Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interoceptive predictions in the brain

Abstract

Intuition suggests that perception follows sensation and therefore bodily feelings originate in the body. However, recent evidence goes against this logic: interoceptive experience may largely reflect limbic predictions about the expected state of the body that are constrained by ascending visceral sensations. In this Opinion article, we introduce the Embodied Predictive Interoception Coding model, which integrates an anatomical model of corticocortical connections with Bayesian active inference principles, to propose that agranular visceromotor cortices contribute to interoception by issuing interoceptive predictions. We then discuss how disruptions in interoceptive predictions could function as a common vulnerability for mental and physical illness.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Intracortical architecture and intercortical connectivity for predictive coding.

References

  1. 1

    Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36, 181–204 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Mesulam, M. M. From sensation to cognition. Brain 121, 1013–1052 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Kok, P. & de Lange, F. P. Shape perception simultaneously up- and downregulates neural activity in the primary visual cortex. Curr. Biol. 24, 1531–1535 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Chennu, S. et al. Expectation and attention in hierarchical auditory prediction. J. Neurosci. 33, 11194–11205 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Craig, A. D. How do you feel — now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10, 59–70 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Paulus, M. P. & Stein, M. B. An insular view of anxiety. Biol. Psychiatry 60, 383–387 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Paulus, M. P. & Stewart, J. L. Interoception and drug addiction. Neuropharmacology 76, 342–350 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Avery, J. A. et al. Major depressive disorder is associated with abnormal interoceptive activity and functional connectivity in the insula. Biol. Psychiatry 76, 258–266 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Simmons, W. K. et al. Keeping the body in mind: insula functional organization and functional connectivity integrate interoceptive, exteroceptive, and emotional awareness. Hum. Brain Mapp. 34, 2944–2958 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Barbas, H. & Rempel-Clower, N. Cortical structure predicts the pattern of corticocortical connections. Cereb. Cortex 7, 635–646 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Gu, X., Hof, P. R., Friston, K. J. & Fan, J. Anterior insular cortex and emotional awareness. J. Comp. Neurol. 521, 3371–3388 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Seth, A. K. Interoceptive inference, emotion, and the embodied self. Trends Cogn. Sci. 17, 565–573 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Seth, A. K., Suzuki, K. & Critchley, H. D. An interoceptive predictive coding model of conscious presence. Front. Psychol. 2, 395 (2011).

    PubMed  PubMed Central  Google Scholar 

  15. 15

    Singer, T., Critchley, H. D. & Preuschoff, K. A common role of insula in feelings, empathy and uncertainty. Trends Cogn. Sci. 13, 334–340 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Mumford, D. On the computational architecture of the neocortex. I. The role of the thalamo-cortical loop. Biol. Cybern. 65, 135–145 (1991).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Bastos, A. M. et al. Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Carmichael, S. T. & Price, J. L. Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 371, 179–207 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Evrard, H. C., Logothetis, N. K. & Craig, A. D. Modular architectonic organization of the insula in the macaque monkey. J. Comp. Neurol. 522, 64–97 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Mufson, E. J. & Mesulam, M. M. Insula of the old world monkey. II: afferent cortical input and comments on the claustrum. J. Comp. Neurol. 212, 23–37 (1982).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Öngür, D., Ferry, A. T. & Price, J. L. Architectonic subdivision of the human orbital and medial prefrontal cortex. J. Comp. Neurol. 460, 425–449 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Öngür, D. & Price, J. L. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex 10, 206–219 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Saleem, K. S., Kondo, H. & Price, J. L. Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey. J. Comp. Neurol. 506, 659–693 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Semendeferi, K. & Damasio, H. The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. J. Hum. Evol. 38, 317–332 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Vogt, B. A. & Pandya, D. N. Cingulate cortex of the rhesus monkey: II. Cortical afferents. J. Comp. Neurol. 262, 271–289 (1987).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Vogt, B. A., Pandya, D. N. & Rosene, D. L. Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents. J. Comp. Neurol. 262, 256–270 (1987).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Barbas, H. & Hilgetag, C. C. Rules relating connections to cortical structure in primate prefrontal cortex. Neurocomputing 44–46, 301–308 (2002).

    Article  Google Scholar 

  28. 28

    Shipp, S., Adams, R. A. & Friston, K. J. Reflections on agranular architecture: predictive coding in the motor cortex. Trends Neurosci. 36, 706–716 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Larkum, M. A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends Neurosci. 36, 141–151 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Sherman, S. M. The thalamus is more than just a relay. Curr. Opin. Neurobiol. 17, 417–422 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Barsalou, L. W. Grounded cognition. Annu. Rev. Psychol. 59, 617–645 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Adams, R. A., Shipp, S. & Friston, K. J. Predictions not commands: active inference in the motor system. Brain Struct. Funct. 218, 611–643 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L. & Raichle, M. E. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl Acad. Sci. USA 103, 10046–10051 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E. & Buckner, R. L. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J. Neurophysiol. 100, 3328–3342 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Feldman, H. & Friston, K. J. Attention, uncertainty, and free-energy. Front. Hum. Neurosci. 4, 215 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40

    Friston, K. The free-energy principle: a rough guide to the brain? Trends Cogn. Sci. 13, 293–301 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41

    Shipp, S. The importance of being agranular: a comparative account of visual and motor cortex. Phil. Trans. R. Soc. B 360, 797–814 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Wolpert, D. M. & Kawato, M. Multiple paired forward and inverse models for motor control. Neural Netw. 11, 1317–1329 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43

    Crapse, T. B. & Sommer, M. A. Corollary discharge across the animal kingdom. Nat. Rev. Neurosci. 9, 587–600 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    Barbas, H., García-Cabezas, M. Á. & Zikopoulos, B. Frontal–thalamic circuits associated with language. Brain Lang. 126, 49–61 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    McFarland, N. R. & Haber, S. N. Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J. Neurosci. 22, 8117–8132 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Barbas, H. & García-Cabezas, M. Á. Motor cortex layer 4: less is more. Trends Neurosci. 38, 259–261 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47

    Carmichael, S. T. & Price, J. L. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J. Comp. Neurol. 363, 615–641 (1995).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48

    Mesulam, M. M. & Mufson, E. J. Insula of the old world monkey. III: efferent cortical output and comments on function. J. Comp. Neurol. 212, 38–52 (1982).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Freedman, L. J., Insel, T. R. & Smith, Y. Subcortical projections of area 25 (subgenual cortex) of the macaque monkey. J. Comp. Neurol. 421, 172–188 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50

    Vogt, B. A. Pain and emotion interactions in subregions of the cingulate gyrus. Nat. Rev. Neurosci. 6, 533–544 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51

    Hsu, D. T. & Price, J. L. Midline and intralaminar thalamic connections with the orbital and medial prefrontal networks in macaque monkeys. J. Comp. Neurol. 504, 89–111 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52

    Chiba, T., Kayahara, T. & Nakano, K. Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res. 888, 83–101 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53

    Mesulam, M. M. & Mufson, E. J. Insula of the old world monkey. I. Architectonics in the insulo–orbito–temporal component of the paralimbic brain. J. Comp. Neurol. 212, 1–22 (1982).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54

    Craig, A. D. How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 33, 655–666 (2002).

    Article  CAS  Google Scholar 

  55. 55

    Zikopoulos, B. & Barbas, H. Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. J. Neurosci. 26, 7348–7361 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56

    Haber, S. N. & Behrens, T. E. The neural network underlying incentive-based learning: implications for interpreting circuit disruptions in psychiatric disorders. Neuron 83, 1019–1039 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57

    Ghashghaei, H. T., Hilgetag, C. C. & Barbas, H. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage 34, 905–923 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58

    Hamani, C. et al. The subcallosal cingulate gyrus in the context of major depression. Biol. Psychiatry 69, 301–308 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59

    Timbie, C. & Barbas, H. Specialized pathways from the primate amygdala to posterior orbitofrontal cortex. J. Neurosci. 34, 8106–8118 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Zikopoulos, B. & Barbas, H. Parallel driving and modulatory pathways link the prefrontal cortex and thalamus. PLoS ONE 2, e848 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Damasio, A. & Carvalho, G. B. The nature of feelings: evolutionary and neurobiological origins. Nat. Rev. Neurosci. 14, 143–152 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62

    Hoffman, H. H. & Schnitzlein, H. N. The numbers of nerve fibers in the vagus nerve of man. Anat. Rec. 139, 429–435 (1961).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63

    Sapolsky, R. M. Monkeyluv: And Other Essays on Our Lives as Animals (Scribner, 2006).

    Google Scholar 

  64. 64

    Simmons, W. K. et al. Category-specific integration of homeostatic signals in caudal but not rostral human insula. Nat. Neurosci. 16, 1551–1552 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65

    van den Heuvel, M. P., Stam, C. J., Boersma, M. & Hulshoff Pol, H. E. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage 43, 528–539 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66

    Zippo, A. G. et al. Small-world networks in neuronal populations: a computational perspective. Neural Netw. 44, 143–156 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67

    van den Heuvel, M. P. & Sporns, O. An anatomical substrate for integration among functional networks in human cortex. J. Neurosci. 33, 14489–14500 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68

    van den Heuvel, M. P. & Sporns, O. Rich-club organization of the human connectome. J. Neurosci. 31, 15775–15786 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69

    Dosenbach, N. U. et al. Distinct brain networks for adaptive and stable task control in humans. Proc. Natl Acad. Sci. USA 104, 11073–11078 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70

    Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L. & Petersen, S. E. A dual-networks architecture of top-down control. Trends Cogn. Sci. 12, 99–105 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  71. 71

    Seubert, J., Freiherr, J., Djordjevic, J. & Lundström, J. N. Statistical localization of human olfactory cortex. Neuroimage 66, 333–342 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  72. 72

    Veldhuizen, M. G. et al. Identification of human gustatory cortex by activation likelihood estimation. Hum. Brain Mapp. 32, 2256–2266 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73

    Sepulcre, J., Sabuncu, M. R., Yeo, T. B., Liu, H. & Johnson, K. A. Stepwise connectivity of the modal cortex reveals the multimodal organization of the human brain. J. Neurosci. 32, 10649–10661 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74

    Paulus, M. P., Tapert, S. F. & Schulteis, G. The role of interoception and alliesthesia in addiction. Pharmacol. Biochem. Behav. 94, 1–7 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75

    van Elk, M., Lenggenhager, B., Heydrich, L. & Blanke, O. Suppression of the auditory N1-component for heartbeat-related sounds reflects interoceptive predictive coding. Biol. Psychol. 99, 172–182 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76

    Oosterwijk, S. et al. States of mind: emotions, body feelings, and thoughts share distributed neural networks. Neuroimage 62, 2110–2128 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  77. 77

    Blanke, O. Multisensory brain mechanisms of bodily self-consciousness. Nat. Rev. Neurosci. 13, 556–571 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78

    Andrews-Hanna, J. R., Smallwood, J. & Spreng, R. N. The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann. NY Acad. Sci. 1316, 29–52 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79

    Barrett, L. F. & Satpute, A. B. Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain. Curr. Opin. Neurobiol. 23, 361–372 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. 80

    Binder, J. R., Desai, R. H., Graves, W. W. & Conant, L. L. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 19, 2767–2796 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81

    Clithero, J. A. & Rangel, A. Informatic parcellation of the network involved in the computation of subjective value. Soc. Cogn. Affect. Neurosci. 9, 1289–1302 (2014).

    Article  Google Scholar 

  82. 82

    Roy, M., Shohamy, D. & Wager, T. D. Ventromedial prefrontal–subcortical systems and the generation of affective meaning. Trends Cogn. Sci. 16, 147–156 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83

    Wilson-Mendenhall, C. D., Barrett, L. F. & Barsalou, L. W. Situating emotional experience. Front. Hum. Neurosci. 7, 764 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  84. 84

    Barrett, L. F. Solving the emotion paradox: categorization and the experience of emotion. Pers. Soc. Psychol. Rev. 10, 20–46 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  85. 85

    Barrett, L. F. & Bliss-Moreau, E. Affect as a psychological primitive. Adv. Exp. Soc. Psychol. 41, 167–218 (2009).

    PubMed  PubMed Central  Google Scholar 

  86. 86

    Quattrocki, E. & Friston, K. Autism, oxytocin and interoception. Neurosci. Biobehav. Rev. 47, 410–430 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. 87

    Sinha, P. et al. Autism as a disorder of prediction. Proc. Natl Acad. Sci. USA 111, 15220–15225 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88

    Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  89. 89

    Crossley, N. A. et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 137, 2382–2395 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  90. 90

    Goodkind, M. et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72, 305–315 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91

    Price, J. L. & Drevets, W. C. Neurocircuitry of mood disorders. Neuropsychopharmacology 35, 192–216 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    Drevets, W. C. et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386, 824–827 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. 93

    Boes, A. D., McCormick, L. M., Coryell, W. H. & Nopoulos, P. Rostral anterior cingulate cortex volume correlates with depressed mood in normal healthy children. Biol. Psychiatry 63, 391–397 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  94. 94

    Levesque, M. L. et al. Altered patterns of brain activity during transient sadness in children at familial risk for major depression. J. Affect. Disord. 135, 410–413 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  95. 95

    Nieuwenhuizen, A. G. & Rutters, F. The hypothalamic–pituitary–adrenal-axis in the regulation of energy balance. Physiol. Behav. 94, 169–177 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. 96

    Gold, P. W. & Chrousos, G. P. Organization of the stress system and its dysregulation in melancholic and atypical depression: high versus low CRH/NE states. Mol. Psychiatry 7, 254–275 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. 97

    Carroll, B. J. et al. Pathophysiology of hypercortisolism in depression: pituitary and adrenal responses to low glucocorticoid feedback. Acta Psychiatr. Scand. 125, 478–491 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. 98

    Dantzer, R., O'Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9, 46–56 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. 99

    Critchley, H. D. & Harrison, N. A. Visceral influences on brain and behavior. Neuron 77, 624–638 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. 100

    Harrison, N. A. et al. Neural origins of human sickness in interoceptive responses to inflammation. Biol. Psychiatry 66, 415–422 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. 101

    Paulus, M. P. & Stein, M. B. Interoception in anxiety and depression. Brain Struct. Funct. 214, 451–463 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  102. 102

    Ryan, J. P., Sheu, L. K., Critchley, H. D. & Gianaros, P. J. A neural circuitry linking insulin resistance to depressed mood. Psychosom. Med. 74, 476–482 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  103. 103

    Buckholtz, J. W. et al. Genetic variation in MAOA modulates ventromedial prefrontal circuitry mediating individual differences in human personality. Mol. Psychiatry 13, 313–324 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. 104

    Raison, C. L. & Miller, A. H. Malaise, melancholia and madness: the evolutionary legacy of an inflammatory bias. Brain Behav. Immun. 31, 1–8 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. 105

    Dantzer, R., Heijnen, C. J., Kavelaars, A., Laye, S. & Capuron, L. The neuroimmune basis of fatigue. Trends Neurosci. 37, 39–46 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. 106

    Etkin, A. & Wager, T. D. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry 164, 1476–1488 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  107. 107

    Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. 108

    Kennedy, S. H. et al. Deep brain stimulation for treatment-resistant depression: follow-up after 3 to 6 years. Am. J. Psychiatry 168, 502–510 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  109. 109

    Riva-Posse, P. et al. Defining critical white matter pathways mediating successful subcallosal cingulate deep brain stimulation for treatment-resistant depression. Biol. Psychiatry 76, 963–969 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  110. 110

    Hamani, C. et al. Deep brain stimulation of the subcallosal cingulate gyrus for depression: anatomical location of active contacts in clinical responders and a suggested guideline for targeting. J. Neurosurg. 111, 1209–1215 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  111. 111

    Goldapple, K. et al. Modulation of cortical–limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch. Gen. Psychiatry 61, 34–41 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  112. 112

    Aupperle, R. L. et al. Neural responses during emotional processing before and after cognitive trauma therapy for battered women. Psychiatry Res. 214, 48–55 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  113. 113

    McGrath, C. L. et al. Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiatry 70, 821–829 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  114. 114

    McGrath, C. L. et al. Pretreatment brain states identify likely nonresponse to standard treatments for depression. Biol. Psychiatry 76, 527–535 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  115. 115

    Moussavi, S. et al. Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet 370, 851–858 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  116. 116

    Smallwood, R. F. et al. Structural brain anomalies and chronic pain: a quantitative meta-analysis of gray matter volume. J. Pain 14, 663–675 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  117. 117

    Ganzel, B. L., Morris, P. A. & Wethington, E. Allostasis and the human brain: integrating models of stress from the social and life sciences. Psychol. Rev. 117, 134–174 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  118. 118

    Piazza, J. R., Charles, S. T., Sliwinski, M. J., Mogle, J. & Almeida, D. M. Affective reactivity to daily stressors and long-term risk of reporting a chronic physical health condition. Ann. Behav. Med. 45, 110–120 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  119. 119

    Dannlowski, U. et al. Limbic scars: long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biol. Psychiatry 71, 286–293 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  120. 120

    Teff, K. L. How neural mediation of anticipatory and compensatory insulin release helps us tolerate food. Physiol. Behav. 103, 44–50 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  121. 121

    Levinthal, D. J. & Strick, P. L. The motor cortex communicates with the kidney. J. Neurosci. 32, 6726–6731 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  122. 122

    Deco, G., Jirsa, V. K. & McIntosh, A. R. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12, 43–56 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. 123

    Hermundstad, A. M. et al. Structural foundations of resting-state and task-based functional connectivity in the human brain. Proc. Natl Acad. Sci. USA 110, 6169–6174 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Pernice, V., Staude, B., Cardanobile, S. & Rotter, S. How structure determines correlations in neuronal networks. PLoS Comput. Biol. 7, e1002059 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  125. 125

    van den Heuvel, M. P., Mandl, R. C., Kahn, R. S. & Hulshoff Pol, H. E. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum. Brain Mapp. 30, 3127–3141 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  126. 126

    Huber, L. et al. Cortical lamina-dependent blood volume changes in human brain at 7T. Neuroimage 107, 23–33 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  127. 127

    de-Wit, L., Machilsen, B. & Putzeys, T. Predictive coding and the neural response to predictable stimuli. J. Neurosci. 30, 8702–8703 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  128. 128

    Rempel-Clower, N. L. & Barbas, H. The laminar pattern of connections between prefrontal and anterior temporal cortices in the rhesus monkey is related to cortical structure and function. Cereb. Cortex 10, 851–865 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  129. 129

    Medalla, M. & Barbas, H. Specialized prefrontal “auditory fields”: organization of primate prefrontal–temporal pathways. Front. Neurosci. 8, 77 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  130. 130

    Medalla, M. & Barbas, H. Diversity of laminar connections linking periarcuate and lateral intraparietal areas depends on cortical structure. Eur. J. Neurosci. 23, 161–179 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  131. 131

    Hilgetag, C. C. & Grant, S. Cytoarchitectural differences are a key determinant of laminar projection origins in the visual cortex. Neuroimage 51, 1006–1017 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  132. 132

    Goulas, A., Uylings, H. B. & Stiers, P. Mapping the hierarchical layout of the structural network of the macaque prefrontal cortex. Cereb. Cortex 24, 1178–1194 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  133. 133

    Felleman, D. J. & Vas Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. 134

    Markov, N. T. et al. Cortical high-density counterstream architectures. Science 342, 1238406 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Sanides, F. in Advances in Primatology (eds Noback, C. H. & Montagna, W.) 137–208 (Appleton-Century-Crofts, 1970).

    Google Scholar 

  136. 136

    Nieuwenhuys, R. The insular cortex: a review. Prog. Brain Res. 195, 123–163 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  137. 137

    Lovero, K. L., Simmons, A. N., Aron, J. L. & Paulus, M. P. Anterior insular cortex anticipates impending stimulus significance. Neuroimage 45, 976–983 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  138. 138

    Holtz, K., Pane-Farre, C. A., Wendt, J., Lotze, M. & Hamm, A. O. Brain activation during anticipation of interoceptive threat. Neuroimage 61, 857–865 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  139. 139

    Wise, S. P. Forward frontal fields: phylogeny and fundamental function. Trends Neurosci. 31, 599–608 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  140. 140

    Terasawa, Y., Shibata, M., Moriguchi, Y. & Umeda, S. Anterior insular cortex mediates bodily sensibility and social anxiety. Soc. Cogn. Affect. Neurosci. 8, 259–266 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  141. 141

    Price, C. J. & Friston, K. J. Degeneracy and cognitive anatomy. Trends Cogn. Sci. 6, 416–421 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  142. 142

    Edelman, G. M. & Gally, J. A. Degeneracy and complexity in biological systems. Proc. Natl Acad. Sci. USA 98, 13763–13768 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  143. 143

    Feinstein, J. S. et al. Preserved emotional awareness of pain in a patient with extensive bilateral damage to the insula, anterior cingulate, and amygdala. Brain Struct. Funct. http://dx.doi.org/10.1007/s00429-014-0986-3 (2015).

  144. 144

    Philippi, C. L. et al. Preserved self-awareness following extensive bilateral brain damage to the insula, anterior cingulate, and medial prefrontal cortices. PLoS ONE 7, e38413 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  145. 145

    Damasio, A., Damasio, H. & Tranel, D. Persistence of feelings and sentience after bilateral damage of the insula. Cereb. Cortex 23, 833–846 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  146. 146

    Khalsa, S. S., Rudrauf, D., Feinstein, J. S. & Tranel, D. The pathways of interoceptive awareness. Nat. Neurosci. 12, 1494–1496 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  147. 147

    Markov, N. T. et al. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  148. 148

    Finlay, B. L. & Uchiyama, R. Developmental mechanisms channeling cortical evolution. Trends Neurosci. 38, 69–76 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  149. 149

    Barbas, H. General cortical and special prefrontal connections: principles from structure to function. Ann. Rev. Neurosci. http://dx.doi.org/10.1146/annurev-neuro-071714-033936 (2015).

Download references

Acknowledgements

The authors thank M. Á. García-Cabezas for helpful discussions and advice in preparing figure 1. They also thank K. Friston, H. Barbas, B. Finlay, H. Mayberg, J. Feinstein, S. Khalsa, J. Avery, M. Paulus, A. Satpute, L. Chanes, A. Touroutoglou and I. Kleckner for helpful discussions about the EPIC model and comments offered on the manuscript. In addition, they thank L. Chanes, A. Touroutoglou and J. Zhang for their assistance in summarizing the interoceptive system from the macaque tract-tracing literature. This work was supported by a US National Institute on Aging grant (R01AG030311), a US National Science Foundation grant (BCS-1052790) and contracts from the US Army Research Institute for the Behavioural and Social Sciences (contracts W5J9CQ-12-C-0049 and W5J9CQ-11-C-0046) to L.F.B., as well as a US National Institute of Mental Health grant (K01MH096175-01), a US National Alliance for Research on Schizophrenia and Depression (NARSAD) Young Investigator Award, and funding from the Oklahoma Tobacco Research Center to W.K.S. The views, opinions and findings contained in this article are those of the authors and should not be construed as an official position, policy or decision of the US National Institutes of Health or Department of the Army unless so designated by other documents.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Lisa Feldman Barrett or W. Kyle Simmons.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1

Strengths of the structural model (PDF 169 kb)

Supplementary information S2

An example of how interoceptive perceptions arise in the brain (PDF 105 kb)

Supplementary information S3

Implications for Theories of Emotion (PDF 205 kb)

PowerPoint slides

Glossary

Agranular cortex

An isocortical region with a relatively undifferentiated layer II and layer III and lacking a fully expressed layer IV.

Allostasis

The process of activating physiological systems (such as hormonal, autonomic or immune systems) with the aim of returning the body to homeostasis.

Bayesian approach to probability

Models for assessing the probability of an event (that is, the posterior probability) based on the prior likelihood of an event and the evidence currently available as to its existence.

Centrifugal

A proposed hierarchical organization whereby the agranular and heteromodal association cortices form a collection of hubs, from which connections to unimodal sensory systems can be depicted as concentric rings.

Corollary discharge

Signals generated by the motor cortex that influence or inhibit the sensory processing of self-generated motor actions. Such signals convey simultaneous 'efference copies' of motor commands to sensory regions.

Default mode network

(DMN). A collection of midline and parietal brain regions that show more activity when people are constructing representations of the past and the future, simulating the present or processing semantic and conceptual content.

Degeneracy

The capacity of a system to perform identical functions or yield identical outputs with structurally different sets of elements.

Deterministic models

Mathematical models in which, given initial conditions or parameter values, there is no variation in the outcome.

Dysgranular cortex

An isocortical region defined by the presence of a differentiated layer II and layer III, and a rudimentary layer IV that contains stellate granule cells receiving thalamocortical inputs.

Granular cortex

An isocortical region with six differentiated layers, including a well-defined layer IV that contains many stellate granule cells receiving thalamocortical inputs.

Homeostasis

A set of dynamic functions (not a single set point) that interact to maintain an optimal use of energy in the body across all conditions at all times.

Interoception

The perception and integration of autonomic, hormonal, visceral and immunological homeostatic signals that collectively describe the physiological state of the body.

Interoceptive sensations

Activity within the nervous system indexing the autonomic, hormonal, visceral and immunological homeostatic signals that collectively describe the physiological state of the body — for example, concerning vagal signals, levels of insulin or cortisol, heart rate, gastric distension or inflammatory cytokine levels.

Lamina I pathway

Small-diameter sensory fibres that carry ascending interoceptive sensory signals (about muscle contractions in blood vessels, temperature, pain, hormonal activity, immunological inflammation and other variables) in the lateral spinothalamic pathway.

Positive alliesthesia

Transformation of a sensation from aversive to pleasurable, depending on the homeostatic needs of the body.

Precision units

Pyramidal cells that represent prediction-error signals; these cells modulate the activity of other neurons within a cortical column according to confidence in the predictions or the reliability of the incoming sensory signals.

Vagus nerve

Cranial nerve X, which carries ascending interoceptive sensory information about internal organs and the enteric nervous system.

Visceromotor cortices

Agranular regions of isocortex and allocortex that modulate the regulation of the autonomic nervous system as well as of the hormonal and immune systems.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barrett, L., Simmons, W. Interoceptive predictions in the brain. Nat Rev Neurosci 16, 419–429 (2015). https://doi.org/10.1038/nrn3950

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing