Weeding out bad waves: towards selective cannabinoid circuit control in epilepsy

A Corrigendum to this article was published on 13 May 2015

Key Points

  • Endocannabinoids are lipid-derived signalling molecules that are synthesized postsynaptically to activate presynaptic cannabinoid receptors 1 (CB1) receptors to influence diverse brain functions; CB1 receptors can also be activated by exogenous cannabinoids, such as the phytocannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC) or THC.

  • Although CB1 receptors are abundantly expressed in the brain, their expression is highly specific at the microscopic scale; they are present primarily at the axon terminals of specific inhibitory and excitatory neuronal subtypes.

  • Endocannabinoids inhibit neurotransmitter release on various timescales, including inhibition of tonic (baseline) release and various types of activity-dependent short- and long-term plasticity.

  • Neuronal circuits display various behavioural state-dependent network oscillations, and emerging principles of cannabinoid modulation of network rhythms have important implications for epilepsy and other neurological and psychiatric disorders that involve pathologically altered neuronal oscillations.

  • Safe and side effect-free future cannabinoid-based medications for epilepsy and related disorders will probably target cannabinoid signalling molecules with high cell type, temporal and spatial selectivity.


Endocannabinoids are lipid-derived messengers, and both their synthesis and breakdown are under tight spatiotemporal regulation. As retrograde signalling molecules, endocannabinoids are synthesized postsynaptically but activate presynaptic cannabinoid receptor 1 (CB1) receptors to inhibit neurotransmitter release. In turn, CB1-expressing inhibitory and excitatory synapses act as strategically placed control points for activity-dependent regulation of dynamically changing normal and pathological oscillatory network activity. Here, we highlight emerging principles of cannabinoid circuit control and plasticity, and discuss their relevance for epilepsy and related comorbidities. New insights into cannabinoid signalling may facilitate the translation of the recent interest in cannabis-related substances as antiseizure medications to evidence-based treatment strategies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Synaptic organization of 2-arachidonoylglycerol-mediated retrograde signalling molecules in the CA1 region of the hippocampus.
Figure 2: CB1-mediated tonic and phasic inhibition.
Figure 3: Schematic illustration of molecular mechanisms for endocannabinoid-mediated synaptic plasticity.
Figure 4: Endocannabinoids, exocannabinoids, and network oscillations.
Figure 5: Bidirectional effects of cannabinoids and seizures.


  1. 1

    Piomelli, D., Astarita, G. & Rapaka, R. A neuroscientist's guide to lipidomics. Nature Rev. Neurosci. 8, 743–754 (2007).

    CAS  Google Scholar 

  2. 2

    Kano, M., Ohno-Shosaku, T., Hashimotodani, Y., Uchigashima, M. & Watanabe, M. Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev. 89, 309–380 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Katona, I. & Freund, T. F. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nature Med. 14, 923–930 (2008).

    CAS  PubMed  Google Scholar 

  4. 4

    Heifets, B. D. & Castillo, P. E. Endocannabinoid signaling and long-term synaptic plasticity. Annu. Rev. Physiol. 71, 283–306 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Mechoulam, R. & Parker, L. A. The endocannabinoid system and the brain. Annu. Rev. Psychol. 64, 21–47 (2013).

    Google Scholar 

  6. 6

    Devinsky, O. et al. Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia 55, 791–802 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Armstrong, C., Morgan, R. J. & Soltesz, I. Pursuing paradoxical proconvulsant prophylaxis for epileptogenesis. Epilepsia 50, 1657–1669 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Katona, I. & Freund, T. F. Multiple functions of endocannabinoid signaling in the brain. Annu. Rev. Neurosci. 35, 529–558 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Hofmann, M. E. & Frazier, C. J. Marijuana, endocannabinoids, and epilepsy: potential and challenges for improved therapeutic intervention. Exp. Neurol. 244, 43–50 (2013).

    CAS  PubMed  Google Scholar 

  10. 10

    Ohno-Shosaku, T. & Kano, M. Endocannabinoid-mediated retrograde modulation of synaptic transmission. Curr. Opin. Neurobiol. 29, 1–8 (2014).

    CAS  Google Scholar 

  11. 11

    Alger, B. E. Seizing an opportunity for the endocannabinoid system. Epilepsy Curr. 14, 272–276 (2014).

    PubMed  PubMed Central  Google Scholar 

  12. 12

    Varga, C., Golshani, P. & Soltesz, I. Frequency-invariant temporal ordering of interneuronal discharges during hippocampal oscillations in awake mice. Proc. Natl Acad. Sci. USA 109, E2726–E2734 (2012).

    CAS  PubMed  Google Scholar 

  13. 13

    Ylinen, A. et al. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J. Neurosci. 15, 30–46 (1995).

    CAS  PubMed  Google Scholar 

  14. 14

    Siapas, A. G. & Wilson, M. A. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21, 1123–1128 (1998).

    CAS  Google Scholar 

  15. 15

    Eschenko, O., Ramadan, W., Mölle, M., Born, J. & Sara, S. J. Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning. Learn. Mem. 15, 222–228 (2008).

    PubMed  PubMed Central  Google Scholar 

  16. 16

    Bragin, A., Wilson, C. L., Almajano, J., Mody, I. & Engel, J. Jr. High-frequency oscillations after status epilepticus: epileptogenesis and seizure genesis. Epilepsia 45, 1017–1023 (2004).

    PubMed  Google Scholar 

  17. 17

    Klein, T. W. et al. The cannabinoid system and immune modulation. J. Leukoc. Biol. 74, 486–496 (2003).

    CAS  PubMed  Google Scholar 

  18. 18

    Lee, S.-H., Földy, C. & Soltesz, I. Distinct endocannabinoid control of GABA release at perisomatic and dendritic synapses in the hippocampus. J. Neurosci. 30, 7993–8000 (2010). This study provides evidence of cell type-specific eCB-mediated control of GABA release at perisomatic and dendritic synapses.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Katona, I. et al. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J. Neurosci. 19, 4544–4558 (1999).

    CAS  Google Scholar 

  20. 20

    Katona, I. et al. Molecular composition of the endocannabinoid system at glutamatergic synapses. J. Neurosci. 26, 5628–5637 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Bezaire, M. J. & Soltesz, I. Quantitative assessment of CA1 local circuits: knowledge base for interneuron-pyramidal cell connectivity. Hippocampus 23, 751–785 (2013).

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Armstrong, C. & Soltesz, I. Basket cell dichotomy in microcircuit function. J. Physiol. 590, 683–694 (2012).

    CAS  PubMed  Google Scholar 

  23. 23

    Hu, H., Gan, J. & Jonas, P. Fast-spiking, parvalbumin+ GABAergic interneurons: from cellular design to microcircuit function. Science 345, 1255263 (2014).

    PubMed  Google Scholar 

  24. 24

    Mackie, K. Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb. Exp. Pharmacol. 168, 299–325 (2005).

    CAS  Google Scholar 

  25. 25

    Kawamura, Y. et al. The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J. Neurosci. 26, 2991–3001 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Stella, N., Schweitzer, P. & Piomelli, D. A second endogenous cannabinoid that modulates long-term potentiation. Nature 388, 773–778 (1997).

    CAS  PubMed  Google Scholar 

  27. 27

    Tanimura, A. et al. The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase α mediates retrograde suppression of synaptic transmission. Neuron 65, 320–327 (2010).

    CAS  Google Scholar 

  28. 28

    Gao, Y. et al. Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J. Neurosci. 30, 2017–2024 (2010). References 27 and 28 show that 2-AG, which is produced by DAGLα, mediates retrograde suppression of synaptic transmission.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Suárez, J. et al. Distribution of diacylglycerol lipase α, an endocannabinoid synthesizing enzyme, in the rat forebrain. Neuroscience 192, 112–131 (2011).

    PubMed  Google Scholar 

  30. 30

    Yoshida, T. et al. Localization of diacylglycerol lipase-α around postsynaptic spine suggests close proximity between production site of an endocannabinoid, 2-arachidonoyl-glycerol, and presynaptic cannabinoid CB1 receptor. J. Neurosci. 26, 4740–4751 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Hashimotodani, Y. et al. Phospholipase Cβ serves as a coincidence detector through its Ca2+ dependency for triggering retrograde endocannabinoid signal. Neuron 45, 257–268 (2005).

    CAS  PubMed  Google Scholar 

  32. 32

    Abe, T. et al. Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J. Biol. Chem. 267, 13361–13368 (1992).

    CAS  PubMed  Google Scholar 

  33. 33

    Watanabe, M. et al. Patterns of expression for the mRNA corresponding to the four isoforms of phospholipase Cβ in mouse brain. Eur. J. Neurosci. 10, 2016–2025 (1998).

    CAS  PubMed  Google Scholar 

  34. 34

    Fukaya, M. et al. Predominant expression of phospholipase Cβ1 in telencephalic principal neurons and cerebellar interneurons, and its close association with related signaling molecules in somatodendritic neuronal elements. Eur. J. Neurosci. 28, 1744–1759 (2008).

    PubMed  Google Scholar 

  35. 35

    Lujan, R., Nusser, Z., Roberts, J. D., Shigemoto, R. & Somogyi, P. Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur. J. Neurosci. 8, 1488–1500 (1996).

    CAS  PubMed  Google Scholar 

  36. 36

    Dinh, T. P. et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl Acad. Sci. USA 99, 10819–10824 (2002).

    CAS  Google Scholar 

  37. 37

    Hashimotodani, Y., Ohno-Shosaku, T. & Kano, M. Presynaptic monoacylglycerol lipase activity determines basal endocannabinoid tone and terminates retrograde endocannabinoid signaling in the hippocampus. J. Neurosci. 27, 1211–1219 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Uchigashima, M. et al. Molecular and morphological configuration for 2-arachidonoylglycerol-mediated retrograde signaling at mossy cell–granule cell synapses in the dentate gyrus. J. Neurosci. 31, 7700–7714 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Gulyas, A. I. et al. Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur. J. Neurosci. 20, 441–458 (2004).

    CAS  PubMed  Google Scholar 

  40. 40

    Ventura, R. & Harris, K. M. Three-dimensional relationships between hippocampal synapses and astrocytes. J. Neurosci. 19, 6897–6906 (1999).

    CAS  PubMed  Google Scholar 

  41. 41

    Tanimura, A. et al. Synapse type-independent degradation of the endocannabinoid 2-arachidonoylglycerol after retrograde synaptic suppression. Proc. Natl Acad. Sci. USA 109, 12195–12200 (2012).

    CAS  PubMed  Google Scholar 

  42. 42

    Brown, S. P., Brenowitz, S. D. & Regehr, W. G. Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids. Nature Neurosci. 6, 1048–1057 (2003).

    CAS  PubMed  Google Scholar 

  43. 43

    Losonczy, A., Biró, A. A. & Nusser, Z. Persistently active cannabinoid receptors mute a subpopulation of hippocampal interneurons. Proc. Natl Acad. Sci. USA 101, 1362–1367 (2004). This paper provides the first demonstration of CB1-dependent tonic inhibition of GABA release.

    CAS  PubMed  Google Scholar 

  44. 44

    Neu, A., Földy, C. & Soltesz, I. Postsynaptic origin of CB1-dependent tonic inhibition of GABA release at cholecystokinin-positive basket cell to pyramidal cell synapses in the CA1 region of the rat hippocampus. J. Physiol. 578, 233–247 (2007).

    CAS  PubMed  Google Scholar 

  45. 45

    Szabo, G. G. et al. Presynaptic calcium channel inhibition underlies CB1 cannabinoid receptor-mediated suppression of GABA release. J. Neurosci. 34, 7958–7963 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Ohno-Shosaku, T., Maejima, T. & Kano, M. Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 29, 729–738 (2001).

    CAS  PubMed  Google Scholar 

  47. 47

    Wilson, R. I. & Nicoll, R. A. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410, 588–592 (2001).

    CAS  PubMed  Google Scholar 

  48. 48

    Kreitzer, A. C. & Regehr, W. G. Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29, 717–727 (2001). References 46–48 demonstrate for the first time that eCBs mediate retrograde signalling for the transient suppression of synaptic transmission.

    CAS  PubMed  Google Scholar 

  49. 49

    Maejima, T., Hashimoto, K., Yoshida, T., Aiba, A. & Kano, M. Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors. Neuron 31, 463–475 (2001).

    CAS  PubMed  Google Scholar 

  50. 50

    Hashimotodani, Y. et al. Acute inhibition of diacylglycerol lipase blocks endocannabinoid-mediated retrograde signalling: evidence for on-demand biosynthesis of 2-arachidonoylglycerol. J. Physiol. 591, 4765–4776 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Pitler, T. A. & Alger, B. E. Depolarization-induced suppression of GABAergic inhibition in rat hippocampal pyramidal cells: G protein involvement in a presynaptic mechanism. Neuron 13, 1447–1455 (1994).

    CAS  PubMed  Google Scholar 

  52. 52

    Hoffman, A. F. & Lupica, C. R. Mechanisms of cannabinoid inhibition of GABAA synaptic transmission in the hippocampus. J. Neurosci. 20, 2470–2479 (2000).

    CAS  PubMed  Google Scholar 

  53. 53

    Pan, B. et al. Blockade of 2-arachidonoylglycerol hydrolysis by selective monoacylglycerol lipase inhibitor 4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184) enhances retrograde endocannabinoid signaling. J. Pharmacol. Exp. Ther. 331, 591–597 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Földy, C., Neu, A., Jones, M. V. & Soltesz, I. Presynaptic, activity-dependent modulation of cannabinoid type 1 receptor-mediated inhibition of GABA release. J. Neurosci. 26, 1465–1469 (2006).

    PubMed  PubMed Central  Google Scholar 

  55. 55

    Maejima, T. et al. Synaptically driven endocannabinoid release requires Ca2+-assisted metabotropic glutamate receptor subtype 1 to phospholipase Cβ4 signaling cascade in the cerebellum. J. Neurosci. 25, 6826–6835 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Castillo, P. E. Presynaptic LTP and LTD of excitatory and inhibitory synapses. Cold Spring Harb. Perspect. Biol. 4, a005728 (2012).

    PubMed  PubMed Central  Google Scholar 

  57. 57

    Castillo, P. E., Younts, T. J., Chávez, A. E. & Hashimotodani, Y. Endocannabinoid signaling and synaptic function. Neuron 76, 70–81 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Buzsáki, G. Theta oscillations in the hippocampus. Neuron 33, 325–340 (2002).

    PubMed  Google Scholar 

  59. 59

    Bartos, M., Vida, I. & Jonas, P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nature Rev. Neurosci. 8, 45–56 (2007).

    CAS  Google Scholar 

  60. 60

    Kucewicz, M. T., Tricklebank, M. D., Bogacz, R. & Jones, M. W. Dysfunctional prefrontal cortical network activity and interactions following cannabinoid receptor activation. J. Neurosci. 31, 15560–15568 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Hájos, N. et al. Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur. J. Neurosci. 12, 3239–3249 (2000).

    PubMed  Google Scholar 

  62. 62

    Robbe, D. et al. Cannabinoids reveal importance of spike timing coordination in hippocampal function. Nature Neurosci. 9, 1526–1533 (2006). This study shows that exocannabinoids disrupt the temporal coordination of neuronal assemblies.

    CAS  PubMed  Google Scholar 

  63. 63

    Soltesz, I. & Staley, K. High times for memory: cannabis disrupts temporal coordination among hippocampal neurons. Nature Neurosci. 9, 1461–1463 (2006).

    CAS  PubMed  Google Scholar 

  64. 64

    Holderith, N. et al. Cannabinoids attenuate hippocampal gamma oscillations by suppressing excitatory synaptic input onto CA3 pyramidal neurons and fast spiking basket cells. J. Physiol. 589, 4921–4934 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Sales-Carbonell, C. et al. Striatal GABAergic and cortical glutamatergic neurons mediate contrasting effects of cannabinoids on cortical network synchrony. Proc. Natl Acad. Sci. USA 110, 719–724 (2013).

    CAS  PubMed  Google Scholar 

  66. 66

    Böcker, K. B. E. et al. Cannabinoid modulations of resting state EEG theta power and working memory are correlated in humans. J. Cogn. Neurosci. 22, 1906–1916 (2010).

    PubMed  Google Scholar 

  67. 67

    Edwards, C. R., Skosnik, P. D., Steinmetz, A. B., O'Donnell, B. F. & Hetrick, W. P. Sensory gating impairments in heavy cannabis users are associated with altered neural oscillations. Behav. Neurosci. 123, 894–904 (2009); erratum 123, 1065 (2009).

    PubMed  PubMed Central  Google Scholar 

  68. 68

    Raver, S. M., Haughwout, S. P. & Keller, A. Adolescent cannabinoid exposure permanently suppresses cortical oscillations in adult mice. Neuropsychopharmacology 38, 2338–2347 (2013).

    PubMed  PubMed Central  Google Scholar 

  69. 69

    Lawrence, J. J. Cholinergic control of GABA release: emerging parallels between neocortex and hippocampus. Trends Neurosci. 31, 317–327 (2008).

    CAS  PubMed  Google Scholar 

  70. 70

    Fisahn, A., Pike, F. G., Buhl, E. H. & Paulsen, O. Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394, 186–189 (1998).

    CAS  PubMed  Google Scholar 

  71. 71

    Nagode, D. A., Tang, A.-H., Karson, M. A., Klugmann, M. & Alger, B. E. Optogenetic release of ACh induces rhythmic bursts of perisomatic IPSCs in hippocampus. PLoS ONE 6, e27691 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Kim, J., Isokawa, M., Ledent, C. & Alger, B. E. Activation of muscarinic acetylcholine receptors enhances the release of endogenous cannabinoids in the hippocampus. J. Neurosci. 22, 10182–10191 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Ohno-Shosaku, T. et al. Postsynaptic M1 and M3 receptors are responsible for the muscarinic enhancement of retrograde endocannabinoid signalling in the hippocampus. Eur. J. Neurosci. 18, 109–116 (2003).

    PubMed  Google Scholar 

  74. 74

    Gulyás, A. I. et al. Parvalbumin-containing fast-spiking basket cells generate the field potential oscillations induced by cholinergic receptor activation in the hippocampus. J. Neurosci. 30, 15134–15145 (2010).

    PubMed  PubMed Central  Google Scholar 

  75. 75

    Marsicano, G. & Lutz, B. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur. J. Neurosci. 11, 4213–4225 (1999).

    CAS  PubMed  Google Scholar 

  76. 76

    Freund, T. F. & Katona, I. Perisomatic inhibition. Neuron 56, 33–42 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Gillies, M. J. et al. A model of atropine-resistant theta oscillations in rat hippocampal area CA1. J. Physiol. 543, 779–793 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Péterfi, Z. et al. Endocannabinoid-mediated long-term depression of afferent excitatory synapses in hippocampal pyramidal cells and GABAergic interneurons. J. Neurosci. 32, 14448–14463 (2012).

    PubMed  PubMed Central  Google Scholar 

  79. 79

    Puighermanal, E. et al. Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nature Neurosci. 12, 1152–1158 (2009).

    CAS  Google Scholar 

  80. 80

    Albayram, O. et al. Role of CB1 cannabinoid receptors on GABAergic neurons in brain aging. Proc. Natl Acad. Sci. USA 108, 11256–11261 (2011).

    CAS  Google Scholar 

  81. 81

    Földy, C., Malenka, R. C. & Südhof, T. C. Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling. Neuron 78, 498–509 (2013). This study demonstrates that selective alterations occur in tonic, but not in phasic, eCB signalling at hippocampal synapses in mouse models of autism.

    PubMed  PubMed Central  Google Scholar 

  82. 82

    Lovinger, D. M. & Mathur, B. N. Endocannabinoids in striatal plasticity. Parkinsonism Relat. Disord. 18, S132–S134 (2012).

    PubMed  PubMed Central  Google Scholar 

  83. 83

    Iremonger, K. J., Cusulin, J. I. W. & Bains, J. S. Changing the tune: plasticity and adaptation of retrograde signals. Trends Neurosci. 36, 471–479 (2013).

    CAS  PubMed  Google Scholar 

  84. 84

    Chen, K. et al. Long-term plasticity of endocannabinoid signaling induced by developmental febrile seizures. Neuron 39, 599–611 (2003). This paper provides the first evidence for persistent cell type-specific plasticity of the cannabinoid signalling system by seizures.

    CAS  PubMed  Google Scholar 

  85. 85

    Chen, K. et al. Prevention of plasticity of endocannabinoid signaling inhibits persistent limbic hyperexcitability caused by developmental seizures. J. Neurosci. 27, 46–58 (2007).

    PubMed  PubMed Central  Google Scholar 

  86. 86

    Dvorzhak, A., Semtner, M., Faber, D. S. & Grantyn, R. Tonic mGluR5/CB1-dependent suppression of inhibition as a pathophysiological hallmark in the striatum of mice carrying a mutant form of huntingtin. J. Physiol. 591, 1145–1166 (2013).

    CAS  PubMed  Google Scholar 

  87. 87

    Cepeda-Prado, E. et al. R6/2 Huntington's disease mice develop early and progressive abnormal brain metabolism and seizures. J. Neurosci. 32, 6456–6467 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Naydenov, A. V. et al. ABHD6 blockade exerts antiepileptic activity in PTZ-induced seizures and in spontaneous seizures in R6/2 mice. Neuron 83, 361–371 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Falenski, K. W. et al. Temporal characterization of changes in hippocampal cannabinoid CB1 receptor expression following pilocarpine-induced status epilepticus. Brain Res. 1262, 64–72 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Wallace, M. J., Blair, R. E., Falenski, K. W., Martin, B. R. & DeLorenzo, R. J. The endogenous cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy. J. Pharmacol. Exp. Ther. 307, 129–137 (2003).

    CAS  PubMed  Google Scholar 

  91. 91

    Falenski, K. W., Blair, R. E., Sim-Selley, L. J., Martin, B. R. & DeLorenzo, R. J. Status epilepticus causes a long-lasting redistribution of hippocampal cannabinoid type 1 receptor expression and function in the rat pilocarpine model of acquired epilepsy. Neuroscience 146, 1232–1244 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Bhaskaran, M. D. & Smith, B. N. Cannabinoid-mediated inhibition of recurrent excitatory circuitry in the dentate gyrus in a mouse model of temporal lobe epilepsy. PLoS ONE 5, e10683 (2010).

    PubMed  PubMed Central  Google Scholar 

  93. 93

    Ludányi, A. et al. Downregulation of the CB1 cannabinoid receptor and related molecular elements of the endocannabinoid system in epileptic human hippocampus. J. Neurosci. 28, 2976–2990 (2008). This paper describes the downregulation of components of the cannabinoid signalling system at precisely defined hippocampal synapses of humans with epilepsy.

    PubMed  PubMed Central  Google Scholar 

  94. 94

    Maglóczky, Z. et al. Dynamic changes of CB1-receptor expression in hippocampi of epileptic mice and humans. Epilepsia 51 (Suppl. 3), 115–120 (2010).

    PubMed  PubMed Central  Google Scholar 

  95. 95

    Monory, K. et al. The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51, 455–466 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Chang, B. S. & Lowenstein, D. H. Epilepsy. N. Engl. J. Med. 349, 1257–1266 (2003).

    PubMed  Google Scholar 

  97. 97

    Goldberg, E. M. & Coulter, D. A. Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nature Rev. Neurosci. 14, 337–349 (2013).

    CAS  Google Scholar 

  98. 98

    Berkovic, S. F., Mulley, J. C., Scheffer, I. E. & Petrou, S. Human epilepsies: interaction of genetic and acquired factors. Trends Neurosci. 29, 391–397 (2006).

    CAS  PubMed  Google Scholar 

  99. 99

    Hansen, H. H. et al. Anandamide, but not 2-arachidonoylglycerol, accumulates during in vivo neurodegeneration. J. Neurochem. 78, 1415–1427 (2001).

    CAS  PubMed  Google Scholar 

  100. 100

    Panikashvili, D. et al. An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413, 527–531 (2001).

    CAS  PubMed  Google Scholar 

  101. 101

    Marsicano, G. et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302, 84–88 (2003).

    CAS  PubMed  Google Scholar 

  102. 102

    Romigi, A. et al. Cerebrospinal fluid levels of the endocannabinoid anandamide are reduced in patients with untreated newly diagnosed temporal lobe epilepsy. Epilepsia 51, 768–772 (2010).

    CAS  PubMed  Google Scholar 

  103. 103

    Wallace, M. J., Wiley, J. L., Martin, B. R. & DeLorenzo, R. J. Assessment of the role of CB1 receptors in cannabinoid anticonvulsant effects. Eur. J. Pharmacol. 428, 51–57 (2001).

    CAS  PubMed  Google Scholar 

  104. 104

    Wallace, M. J., Martin, B. R. & DeLorenzo, R. J. Evidence for a physiological role of endocannabinoids in the modulation of seizure threshold and severity. Eur. J. Pharmacol. 452, 295–301 (2002).

    CAS  PubMed  Google Scholar 

  105. 105

    Shafaroodi, H. et al. The interaction of cannabinoids and opioids on pentylenetetrazole-induced seizure threshold in mice. Neuropharmacology 47, 390–400 (2004).

    CAS  PubMed  Google Scholar 

  106. 106

    Blair, R. E. et al. Activation of the cannabinoid type-1 receptor mediates the anticonvulsant properties of cannabinoids in the hippocampal neuronal culture models of acquired epilepsy and status epilepticus. J. Pharmacol. Exp. Ther. 317, 1072–1078 (2006).

    CAS  PubMed  Google Scholar 

  107. 107

    Kozan, R., Ayyildiz, M. & Agar, E. The effects of intracerebroventricular AM-251, a CB1-receptor antagonist, and ACEA, a CB1-receptor agonist, on penicillin-induced epileptiform activity in rats. Epilepsia 50, 1760–1767 (2009).

    CAS  PubMed  Google Scholar 

  108. 108

    Mason, R. & Cheer, J. F. Cannabinoid receptor activation reverses kainate-induced synchronized population burst fi ring in rat hippocampus. Front. Integr. Neurosci. 3, 13 (2009).

    PubMed  PubMed Central  Google Scholar 

  109. 109

    Carta, M., Fièvre, S., Gorlewicz, A. & Mulle, C. Kainate receptors in the hippocampus. Eur. J. Neurosci. 39, 1835–1844 (2014).

    PubMed  Google Scholar 

  110. 110

    Lourenço, J. et al. Synaptic activation of kainate receptors gates presynaptic CB1 signaling at GABAergic synapses. Nature Neurosci. 13, 197–204 (2010).

    PubMed  Google Scholar 

  111. 111

    Daw, M. I., Pelkey, K. A., Chittajallu, R. & McBain, C. J. Presynaptic kainate receptor activation preserves asynchronous GABA release despite the reduction in synchronous release from hippocampal cholecystokinin interneurons. J. Neurosci. 30, 11202–11209 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Burns, H. D. et al. [18F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor. Proc. Natl Acad. Sci. USA 104, 9800–9805 (2007).

    CAS  PubMed  Google Scholar 

  113. 113

    Goffin, K., Van Paesschen, W. & Van Laere, K. In vivo activation of endocannabinoid system in temporal lobe epilepsy with hippocampal sclerosis. Brain 134, 1033–1040 (2011). This paper uses brain imaging methods to demonstrate dynamic changes in CB1 availability in patients with temporal lobe epilepsy.

    PubMed  Google Scholar 

  114. 114

    Perucca, P. & Gilliam, F. G. Adverse effects of antiepileptic drugs. Lancet Neurol. 11, 792–802 (2012).

    CAS  Google Scholar 

  115. 115

    Krook-Magnuson, E., Armstrong, C., Oijala, M. & Soltesz, I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nature Commun. 4, 1376 (2013).

    Google Scholar 

  116. 116

    Schlosburg, J. E. et al. Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nature Neurosci. 13, 1113–1119 (2010).

    CAS  PubMed  Google Scholar 

  117. 117

    Oviedo, A., Glowa, J. & Herkenham, M. Chronic cannabinoid administration alters cannabinoid receptor binding in rat brain: a quantitative autoradiographic study. Brain Res. 616, 293–302 (1993).

    CAS  PubMed  Google Scholar 

  118. 118

    Guggenhuber, S., Monory, K., Lutz, B. & Klugmann, M. AAV vector-mediated overexpression of CB1 cannabinoid receptor in pyramidal neurons of the hippocampus protects against seizure-induced excitoxicity. PLoS ONE 5, e15707 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Stadnicki, S. W., Schaeppi, U., Rosenkrantz, H. & Braude, M. C. Δ9-tetrahydrocannabinol: subcortical spike bursts and motor manifestations in a Fischer rat treated orally for 109 days. Life Sci. 14, 463–472 (1974).

    CAS  PubMed  Google Scholar 

  120. 120

    Martin, P. & Consroe, P. Cannabinoid induced behavioral convulsions in rabbits. Science 194, 965–967 (1976).

    CAS  PubMed  Google Scholar 

  121. 121

    Gordon, E. & Devinsky, O. Alcohol and marijuana: effects on epilepsy and use by patients with epilepsy. Epilepsia 42, 1266–1272 (2001).

    CAS  PubMed  Google Scholar 

  122. 122

    Kullmann, D. M., Schorge, S., Walker, M. C. & Wykes, R. C. Gene therapy in epilepsy — is it time for clinical trials? Nature Rev. Neurol. 10, 300–304 (2014).

    CAS  Google Scholar 

  123. 123

    Katona, I. et al. GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus. Neuroscience 100, 797–804 (2000).

    CAS  PubMed  Google Scholar 

  124. 124

    Eggan, S. M., Melchitzky, D. S., Sesack, S. R. & Fish, K. N. & Lewis, D. A. Relationship of cannabinoid CB1 receptor and cholecystokinin immunoreactivity in monkey dorsolateral prefrontal cortex. Neuroscience 169, 1651–1661 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Kovacs, F. E. et al. Exogenous and endogenous cannabinoids suppress inhibitory neurotransmission in the human neocortex. Neuropsychopharmacology 37, 1104–1114 (2012).

    CAS  PubMed  Google Scholar 

  126. 126

    Maa, E. & Figi, P. The case for medical marijuana in epilepsy. Epilepsia 55, 783–786 (2014).

    PubMed  Google Scholar 

  127. 127

    Cilio, M. R., Thiele, E. A. & Devinsky, O. The case for assessing cannabidiol in epilepsy. Epilepsia 55, 787–790 (2014).

    CAS  PubMed  Google Scholar 

  128. 128

    Pitkänen, A. et al. Issues related to development of antiepileptogenic therapies. Epilepsia 54 (Suppl. 4), 35–43 (2013).

    PubMed  PubMed Central  Google Scholar 

  129. 129

    Echegoyen, J., Armstrong, C., Morgan, R. J. & Soltesz, I. Single application of a CB1 receptor antagonist rapidly following head injury prevents long-term hyperexcitability in a rat model. Epilepsy Res. 85, 123–127 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Dudek, F. E., Pouliot, W. A., Rossi, C. A. & Staley, K. J. The effect of the cannabinoid-receptor antagonist, SR141716, on the early stage of kainate-induced epileptogenesis in the adult rat. Epilepsia 51 (Suppl. 3), 126–130 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    DeLong, M. R. & Wichmann, T. Circuits and circuit disorders of the basal ganglia. Arch. Neurol. 64, 20–24 (2007).

    PubMed  Google Scholar 

  132. 132

    Mathur, B. N., Tanahira, C., Tamamaki, N. & Lovinger, D. M. Voltage drives diverse endocannabinoid signals to mediate striatal microcircuit-specific plasticity. Nature Neurosci. 16, 1275–1283 (2013).

    CAS  PubMed  Google Scholar 

  133. 133

    Adermark, L. & Lovinger, D. M. Frequency-dependent inversion of net striatal output by endocannabinoid-dependent plasticity at different synaptic inputs. J. Neurosci. 29, 1375–1380 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Atwood, B. K., Kupferschmidt, D. A. & Lovinger, D. M. Opioids induce dissociable forms of long-term depression of excitatory inputs to the dorsal striatum. Nature Neurosci. 17, 540–548 (2014).

    CAS  PubMed  Google Scholar 

  135. 135

    Fourgeaud, L. et al. A single in vivo exposure to cocaine abolishes endocannabinoid-mediated long-term depression in the nucleus accumbens. J. Neurosci. 24, 6939–6945 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Hoffman, A. F., Oz, M., Caulder, T. & Lupica, C. R. Functional tolerance and blockade of long-term depression at synapses in the nucleus accumbens after chronic cannabinoid exposure. J. Neurosci. 23, 4815–4820 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137

    Mato, S. et al. A single in-vivo exposure to Δ9THC blocks endocannabinoid-mediated synaptic plasticity. Nature Neurosci. 7, 585–586 (2004).

    CAS  PubMed  Google Scholar 

  138. 138

    Nazzaro, C. et al. SK channel modulation rescues striatal plasticity and control over habit in cannabinoid tolerance. Nature Neurosci. 15, 284–293 (2012).

    CAS  PubMed  Google Scholar 

  139. 139

    DePoy, L. et al. Chronic alcohol produces neuroadaptations to prime dorsal striatal learning. Proc. Natl Acad. Sci. USA 110, 14783–14788 (2013).

    CAS  PubMed  Google Scholar 

  140. 140

    Xia, J. X. et al. Alterations of rat corticostriatal synaptic plasticity after chronic ethanol exposure and withdrawal. Alcohol. Clin. Exp. Res. 30, 819–824 (2006).

    CAS  PubMed  Google Scholar 

  141. 141

    Adermark, L., Jonsson, S., Ericson, M. & Söderpalm, B. Intermittent ethanol consumption depresses endocannabinoid-signaling in the dorsolateral striatum of rat. Neuropharmacology 61, 1160–1165 (2011).

    CAS  PubMed  Google Scholar 

  142. 142

    Bagni, C. & Greenough, W. T. From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nature Rev. Neurosci. 6, 376–387 (2005).

    CAS  Google Scholar 

  143. 143

    Incorpora, G., Sorge, G., Sorge, A. & Pavone, L. Epilepsy in fragile X syndrome. Brain Dev. 24, 766–769 (2002).

    PubMed  Google Scholar 

  144. 144

    Bhakar, A. L., Dölen, G. & Bear, M. F. The pathophysiology of fragile X (and what it teaches us about synapses). Annu. Rev. Neurosci. 35, 417–443 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Varma, N., Carlson, G. C., Ledent, C. & Alger, B. E. Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus. J. Neurosci. 21, RC188 (2001).

    CAS  PubMed  Google Scholar 

  146. 146

    Zhang, L. & Alger, B. E. Enhanced endocannabinoid signaling elevates neuronal excitability in fragile X syndrome. J. Neurosci. 30, 5724–5729 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147

    Maccarrone, M. et al. Abnormal mGlu 5 receptor/endocannabinoid coupling in mice lacking FMRP and BC1 RNA. Neuropsychopharmacology 35, 1500–1509 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148

    Jung, K.-M. et al. Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome. Nature Commun. 3, 1080 (2012).

    Google Scholar 

  149. 149

    Le Beau, F. E. N. & Alger, B. E. Transient suppression of GABAA-receptor-mediated IPSPs after epileptiform burst discharges in CA1 pyramidal cells. J. Neurophysiol. 79, 659–669 (1998).

    CAS  Google Scholar 

  150. 150

    Younts, T. J., Chevaleyre, V. & Castillo, P. E. CA1 pyramidal cell theta-burst firing triggers endocannabinoid-mediated long-term depression at both somatic and dendritic inhibitory synapses. J. Neurosci. 33, 13743–13757 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151

    Harris, K. D., Csicsvary, J., Hirase, H., Dragoi, G. & Buzsaki, G. Organization of cell assemblies in the hippocampus. Nature 424, 552–556 (2003).

    CAS  PubMed  Google Scholar 

  152. 152

    Deshpande, L. S. et al. Cannabinoid CB1 receptor antagonists cause status epilepticus-like activity in the hippocampal neuronal culture model of acquired epilepsy. Neurosci. Lett. 411, 11–16 (2007).

    CAS  PubMed  Google Scholar 

Download references


The authors thank J. G. Malpeli for comments on the manuscript and M. Uchigashima for Figure 1c. This work was supported by a US National Institutes of Health grant (NS74432 to I.S.) and Grants-in-Aid for Scientific Research (23500466 to T.O.-S. and 25000015 to M.K.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information



Corresponding author

Correspondence to Ivan Soltesz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides



Endogenous molecules, typically with marijuana-mimetic activity, that primarily act on type 1 and 2 cannabinoid receptors.


A neurological disorder characterized by a predisposition to recurrent, unprovoked seizures.

GABAergic interneurons

Locally projecting neurons that synthesize, store and release GABA as a neurotransmitter.

GABAergic cell

Synthesizes, stores and releases GABA as a neurotransmitter.

Retrograde signalling molecule

An endogenous signalling messenger molecule that is synthesized in, and released from, postsynaptic cells and acts on presynaptic sites.

Nested gamma oscillations

Short repetitive bursts of gamma waves (30–80 Hz) that often take place during (that is, nested within) the slower theta rhythm (5–10 Hz) at a particular phase of the theta oscillatory cycle.


The process by which the brain develops epilepsy (for example, after an insult such as head trauma).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soltesz, I., Alger, B., Kano, M. et al. Weeding out bad waves: towards selective cannabinoid circuit control in epilepsy. Nat Rev Neurosci 16, 264–277 (2015). https://doi.org/10.1038/nrn3937

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing