. Han, C. et al. Functional profiles of SCN9A variants in dorsal root ganglion neurons and superior cervical ganglion neurons correlate with autonomic symptoms in small fibre neuropathy. Brain 135, 2613–2628 (2012).

    Article  Google Scholar 

  50. Rush, A. M. et al. A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc. Natl Acad. Sci. USA 103, 8245–8250 (2006).

    Article  CAS  Google Scholar 

  51. Shields, S. D. et al. NaV1.8 expression is not restricted to nociceptors in mouse peripheral nervous system. Pain 153, 2017–2030 (2012).

    Article  CAS  Google Scholar 

  52. Waxman, S. G., Black, J. A., Kocsis, J. D. & Ritchie, J. M. Low density of sodium channels supports action potential conduction in axons of neonatal rat optic nerve. Proc. Natl Acad. Sci. USA 86, 1406–1410 (1989).

    Article  CAS  Google Scholar 

  53. Donnelly, D. F. Spontaneous action potential generation due to persistent sodium channel currents in simulated carotid body afferent fibers. J. Appl. Physiol. 104, 1394–1401 (2008).

    Article  Google Scholar 

  54. Stys, P. K., Waxman, S. G. & Ransom, B. R. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na+–Ca2+ exchanger. J. Neurosci. 12, 430–439 (1992).

    Article  CAS  Google Scholar 

  55. Persson, A. K. et al. Neuropathy-associated NaV1.7 variant I228M impairs integrity of dorsal root ganglion neuron axons. Ann. Neurol. 73, 140–145 (2012).

    Article  Google Scholar 

  56. Swadlow, H. A. & Waxman, S. G. Observations on impulse conduction along central axons. Proc. Natl Acad. Sci. USA 72, 5156–5159 (1975).

    Article  CAS  Google Scholar 

  57. Chambers, S. M. et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat. Biotechnol. 30, 715–720 (2012).

    Article  CAS  Google Scholar 

  58. Young, G. T. et al. Characterizing human stem cell-derived sensory neurons at the single-cell level reveals their ion channel expression and utility in pain research. Mol. Ther. 22, 1530–1543 (2014).

    Article  CAS  Google Scholar 

  59. Blanchard, J. W. et al. Selective conversion of fibroblasts into peripheral sensory neurons. Nat. Neurosci. 18, 25–35 (2015).

    Article  CAS  Google Scholar 

  60. Wainger, B. J. et al. Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nat. Neurosci. 18, 17–24 (2015).

    Article  CAS  Google Scholar 

  61. Baker, M. Gene editing at CRISPR speed. Nat. Biotechnol. 32, 309–312 (2014).

    Article  Google Scholar 

  62. McCormack, K. et al. Voltage sensor interaction site for selective small molecule inhibitors of voltage-gated sodium channels. Proc. Natl Acad. Sci. USA 110, E2724–E2732 (2013).

    Article  CAS  Google Scholar 

  63. Lee, J. H. et al. A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief. Cell 157, 1393–1404 (2014).

    Article  CAS  Google Scholar 

  64. Black, J. A., Vasylyev, D., Dib-Hajj, S. D. & Waxman, S. G. Nav1.9 expression inmagnocellular neurosecretory cells of supraoptic nucleus. Exp. Neurol. 253, 174–179 (2014).

    Article  CAS  Google Scholar 

  65. Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    Article  CAS  Google Scholar 

  66. Woolf, C. J. & Ma, Q. Nociceptors — noxious stimulus detectors. Neuron 55, 353–364 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the members of their group for valuable discussions. Work in the authors' laboratory is supported in part by grants from the US Rehabilitation Research and Development Service and Medical Research Service, the US Department of Veterans Affairs and the Erythromelalgia Association. The Center for Neuroscience and Regeneration Research is a collaboration of the Paralyzed Veterans of America with Yale University, New Haven, Connecticut, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Waxman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dib-Hajj, S., Black, J. & Waxman, S. NaV1.9: a sodium channel linked to human pain. Nat Rev Neurosci 16, 511–519 (2015). https://doi.org/10.1038/nrn3977

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3977

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing