Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The dopamine theory of addiction: 40 years of highs and lows

Abstract

For several decades, addiction has come to be viewed as a disorder of the dopamine neurotransmitter system; however, this view has not led to new treatments. In this Opinion article, we review the origins of the dopamine theory of addiction and discuss the ability of addictive drugs to elicit the release of dopamine in the human striatum. There is robust evidence that stimulants increase striatal dopamine levels and some evidence that alcohol may have such an effect, but little evidence, if any, that cannabis and opiates increase dopamine levels. Moreover, there is good evidence that striatal dopamine receptor availability and dopamine release are diminished in individuals with stimulant or alcohol dependence but not in individuals with opiate, nicotine or cannabis dependence. These observations have implications for understanding reward and treatment responses in various addictions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effect of abused substances on human ventral striatal dopamine release.
Figure 2: Investigating diminished ventral striatal dopamine release in addictions.

Similar content being viewed by others

References

  1. Wittchen, H. U. et al. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 21, 655–679 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Olds, J. & Milner, P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 47, 419–427 (1954).

    Article  CAS  PubMed  Google Scholar 

  3. Crow, T. J. A map of the rat mesencephalon for electrical self-stimulation. Brain Res. 36, 265–273 (1972).

    Article  CAS  PubMed  Google Scholar 

  4. Stein, L. Self-stimulation of the brain and the central stimulant action of amphetamine. Fed. Proc. 23, 836–850 (1964).

    CAS  PubMed  Google Scholar 

  5. Wise, R. A. & Bozarth, M. A. A psychomotor stimulant theory of addiction. Psychol. Rev. 94, 469–492 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Robinson, T. E. & Berridge, K. C. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Brain Res. Rev. 18, 247–291 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Di Chiara, G. & Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl Acad. Sci. USA 85, 5274–5278 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Egerton, A. et al. The dopaminergic basis of human behaviors: a review of molecular imaging studies. Neurosci. Biobehav. Rev. 33, 1109–1132 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Volkow, N. D. et al. Imaging endogenous dopamine competition with [11C]raclopride in the human brain. Synapse 16, 255–262 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Laruelle, M. et al. SPECT imaging of striatal dopamine release after amphetamine challenge. J. Nucl. Med. 36, 1182–1190 (1995).

    CAS  PubMed  Google Scholar 

  11. Volkow, N. D. et al. Reinforcing effects of psychostimulants in humans are associated with increases in brain dopamine and occupancy of D2 receptors. J. Pharmacol. Exp. Ther. 291, 409–415 (1999).

    CAS  PubMed  Google Scholar 

  12. Boileau, I. et al. Alcohol promotes dopamine release in the human nucleus accumbens. Synapse 49, 226–231 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Urban, N. B. et al. Sex differences in striatal dopamine release in young adults after oral alcohol challenge: a positron emission tomography imaging study with [11C]raclopride. Biol. Psychiatry 68, 689–696 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barrett, S. P., Boileau, I., Okker, J., Pihl, R. O. & Dagher, A. The hedonic response to cigarette smoking is proportional to dopamine release in the human striatum as measured by positron emission tomography and 11C raclopride. Synapse 54, 65–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Vollenweider, F. X., Vontobel, P., Oye, I., Hell, D. & Leenders, K. L. Effects of S-ketamine on striatal dopamine: a [11C] raclopride PET study of a model psychosis in humans. J. Psychiatr. Res. 34, 35–43 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Bossong, M. G. et al. Δ9-tetrahydrocannabinol induces dopamine release in the human striatum. Neuropsychopharmacology 34, 759–766 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Volkow, N. D. et al. Effects of modafinil on dopamine and dopamine transporters in the male human brain: clinical implications. JAMA 301, 1148–1154 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jasinski, D. R. An evaluation of the abuse potential of modafinil using methylphenidate as a reference. J. Psychopharmacol. 14, 53–60 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Tye, K. M. et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493, 537–541 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Yoder, K. K. et al. Heterogeneous effects of alcohol on dopamine release in the striatum: a PET study. Alcohol. Clin. Exp. Res. 31, 965–973 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Stokes, P. R., Mehta, M. A., Curran, H. V., Breen, G. & Grasby, P. M. Can recreational doses of THC produce significant dopamine release in the human striatum? Neuroimage 48, 186–190 (2009).

    Article  PubMed  Google Scholar 

  22. Barkus, E. et al. Does intravenous Δ9-tetrahydrocannabinol increase dopamine release? A SPET study. J. Psychopharmacol. 25, 1462–1468 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Aalto, S. et al. Ketamine does not decrease striatal dopamine D2 receptor binding in man. Psychopharmacol. 164, 401–406 (2002).

    Article  CAS  Google Scholar 

  24. Kegeles, L. S. et al. NMDA antagonist effects on striatal dopamine release: positron emission tomography studies in humans. Synapse 43, 19–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Welberg, L. Addiction: from mechanisms to treatment. Nature Rev. Neurosci. 12, 621 (2011).

    Article  CAS  Google Scholar 

  26. Kalivas, P. W. Drug addiction: to the cortex.and beyond! Am. J. Psychiatry 158, 349–350 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Volkow, N. D., Wang, G. J., Fowler, J. S., Tomasi, D. & Telang, F. Addiction: beyond dopamine reward circuitry. Proc. Natl Acad. Sci. USA 108, 15037–15042 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rothman, R. B. A review of the effects of dopaminergic agents in humans: implications for medication development. NIDA Res. Monogr. 145, 67–87 (1994).

    CAS  PubMed  Google Scholar 

  29. Van Ree, J. M. & Ramsey, N. The dopamine hypothesis of opiate reward challenged. Eur. J. Pharmacol. 134, 239–243 (1987).

    Article  CAS  PubMed  Google Scholar 

  30. Lingford-Hughes, A. R., Welch, S., Peters, L., Nutt, D. J. & British Association for Psychopharmacology, Expert Reviewers Group. BAP updated guidelines: evidence-based guidelines for the pharmacological management of substance abuse, harmful use, addiction and comorbidity: recommendations from BAP. J. Psychopharmacol. 26, 899–952 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Daglish, M. R. et al. Brain dopamine response in human opioid addiction. Br. J. Psychiatry 193, 65–72 (2008).

    Article  PubMed  Google Scholar 

  32. Watson, B. J. et al. Investigating expectation and reward in human opioid addiction with [C] raclopride PET. Addict. Biol. 19, 1032–1040 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Brody, A. L. et al. Ventral striatal dopamine release in response to smoking a regular versus a denicotinized cigarette. Neuropsychopharmacology 34, 282–289 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Drevets, W. C. et al. Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol. Psychiatry 49, 81–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Oswald, L. M. et al. Relationships among ventral striatal dopamine release, cortisol secretion, and subjective responses to amphetamine. Neuropsychopharmacology 30, 821–832 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Martinez, D. et al. Amphetamine-induced dopamine release: markedly blunted in cocaine dependence and predictive of the choice to self-administer cocaine. Am. J. Psychiatry 164, 622–629 (2007).

    Article  PubMed  Google Scholar 

  37. Wand, G. S. et al. Association of amphetamine-induced striatal dopamine release and cortisol responses to psychological stress. Neuropsychopharmacology 32, 2310–2320 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Schneier, F. R. et al. Dopamine transporters, D2 receptors, and dopamine release in generalized social anxiety disorder. Depress. Anxiety 26, 411–418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leyton, M. et al. Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking: a PET/[11C]raclopride study in healthy men. Neuropsychopharmacology 27, 1027–1035 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Boileau, I. et al. Conditioned dopamine release in humans: a positron emission tomography 11C raclopride study with amphetamine. J. Neurosci. 27, 3998–4003 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Narendran, R. et al. A comparative evaluation of the dopamine D2/3 agonist radiotracer [11C](–)-N-propyl-norapomorphine and antagonist [11C] raclopride to measure amphetamine-induced dopamine release in the human striatum. J. Pharmacol. Exp. Ther. 333, 533–539 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shotbolt, P. et al. Within-subject comparison of [11C]-(+)-PHNO and [11C]raclopride sensitivity to acute amphetamine challenge in healthy humans. J. Cereb. Blood Flow Metab. 32, 127–136 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Montgomery, A. J., Lingford-Hughes, A. R., Egerton, A., Nutt, D. J. & Grasby, P. M. The effect of nicotine on striatal dopamine release in man: a [11C]raclopride PET study. Synapse 61, 637–645 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Fowler, J. et al. Inhibition of monoamine oxidase B in the brains of smokers. Nature 379, 733–736 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Mawlawi, O. et al. Imaging human mesolimbic dopamine transmission with positron emission tomography: I. accuracy and precision of D2 receptor parameter measurements in ventral striatum. J. Cereb. Blood Flow Metab. 21, 1034–1057 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Volkow, N. D. et al. Effects of chronic cocaine abuse on postsynaptic dopamine receptors. Am. J. Psychiatry 147, 719–724 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Volkow, N. D. et al. Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse 14, 169–177 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Volkow, N. D. et al. Activation of orbital and medial prefrontal cortex by methylphenidate in cocaine-addicted subjects but not in controls: relevance to addiction. J. Neurosci. 25, 3932–3939 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martinez, D. et al. Lower level of endogenous dopamine in patients with cocaine dependence: findings from PET imaging of D2/D3 receptors following acute dopamine depletion. Am. J. Psychiatry 166, 1170–1177 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Narendran, R. et al. Imaging of dopamine D2/3 agonist binding in cocaine dependence: a [11C] NPA positron emission tomography study. Synapse 65, 1344–1349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martinez, D. et al. Imaging dopamine transmission in cocaine dependence: link between neurochemistry and response to treatment. Am. J. Psychiatry 168, 634–641 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Volkow, N. D. et al. Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am. J. Psychiatry 158, 2015–2021 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Lee, B. et al. Striatal dopamine D2/D3 receptor availability is reduced in methamphetamine dependence and is linked to impulsivity. J. Neurosci. 29, 14734–14740 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, G. J. et al. Decreased dopamine activity predicts relapse in methamphetamine abusers. Mol. Psychiatry 17, 918–925 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Volkow, N. D. et al. Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcohol. Clin. Exp. Res. 20, 1594–1598 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Heinz, A. et al. Correlation between dopamine D2 receptors in the ventral striatum and central processing of alcohol cues and craving. Am. J. Psychiatry 161, 1783–1789 (2004).

    Article  PubMed  Google Scholar 

  57. Martinez, D. et al. Alcohol dependence is associated with blunted dopamine transmission in the ventral striatum. Biol. Psychiatry 58, 779–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Hietala, J. et al. Striatal D2 dopamine receptor binding characteristics in vivo in patients with alcohol dependence. Psychopharmacology (Berl.) 116, 285–290 (1994).

    Article  CAS  Google Scholar 

  59. Volkow, N. D. et al. Effects of alcohol detoxification on dopamine D2 receptors in alcoholics: a preliminary study. Psychiatry Res. 116, 163–172 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Volkow, N. D. et al. Profound decreases in dopamine release in striatum in detoxified alcoholics: possible orbitofrontal involvement. J. Neurosci. 27, 12700–12706 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Volkow, N. D. et al. High levels of dopamine D2 receptors in unaffected members of alcoholic families: possible protective factors. Arch. Gen. Psychiatry 63, 999–1008 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Wang, G. J. et al. Dopamine D2 receptor availability in opiate-dependent subjects before and after naloxone-precipitated withdrawal. Neuropsychopharmacology 16, 174–182 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Zijlstra, F., Booij, J., van den Brink, W. & Franken, I. H. Striatal dopamine D2 receptor binding and dopamine release during cue-elicited craving in recently abstinent opiate-dependent males. Eur. Neuropsychopharmacol. 18, 262–270 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Martinez, D. et al. Deficits in dopamine D2 receptors and presynaptic dopamine in heroin dependence: commonalities and differences with other types of addiction. Biol. Psychiatry 71, 192–198 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Fehr, C. et al. Association of low striatal dopamine D2 receptor availability with nicotine dependence similar to that seen with other drugs of abuse. Am. J. Psychiatry 165, 507–514 (2008).

    Article  PubMed  Google Scholar 

  66. Brown, A. K. et al. Sex differences in striatal dopamine D2/D3 receptor availability in smokers and non-smokers. Int. J. Neuropsychopharmacol. 15, 989–994 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Yang, Y. K. et al. Striatal dopamine D2/D3 receptor availability in male smokers. Psychiatry Res. 146, 87–90 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Yang, Y. K. et al. Decreased dopamine transporter availability in male smokers — a dual isotope SPECT study. Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 274–279 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Scott, D. J. et al. Smoking modulation of μ-opioid and dopamine D2 receptor-mediated neurotransmission in humans. Neuropsychopharmacology 32, 450–457 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Sevy, S. et al. Cerebral glucose metabolism and D2/D3 receptor availability in young adults with cannabis dependence measured with positron emission tomography. Psychopharmacology (Berl.) 197, 549–556 (2008).

    Article  CAS  Google Scholar 

  71. Stokes, P. R. et al. History of cannabis use is not associated with alterations in striatal dopamine D2/D3 receptor availability. J. Psychopharmacol. 26, 144–149 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Urban, N. B. et al. Dopamine release in chronic cannabis users: a [11C]raclopride positron emission tomography study. Biol. Psychiatry 71, 677–683 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Albrecht, D. S. et al. Striatal D2/D3 receptor availability is inversely correlated with cannabis consumption in chronic marijuana users. Drug Alcohol Depend. 128, 52–57 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Volkow, N. D. et al. Decreased dopamine brain reactivity in marijuana abusers is associated with negative emotionality and addiction severity. Proc. Natl Acad. Sci. USA 111, E3149–E3156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Volkow, N. D. et al. Prediction of reinforcing responses to psychostimulants in humans by brain dopamine D2 receptor levels. Am. J. Psychiatry 156, 1440–1443 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Volkow, N. D. et al. Brain DA D2 receptors predict reinforcing effects of stimulants in humans: replication study. Synapse 46, 79–82 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Dalley, J. W. et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315, 1267–1270 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. McNamara, R., Dalley, J. W., Robbins, T. W., Everitt, B. J. & Belin, D. Trait-like impulsivity does not predict escalation of heroin self-administration in the rat. Psychopharmacology 212, 453–464 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Nader, M. A. et al. PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nature Neurosci. 9, 1050–1056 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Thanos, P. K., Michaelides, M., Umegaki, H. & Volkow, N. D. D2R DNA transfer into the nucleus accumbens attenuates cocaine self-administration in rats. Synapse 62, 481–486 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Thanos, P. K. et al. Dopamine D2R DNA transfer in dopamine D2 receptor-deficient mice: effects on ethanol drinking. Life Sci. 77, 130–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Volkow, N. D. et al. Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 386, 830–833 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Casey, K. F. et al. Reduced dopamine response to amphetamine in subjects at ultra-high risk for addiction. Biol. Psychiatry 76, 23–30 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Nutt, D. J., King, L. A., Phillips, L. D. & Independent Scientific Committee on Drugs. Drug harms in the UK: a multicriteria decision analysis. Lancet 376, 1558–1565 (2010).

    Article  PubMed  Google Scholar 

  86. Badiani, A., Belin, D., Epstein, D., Calu, D. & Shaham, Y. Opiate versus psychostimulant addiction: the differences do matter. Nature Rev. Neurosci. 12, 685–700 (2011).

    Article  CAS  Google Scholar 

  87. Koepp, M. J. et al. Evidence for striatal dopamine release during a video game. Nature 393, 266–268 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Kjaer, T. W. et al. Increased dopamine tone during meditation-induced change of consciousness. Brain Res. Cogn. Brain Res. 13, 255–259 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Volkow, N. D. et al. Brain dopamine is associated with eating behaviors in humans. Int. J. Eat. Disord. 33, 136–142 (2003).

    Article  PubMed  Google Scholar 

  90. de la Fuente-Fernandez, R. et al. Expectation and dopamine release: mechanism of the placebo effect in Parkinson's disease. Science 293, 1164–1166 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Vijayraghavan, S., Wang, M., Birnbaum, S. G., Williams, G. V. & Arnsten, A. F. Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nature Neurosci. 10, 376–384 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Howes, O. D. et al. The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch. Gen. Psychiatry 69, 776–786 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cousins, D. A., Butts, K. & Young, A. H. The role of dopamine in bipolar disorder. Bipolar Disord. 11, 787–806 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Everitt, B. J. & Robbins, T. W. From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci. Biobehav. Rev. 39, 1946–1954 (2013).

    Article  Google Scholar 

  95. Haber, S. N., Fudge, J. L. & McFarland, N. R. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20, 2369–2382 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Trifilieff, P. & Martinez, D. Imaging addiction: D2 receptors and dopamine signaling in the striatum as biomarkers for impulsivity. Neuropharmacology 76, 498–509 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Reeves, S. J. et al. Limbic striatal dopamine D2/3 receptor availability is associated with non-planning impulsivity in healthy adults after exclusion of potential dissimulators. Psychiatry Res. 202, 60–64 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Clark, L. et al. Pathological choice: the neuroscience of gambling and gambling addiction. J. Neurosci. 33, 17617–17623 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Boileau, I. et al. The D2/3 dopamine receptor in pathological gambling: a positron emission tomography study with [11C]-(+)-propyl-hexahydro-naphtho-oxazin and [11C] raclopride. Addiction 108, 953–963 (2013).

    Article  PubMed  Google Scholar 

  100. Clark, L. et al. Striatal dopamine D2/D3 receptor binding in pathological gambling is correlated with mood-related impulsivity. Neuroimage 63, 40–46 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Boileau, I. et al. In vivo evidence for greater amphetamine-induced dopamine release in pathological gambling: a positron emission tomography study with [11C]-(+)-PHNO. Mol. Psychiatry 19, 1305–1313 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. O'Sullivan, S. S. et al. Cue-induced striatal dopamine release in Parkinson's disease-associated impulsive-compulsive behaviours. Brain 134, 969–978 (2011).

    Article  PubMed  Google Scholar 

  103. Volkow, N. D. et al. Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J. Neurosci. 26, 6583–6588 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wong, D. F. et al. Increased occupancy of dopamine receptors in human striatum during cue-elicited cocaine craving. Neuropsychopharmacology 31, 2716–2727 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Volkow, N. D. et al. Dopamine increases in striatum do not elicit craving in cocaine abusers unless they are coupled with cocaine cues. Neuroimage 39, 1266–1273 (2008).

    Article  PubMed  Google Scholar 

  106. Arnsten, A. F. & Li, B.-M. Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol. Psychiatry 57, 1377–1384 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Volkow, N. D. et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage 42, 1537–1543 (2008).

    Article  PubMed  Google Scholar 

  108. Ersche, K. D. et al. Influence of compulsivity of drug abuse on dopaminergic modulation of attentional bias in stimulant dependence. Arch. Gen. Psychiatry 67, 632–644 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lawford, B. R. et al. Bromocriptine in the treatment of alcoholics with the D2 dopamine receptor A1 allele. Nature Med. 1, 337–341 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Levey, A. I. et al. Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc. Natl Acad. Sci. USA 90, 8861–8865 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Laruelle, M. et al. Microdialysis and SPECT measurements of amphetamine-induced dopamine release in nonhuman primates. Synapse 25, 1–14 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Colasanti, A. et al. Endogenous opioid release in the human brain reward system induced by acute amphetamine administration. Biol. Psychiatry 72, 371–377 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Mitchell, J. M. et al. Alcohol consumption induces endogenous opioid release in the human orbitofrontal cortex and nucleus accumbens. Sci. Transl Med. 4, 116ra6 (2012).

    Article  PubMed  CAS  Google Scholar 

  114. Zubieta, J. K. et al. Increased μ opioid receptor binding detected by PET in cocaine-dependent men is associated with cocaine craving. Nature Med. 2, 1225–1229 (1996).

    Article  CAS  PubMed  Google Scholar 

  115. Gorelick, D. A. et al. Imaging brain μ-opioid receptors in abstinent cocaine users: time course and relation to cocaine craving. Biol. Psychiatry 57, 1573–1582 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Williams, T. M. et al. Brain opioid receptor binding in early abstinence from opioid dependence: positron emission tomography study. Br. J. Psychiatry 191, 63–69 (2007).

    Article  PubMed  Google Scholar 

  117. Williams, T. M. et al. Brain opioid receptor binding in early abstinence from alcohol dependence and relationship to craving: an [11C]diprenorphine PET study. Eur. Neuropsychopharmacol. 19, 740–748 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Weerts, E. M. et al. Positron emission tomography imaging of μ- and δ-opioid receptor binding in alcohol-dependent and healthy control subjects. Alcohol. Clin. Exp. Res. 35, 2162–2173 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Heinz, A. et al. Correlation of stable elevations in striatal μ-opioid receptor availability in detoxified alcoholic patients with alcohol craving: a positron emission tomography study using carbon 11-labeled carfentanil. Arch. Gen. Psychiatry 62, 57–64 (2005).

    Article  PubMed  Google Scholar 

  120. Mann, K., Bladstrom, A., Torup, L., Gual, A. & van den Brink, W. Extending the treatment options in alcohol dependence: a randomized controlled study of as-needed nalmefene. Biol. Psychiatry 73, 706–713 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Grant, J. E. et al. Multicenter investigation of the opioid antagonist nalmefene in the treatment of pathological gambling. Am. J. Psychiatry 163, 303–312 (2006).

    Article  PubMed  Google Scholar 

  122. Grant, J. E., Odlaug, B. L., Potenza, M. N., Hollander, E. & Kim, S. W. Nalmefene in the treatment of pathological gambling: multicentre, double-blind, placebo-controlled study. Br. J. Psychiatry 197, 330–331 (2010).

    Article  PubMed  Google Scholar 

  123. Lingford-Hughes, A. et al. A [11C]Ro15 4513 PET study suggests that alcohol dependence in man is associated with reduced α5 benzodiazepine receptors in limbic regions. J. Psychopharmacol. 26, 273–281 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Stokes, P. R. et al. History of cigarette smoking is associated with higher limbic GABAA receptor availability. Neuroimage 69, 70–77 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Laruelle, M. Imaging dopamine transmission in schizophrenia. A review and meta-analysis. Q. J. Nucl. Med. 42, 211–221 (1998).

    CAS  PubMed  Google Scholar 

  126. Vilkman, H. et al. Measurement of extrastriatal D2-like receptor binding with [11C]FLB 457 — a test-retest analysis. Eur. J. Nucl. Med. 27, 1666–1673 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Ginovart, N. et al. Positron emission tomography quantification of [11C]-(+)-PHNO binding in the human brain. J. Cereb. Blood Flow Metab. 27, 857–871 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Erritzoe, D. et al. In vivo imaging of cerebral dopamine D3 receptors in alcoholism. Neuropsychopharmacology 39, 1703–1712 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Brody, A. L. et al. Smoking-induced ventral striatum dopamine release. Am. J. Psychiatry 161, 1211–1218 (2004).

    Article  PubMed  Google Scholar 

  130. Brody, A. L. et al. Gene variants of brain dopamine pathways and smoking-induced dopamine release in the ventral caudate/nucleus accumbens. Arch. Gen. Psychiatry 63, 808–816 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Takahashi, H. et al. Enhanced dopamine release by nicotine in cigarette smokers: a double-blind, randomized, placebo-controlled pilot study. Int. J. Neuropsychopharmacol. 11, 413–417 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Nutt.

Ethics declarations

Competing interests

D.J.N. has received speaker's fees, or travel or grant support from companies with an interest in the treatment of addiction: RB pharmaceuticals, Lundbeck, GlaxoSmithKline, Pfizer, D&A Pharma and Nalpharm. A.L.-H. has received speaker's fees and grant support from Lundbeck and GlaxoSmithKline. D.E. has received grant support from GlaxoSmithKline. P.R.A.S. declares no competing interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nutt, D., Lingford-Hughes, A., Erritzoe, D. et al. The dopamine theory of addiction: 40 years of highs and lows. Nat Rev Neurosci 16, 305–312 (2015). https://doi.org/10.1038/nrn3939

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3939

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing