Illiterate to literate: behavioural and cerebral changes induced by reading acquisition

Abstract

The acquisition of literacy transforms the human brain. By reviewing studies of illiterate subjects, we propose specific hypotheses on how the functions of core brain systems are partially reoriented or 'recycled' when learning to read. Literacy acquisition improves early visual processing and reorganizes the ventral occipito-temporal pathway: responses to written characters are increased in the left occipito-temporal sulcus, whereas responses to faces shift towards the right hemisphere. Literacy also modifies phonological coding and strengthens the functional and anatomical link between phonemic and graphemic representations. Literacy acquisition therefore provides a remarkable example of how the brain reorganizes to accommodate a novel cultural skill.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A pivotal role of the ventral occipito-temporal cortex in reading acquisition.
Figure 2: Impact of reading acquisition on the planum temporale.

References

  1. 1

    Lincoln, A. Discoveries and Inventions: A Lecture by Abraham Lincoln Delivered in 1860 (Kessinger Publishing, 2004).

    Google Scholar 

  2. 2

    Ong, W. Orality and Literacy: 30th Anniversary Edition (Routledge, 2012).

    Google Scholar 

  3. 3

    Dehaene, S. & Cohen, L. The unique role of the visual word form area in reading. Trends Cogn. Sci. 15, 254–262 (2011).

    Article  PubMed  Google Scholar 

  4. 4

    Carreiras, M., Armstrong, B. C., Perea, M. & Frost, R. The what, when, where and how of visual word recognition. Trends Cogn. Sci. 18, 90–98 (2014).

    Article  PubMed  Google Scholar 

  5. 5

    Pugh, K. R. et al. The relationship between phonological and auditory processing and brain organization in beginning readers. Brain Lang. 125, 173–183 (2013).

    Article  PubMed  Google Scholar 

  6. 6

    Turkeltaub, P. E., Gareau, L., Flowers, D. L., Zeffiro, T. A. & Eden, G. F. Development of neural mechanisms for reading. Nature Neurosci. 6, 767–773 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. 7

    New, B., Ferrand, L., Pallier, C. & Brysbaert, M. Reexamining the word length effect in visual word recognition: new evidence from the English Lexicon Project. Psychon Bull. Rev. 13, 45–52 (2006).

    Article  PubMed  Google Scholar 

  8. 8

    Dehaene, S. et al. How learning to read changes the cortical networks for vision and language. Science 330, 1359–1364 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. 9

    Pegado, F. et al. Timing the impact of literacy on visual processing. Proc. Natl Acad. Sci. USA 111, E5233–E5242 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. 10

    Carreiras, M. et al. An anatomical signature for literacy. Nature 461, 983–986 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Kolinsky, R. et al. Enantiomorphy through the looking-glass: literacy effects on mirror-image discrimination. J. Exp. Psychol. Gen. 140, 210–238 (2011).

    Article  PubMed  Google Scholar 

  12. 12

    Szwed, M., Ventura, P., Querido, L., Cohen, L. & Dehaene, S. Reading acquisition enhances an early visual process of contour integration. Dev. Sci. 15, 139–149 (2012).

    Article  PubMed  Google Scholar 

  13. 13

    Thiebaut de Schotten, M., Cohen, L., Amemiya, E., Braga, L. W. & Dehaene, S. Learning to read improves the structure of the arcuate fasciculus. Cereb. Cortex 24, 989–995 (2012).

    Article  PubMed  Google Scholar 

  14. 14

    Dehaene, S. & Cohen, L. Cultural recycling of cortical maps. Neuron 56, 384–398 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Nazir, T. A., Ben-Boutayab, N., Decoppet, N., Deutsch, A. & Frost, R. Reading habits, perceptual learning, and recognition of printed words. Brain Lang. 88, 294–311 (2004).

    Article  PubMed  Google Scholar 

  16. 16

    Li, W., Piech, V. & Gilbert, C. D. Perceptual learning and top-down influences in primary visual cortex. Nature Neurosci. 7, 651–657 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. 17

    Li, W., Piech, V. & Gilbert, C. D. Learning to link visual contours. Neuron 57, 442–451 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Sigman, M. et al. Top-down reorganization of activity in the visual pathway after learning a shape identification task. Neuron 46, 823–835 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Legge, G. E. & Bigelow, C. A. Does print size matter for reading? A review of findings from vision science and typography. J. Vis. 11, 8 (2011).

    Article  PubMed  Google Scholar 

  20. 20

    Szwed, M. et al. Specialization for written words over objects in the visual cortex. NeuroImage 56, 330–344 (2011).

    Article  PubMed  Google Scholar 

  21. 21

    Szwed, M., Qiao, E., Jobert, A., Dehaene, S. & Cohen, L. Effects of literacy in early visual and occipitotemporal areas of Chinese and French readers. J. Cogn. Neurosci. 26, 459–475 (2014).

    Article  PubMed  Google Scholar 

  22. 22

    Ventura, P. et al. Literacy acquisition reduces the influence of automatic holistic processing of faces and houses. Neurosci. Lett. 554, 105–109 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. 23

    Duñabeitia, J. A., Orihuela, K. & Carreiras, M. Orthographic coding in illiterates and literates. Psychol. Sci. 25, 1275–1280 (2014).

    Article  PubMed  Google Scholar 

  24. 24

    Bolger, D. J., Perfetti, C. A. & Schneider, W. Cross-cultural effect on the brain revisited: universal structures plus writing system variation. Hum. Brain Mapp. 25, 92–104 (2005).

    Article  PubMed  Google Scholar 

  25. 25

    Hasson, U., Levy, I., Behrmann, M., Hendler, T. & Malach, R. Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34, 479–490 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. 26

    Cohen, L. et al. The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain 123, 291–307 (2000).

    Article  PubMed  Google Scholar 

  27. 27

    Dehaene, S. et al. The visual word form area: a prelexical representation of visual words in the fusiform gyrus. Neuroreport 13, 321–325 (2002).

    Article  PubMed  Google Scholar 

  28. 28

    Baker, C. I. et al. Visual word processing and experiential origins of functional selectivity in human extrastriate cortex. Proc. Natl Acad. Sci. USA 104, 9087–9092 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Brem, S. et al. An electrophysiological study of print processing in kindergarten: the contribution of the visual n1 as a predictor of reading outcome. Dev. Neuropsychol. 38, 567–594 (2013).

    Article  PubMed  Google Scholar 

  30. 30

    Maurer, U., Brem, S., Bucher, K. & Brandeis, D. Emerging neurophysiological specialization for letter strings. J. Cogn Neurosci. 17, 1532–1552 (2005).

    Article  PubMed  Google Scholar 

  31. 31

    Monzalvo, K., Fluss, J., Billard, C., Dehaene, S. & Dehaene-Lambertz, G. Cortical networks for vision and language in dyslexic and normal children of variable socio-economic status. NeuroImage 61, 258–274 (2012).

    Article  PubMed  Google Scholar 

  32. 32

    Monzalvo, K. Etude chez l'enfant normal et dyslexique de l'impact sur les réseaux corticaux et linguistiques d'une activité culturelle: la lecture. Thesis, Univ. Paris, (2011).

    Google Scholar 

  33. 33

    Brem, S. et al. Brain sensitivity to print emerges when children learn letter-speech sound correspondences. Proc. Natl Acad. Sci. USA 107, 7939–7944 (2010).

    Article  PubMed  Google Scholar 

  34. 34

    Hashimoto, R. & Sakai, K. L. Learning letters in adulthood: direct visualization of cortical plasticity for forming a new link between orthography and phonology. Neuron 42, 311–322 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Perrone-Bertolotti, M. et al. Turning visual shapes into sounds: early stages of reading acquisition revealed in the ventral occipitotemporal cortex. NeuroImage 90, 298–307 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. 36

    Xue, G., Chen, C., Jin, Z. & Dong, Q. Language experience shapes fusiform activation when processing a logographic artificial language: an fMRI training study. NeuroImage 31, 1315–1326 (2006).

    Article  PubMed  Google Scholar 

  37. 37

    Mei, L. et al. Orthographic transparency modulates the functional asymmetry in the fusiform cortex: an artificial language training study. Brain Lang. 125, 165–172 (2013).

    Article  PubMed  Google Scholar 

  38. 38

    Dehaene, S. et al. Cerebral mechanisms of word masking and unconscious repetition priming. Nature Neurosci. 4, 752–758 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Price, C. J. & Devlin, J. T. The interactive account of ventral occipitotemporal contributions to reading. Trends Cogn. Sci. 15, 246–253 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40

    Freiwald, W. A. & Tsao, D. Y. Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330, 845–851 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Dehaene, S., Cohen, L., Sigman, M. & Vinckier, F. The neural code for written words: a proposal. Trends Cogn. Sci. 9, 335–341 (2005).

    Article  PubMed  Google Scholar 

  42. 42

    Vinckier, F. et al. Hierarchical coding of letter strings in the ventral stream: dissecting the inner organization of the visual word-form system. Neuron 55, 143–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Thesen, T. et al. Sequential then interactive processing of letters and words in the left fusiform gyrus. Nature Commun. 3, 1284 (2012).

    Article  CAS  Google Scholar 

  44. 44

    Dehaene, S. et al. Letter binding and invariant recognition of masked words: behavioral and neuroimaging evidence. Psychol. Sci. 15, 307–313 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Binder, J. R., Medler, D. A., Westbury, C. F., Liebenthal, E. & Buchanan, L. Tuning of the human left fusiform gyrus to sublexical orthographic structure. NeuroImage 33, 739–748 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Glezer, L. S., Jiang, X. & Riesenhuber, M. Evidence for highly selective neuronal tuning to whole words in the 'visual word form area'. Neuron 62, 199–204 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Taylor, J. S. H., Rastle, K. & Davis, M. H. Distinct neural specializations for learning to read words and name objects. J. Cogn. Neurosci. 26, 2128–2154 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Kherif, F., Josse, G. & Price, C. J. Automatic top-down processing explains common left occipito-temporal responses to visual words and objects. Cereb. Cortex 21, 103–114 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Mano, Q. R. et al. The role of left occipitotemporal cortex in reading: reconciling stimulus, task, and lexicality effects. Cereb. Cortex 23, 988–1001 (2013).

    Article  PubMed  Google Scholar 

  50. 50

    Yoncheva, Y. N., Zevin, J. D., Maurer, U. & McCandliss, B. D. Auditory selective attention to speech modulates activity in the visual word form area. Cereb. Cortex 20, 622–632 (2010).

    Article  PubMed  Google Scholar 

  51. 51

    Rothlein, D. & Rapp, B. The similarity structure of distributed neural responses reveals the multiple representations of letters. NeuroImage 89, 331–344 (2014).

    Article  PubMed  Google Scholar 

  52. 52

    Reich, L., Szwed, M., Cohen, L. & Amedi, A. A ventral visual stream reading center independent of visual experience. Curr. Biol. 21, 363–368 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Buchel, C., Price, C. & Friston, K. A multimodal language region in the ventral visual pathway. Nature 394, 274–277 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Striem-Amit, E., Cohen, L., Dehaene, S. & Amedi, A. Reading with sounds: sensory substitution selectively activates the visual word form area in the blind. Neuron 76, 640–652 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. 55

    Striem-Amit, E. & Amedi, A. Visual cortex extrastriate body-selective area activation in congenitally blind people 'seeing' by using sounds. Curr. Biol. 24, 687–692 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. 56

    Striem-Amit, E., Dakwar, O., Reich, L. & Amedi, A. The large-scale organization of 'visual' streams emerges without visual experience. Cereb. Cortex 22, 1698–1709 (2012).

    Article  PubMed  Google Scholar 

  57. 57

    Wandell, B. A. & Yeatman, J. D. Biological development of reading circuits. Curr. Opin. Neurobiol. 23, 261–268 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Bouhali, F. et al. Anatomical connections of the visual word form area. J. Neurosci. 34, 15402–15414 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Yeatman, J. D., Dougherty, R. F., Ben-Shachar, M. & Wandell, B. A. Development of white matter and reading skills. Proc. Natl Acad. Sci. USA 109, E3045–E3053 (2012).

    Article  PubMed  Google Scholar 

  60. 60

    Pinel, P. & Dehaene, S. Beyond hemispheric dominance: brain regions underlying the joint lateralization of language and arithmetic to the left hemisphere. J. Cogn. Neurosci. 22, 48–66 (2009).

    Article  Google Scholar 

  61. 61

    Cai, Q., Paulignan, Y., Brysbaert, M., Ibarrola, D. & Nazir, T. A. The left ventral occipito-temporal response to words depends on language lateralization but not on visual familiarity. Cereb. Cortex 20, 1153–1163 (2010).

    Article  PubMed  Google Scholar 

  62. 62

    Allison, T., McCarthy, G., Nobre, A. C., Puce, A. & Belger, A. Human extrastriate visual cortex and the perception of faces, words, numbers and colors. Cereb. Cortex 5, 544–554 (1994).

    Article  Google Scholar 

  63. 63

    Nestor, A., Plaut, D. C. & Behrmann, M. Unraveling the distributed neural code of facial identity through spatiotemporal pattern analysis. Proc. Natl Acad. Sci. USA 108, 9998–10003 (2011).

    Article  PubMed  Google Scholar 

  64. 64

    Puce, A., Allison, T., Asgari, M., Gore, J. C. & McCarthy, G. Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. J. Neurosci. 16, 5205–5215 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. 65

    Li, S. et al. Neural competition as a developmental process: early hemispheric specialization for word processing delays specialization for face processing. Neuropsychologia 5, 950–959 (2013).

    Article  Google Scholar 

  66. 66

    Pinel, P. et al. Genetic and environmental influences on the visual word form and fusiform face areas. Cereb. Cortex http://dx.doi.org/10.1093/cercor/bhu048 (2014).

  67. 67

    Dundas, E. M., Plaut, D. C. & Behrmann, M. The joint development of hemispheric lateralization for words and faces. J. Exp. Psychol. Gen. 142, 348–358 (2013).

    Article  PubMed  Google Scholar 

  68. 68

    Cantlon, J. F., Pinel, P., Dehaene, S. & Pelphrey, K. A. Cortical representations of symbols, objects, and faces are pruned back during early childhood. Cereb. Cortex 21, 191–199 (2011).

    Article  PubMed  Google Scholar 

  69. 69

    Golarai, G. et al. Differential development of high-level visual cortex correlates with category-specific recognition memory. Nature Neurosci. 10, 512–522 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. 70

    Scherf, K. S., Luna, B., Avidan, G. & Behrmann, M. 'What' precedes 'which': developmental neural tuning in face- and place-related cortex. Cereb. Cortex 21, 1963–1980 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  71. 71

    Dehaene, S. Reading in the Brain (Penguin Viking, 2009).

    Google Scholar 

  72. 72

    Weiner, K. S. et al. The mid-fusiform sulcus: a landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex. NeuroImage 84, 453–465 (2014).

    Article  PubMed  Google Scholar 

  73. 73

    Grill-Spector, K. & Weiner, K. S. The functional architecture of the ventral temporal cortex and its role in categorization. Nature Rev. Neurosci. 15, 536–548 (2014).

    Article  CAS  Google Scholar 

  74. 74

    Rollenhagen, J. E. & Olson, C. R. Mirror-image confusion in single neurons of the macaque inferotemporal cortex. Science 287, 1506–1508 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. 75

    Axelrod, V. & Yovel, G. Hierarchical processing of face viewpoint in human visual cortex. J. Neurosci. 32, 2442–2452 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Kietzmann, T. C., Swisher, J. D., Konig, P. & Tong, F. Prevalence of selectivity for mirror-symmetric views of faces in the ventral and dorsal visual pathways. J. Neurosci. 32, 11763–11772 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Logothetis, N. K., Pauls, J. & Poggio, T. Shape representation in the inferior temporal cortex of monkeys. Curr. Biol. 5, 552–563 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. 78

    Dehaene, S. et al. Why do children make mirror errors in reading? Neural correlates of mirror invariance in the visual word form area. NeuroImage 49, 1837–1848 (2010).

    Article  PubMed  Google Scholar 

  79. 79

    Dilks, D. D., Julian, J. B., Kubilius, J., Spelke, E. S. & Kanwisher, N. Mirror-image sensitivity and invariance in object and scene processing pathways. J. Neurosci. 31, 11305–11312 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Eger, E., Henson, R. N., Driver, J. & Dolan, R. J. BOLD repetition decreases in object-responsive ventral visual areas depend on spatial attention. J. Neurophysiol. 92, 1241–1247 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. 81

    Pegado, F., Nakamura, K., Cohen, L. & Dehaene, S. Breaking the symmetry: mirror discrimination for single letters but not for pictures in the visual word form area. NeuroImage 55, 742–749 (2011).

    Article  PubMed  Google Scholar 

  82. 82

    Vuilleumier, P., Schwartz, S., Duhoux, S., Dolan, R. J. & Driver, J. Selective attention modulates neural substrates of repetition priming and 'implicit' visual memory: suppressions and enhancements revealed by fMRI. J. Cogn. Neurosci. 17, 1245–1260 (2005).

    Article  PubMed  Google Scholar 

  83. 83

    Pegado, F. et al. Literacy breaks mirror invariance for visual stimuli: a behavioral study with adult illiterates. J. Exp. Psychol. Gen. 143, 887–894 (2014).

    Article  PubMed  Google Scholar 

  84. 84

    Kolinsky, R. & Fernandes, T. A cultural side effect: learning to read interferes with identity processing of familiar objects. Front. Psychol. 5, 1224 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  85. 85

    Danziger, E. & Pederson, E. Through the looking glass: literacy, writing systems and mirror-image discrimination. Writ. Lang. Lit. 1, 153–167 (1998).

    Article  Google Scholar 

  86. 86

    Fernandes, T. & Kolinsky, R. From hand to eye: the role of literacy, familiarity, graspability, and vision-for-action on enantiomorphy. Acta Psychol. (Amst.) 142, 51–61 (2013).

    Article  Google Scholar 

  87. 87

    Duñabeitia, J. A., Molinaro, N. & Carreiras, M. Through the looking-glass: mirror reading. NeuroImage 54, 3004–3009 (2011).

    Article  PubMed  Google Scholar 

  88. 88

    Perea, M., Moret-Tatay, C. & Panadero, V. Suppression of mirror generalization for reversible letters: evidence from masked priming. J. Mem. Lang. 65, 237–246 (2011).

    Article  Google Scholar 

  89. 89

    Dehaene, S., Izard, V., Pica, P. & Spelke, E. Core knowledge of geometry in an Amazonian indigene group. Science 311, 381–384 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. 90

    Duñabeitia, J. A., Dimitropoulou, M., Estévez, A. & Carreiras, M. The influence of reading expertise in mirror-letter perception: evidence from beginning and expert readers. Mind Brain Educ. 7, 124–135 (2013).

    Article  Google Scholar 

  91. 91

    Kolinsky, R., Morais, J. & Verhaeghe, A. Visual separability: a study on unschooled adults. Perception 23, 471–486 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. 92

    Vagharchakian, L., Dehaene-Lambertz, G., Pallier, C. & Dehaene, S. A temporal bottleneck in the language comprehension network. J. Neurosci. 32, 9089–9102 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Castro-Caldas, A., Petersson, K. M., Reis, A., Stone-Elander, S. & Ingvar, M. The illiterate brain. Learning to read and write during childhood influences the functional organization of the adult brain. Brain 121, 1053–1063 (1998).

    Article  PubMed  Google Scholar 

  94. 94

    Nation, K. & Hulme, C. Learning to read changes children's phonological skills: evidence from a latent variable longitudinal study of reading and nonword repetition. Dev. Sci. 14, 649–659 (2011).

    Article  PubMed  Google Scholar 

  95. 95

    Monzalvo, K. & Dehaene-Lambertz, G. How reading acquisition changes children's spoken language network. Brain Lang. 127, 356–365 (2013).

    Article  PubMed  Google Scholar 

  96. 96

    Chang, E. F. et al. Categorical speech representation in human superior temporal gyrus. Nature Neurosci. 13, 1428–1432 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. 97

    Mesgarani, N., Cheung, C., Johnson, K. & Chang, E. F. Phonetic feature encoding in human superior temporal gyrus. Science 343, 1006–1010 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Jacquemot, C., Pallier, C., LeBihan, D., Dehaene, S. & Dupoux, E. Phonological grammar shapes the auditory cortex: a functional magnetic resonance imaging study. J. Neurosci. 23, 9541–9546 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Calvert, G. A. et al. Activation of auditory cortex during silent lipreading. Science 276, 593–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. 100

    Van Atteveldt, N., Formisano, E., Goebel, R. & Blomert, L. Integration of letters and speech sounds in the human brain. Neuron 43, 271–282 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. 101

    Blau, V., van Atteveldt, N., Ekkebus, M., Goebel, R. & Blomert, L. Reduced neural integration of letters and speech sounds links phonological and reading deficits in adult dyslexia. Curr. Biol. 19, 503–508 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. 102

    Liberman, I. Y., Shankweiler, D., Fischer, F. W. & Carter, B. Explicit syllable and phoneme segmentation in the young child. J. Exp. Child Psychol. 18, 201–212 (1974).

    Article  Google Scholar 

  103. 103

    Morais, J., Cary, L., Alegria, J. & Bertelson, P. Does awareness of speech as a sequence of phones arise spontaneously? Cognition 7, 323–331 (1979).

    Article  Google Scholar 

  104. 104

    Lukatela, K., Carello, C., Shankweiler, D. & Liberman, I. Y. Phonological awareness in illterates: observations from Serbo-Croatian. Appl. Psycholinguist. 16, 463–488 (1995).

    Article  Google Scholar 

  105. 105

    Adrian, A., Alegria, J. & Morais, J. Metaphonological abilities of Spanish illiterate adults. Int. J. Psychol. 30, 329–351 (1995).

    Article  Google Scholar 

  106. 106

    Serniclaes, W., Ventura, P., Morais, J. & Kolinsky, R. Categorical perception of speech sounds in illiterate adults. Cognition 98, B35–B44 (2005).

    Article  PubMed  Google Scholar 

  107. 107

    Ventura, P., Kolinsky, R., Fernandes, S., Querido, L. & Morais, J. Lexical restructuring in the absence of literacy. Cognition 105, 334–361 (2007).

    Article  Google Scholar 

  108. 108

    Morais, J. & Kolinsky, R. Perception and awareness in phonological processing: the case of the phoneme. Cognition 50, 287–297 (1994).

    Article  CAS  PubMed  Google Scholar 

  109. 109

    Ventura, P., Kolinsky, R., Querido, J.-L., Fernandes, S. & Morais, J. Is phonological encoding in naming influenced by literacy? J. Psycholinguist. Res. 36, 341–360 (2007).

    Article  PubMed  Google Scholar 

  110. 110

    Burton, M. W., Small, S. L. & Blumstein, S. E. The role of segmentation in phonological processing: an fMRI investigation. J. Cogn. Neurosci. 12, 679–690 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. 111

    Zatorre, R. J., Meyer, E., Gjedde, A. & Evans, A. C. PET studies of phonetic processing of speech: review, replication, and reanalysis. Cereb. Cortex 6, 21–30 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. 112

    Brennan, C., Cao, F., Pedroarena-Leal, N., McNorgan, C. & Booth, J. R. Reading acquisition reorganizes the phonological awareness network only in alphabetic writing systems. Hum. Brain Mapp. 34, 3354–3368 (2013).

    Article  PubMed  Google Scholar 

  113. 113

    Booth, J. R. et al. Functional anatomy of intra- and cross-modal lexical tasks. NeuroImage 16, 7–22 (2002).

    Article  PubMed  Google Scholar 

  114. 114

    Cohen, L., Jobert, A., Le Bihan, D. & Dehaene, S. Distinct unimodal and multimodal regions for word processing in the left temporal cortex. NeuroImage 23, 1256–1270 (2004).

    Article  PubMed  Google Scholar 

  115. 115

    Booth, J. R. et al. Development of brain mechanisms for processing orthographic and phonologic representations. J. Cogn. Neurosci. 16, 1234–1249 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  116. 116

    Cone, N. E., Burman, D. D., Bitan, T., Bolger, D. J. & Booth, J. R. Developmental changes in brain regions involved in phonological and orthographic processing during spoken language processing. NeuroImage 41, 623–635 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  117. 117

    Desroches, A. S. et al. Children with reading difficulties show differences in brain regions associated with orthographic processing during spoken language processing. Brain Res. 1356, 73–84 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Burton, M. W., Locasto, P. C., Krebs-Noble, D. & Gullapalli, R. P. A systematic investigation of the functional neuroanatomy of auditory and visual phonological processing. NeuroImage 26, 647–661 (2005).

    Article  PubMed  Google Scholar 

  119. 119

    Seidenberg, M. S. & Tanenhaus, M. K. Orthographic effects on rhyme monitoring. Q. J. Exp. Psychol. (Hove) 5, 546–554 (1979).

    Google Scholar 

  120. 120

    Pattamadilok, C., Perre, L., Dufau, S. & Ziegler, J. C. On-line orthographic influences on spoken language in a semantic task. J. Cogn. Neurosci. 21, 169–179 (2009).

    Article  PubMed  Google Scholar 

  121. 121

    Peereman, R., Dufour, S. & Burt, J. S. Orthographic influences in spoken word recognition: the consistency effect in semantic and gender categorization tasks. Psychon. Bull. Rev. 16, 363–368 (2009).

    Article  PubMed  Google Scholar 

  122. 122

    Ziegler, J. C. & Ferrand, L. Orthography shapes the perception of speech: the consistency effect in auditory word recognition. Psychon. Bull. Rev. 5, 683–689 (1998).

    Article  Google Scholar 

  123. 123

    Perre, L. & Ziegler, J. C. On-line activation of orthography in spoken word recognition. Brain Res. 1188, 132–138 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. 124

    Perre, L., Pattamadilok, C., Montant, M. & Ziegler, J. C. Orthographic effects in spoken language: on-line activation or phonological restructuring? Brain Res. 1275, 73–80 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. 125

    Pattamadilok, C., Knierim, I. N., Kawabata Duncan, K. J. & Devlin, J. T. How does learning to read affect speech perception? J. Neurosci. 30, 8435–8444 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Morais, J., Bertelson, P., Cary, L. & Alegria, J. Literacy training and speech segmentation. Cognition 24, 45–64 (1986).

    Article  CAS  PubMed  Google Scholar 

  127. 127

    Kosmidis, M. H., Zafiri, M. & Politimou, N. Literacy versus formal schooling: influence on working memory. Arch. Clin. Neuropsychol. 26, 575–582 (2011).

    Article  PubMed  Google Scholar 

  128. 128

    Pattamadilok, C., Lafontaine, H., Morais, J. & Kolinsky, R. Auditory word serial recall benefits from orthographic dissimilarity. Lang. Speech 53, 321–341 (2010).

    Article  PubMed  Google Scholar 

  129. 129

    Share, D. L. Phonological recoding and self-teaching: sine qua non of reading acquisition. Cognition 55, 151–218; discussion 219–226 (1995).

    Article  CAS  PubMed  Google Scholar 

  130. 130

    Yeatman, J. D. et al. Anatomical properties of the arcuate fasciculus predict phonological and reading skills in children. J. Cogn. Neurosci. 23, 3304–3317 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  131. 131

    Saygin, Z. M. et al. Tracking the roots of reading ability: white matter volume and integrity correlate with phonological awareness in prereading and early-reading kindergarten children. J. Neurosci. 33, 13251–13258 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Castro-Caldas, A. et al. Influence of learning to read and write on the morphology of the corpus callosum. Eur. J. Neurol. 6, 23–28 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. 133

    Petersson, K. M., Silva, C., Castro-Caldas, A., Ingvar, M. & Reis, A. Literacy: a cultural influence on functional left–right differences in the inferior parietal cortex. Eur. J. Neurosci. 26, 791–799 (2007).

    Article  PubMed  Google Scholar 

  134. 134

    Molko, N. et al. Visualizing the neural bases of a disconnection syndrome with diffusion tensor imaging. J. Cogn. Neurosci. 14, 629–636 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. 135

    Taylor, J. S. H., Rastle, K. & Davis, M. H. Can cognitive models explain brain activation during word and pseudoword reading? A meta-analysis of 36 neuroimaging studies. Psychol. Bull. 139, 766–791 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. 136

    Pugh, K. R. et al. Neurobiological studies of reading and reading disability. J. Commun. Disord. 34, 479–492 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. 137

    Cohen, L., Dehaene, S., Vinckier, F., Jobert, A. & Montavont, A. Reading normal and degraded words: contribution of the dorsal and ventral visual pathways. NeuroImage 40, 353–366 (2008).

    Article  PubMed  Google Scholar 

  138. 138

    Carreiras, M., Quiñones, I., Hernández-Cabrera, J. A. & Duñabeitia, J. A. Orthographic coding: brain activation for letters, symbols, and digits. Cereb. Cortex http://dx.doi.org/10.1093/cercor/bhu163 (2014).

  139. 139

    Huettig, F. & Mishra, R. K. How literacy acquisition affects the illiterate mind – a critical examination of theories and evidence. Lang. Linguist. Compass 8, 401–427 (2014).

    Article  Google Scholar 

  140. 140

    Kolinsky, R. in The Oxford Handbook of Reading (eds Pollatsek, A. & Treiman, R.) (Oxford Univ. Press, 2014).

    Google Scholar 

  141. 141

    Ratcliff, G. et al. Effects of literacy and education on measures of word fluency. Brain Lang. 61, 115–122 (1998).

    Article  CAS  PubMed  Google Scholar 

  142. 142

    Reis, A. & Castro-Caldas, A. Illiteracy: a cause for biased cognitive development. J. Int. Neuropsychol. Soc. 3, 444–450 (1997).

    Article  CAS  PubMed  Google Scholar 

  143. 143

    Kolinsky, R. et al. How formal education and literacy impact on the content and structure of semantic categories. Trends Neurosci. Educ. 3, 106–121 (2014).

    Article  Google Scholar 

  144. 144

    Matute, E. et al. Comparing cognitive performance in illiterate and literate children. Int. Rev. Educ. 58, 109–127 (2012).

    Article  Google Scholar 

  145. 145

    Morais, J. & Kolinsky, R. in Psychology at the Turn of the Millennium (eds Bäckman, L. & von Hofsten, C.) 507–530 (Psychology Press, 2002).

    Google Scholar 

  146. 146

    Goody, J. Literacy in Traditional Societies (Cambridge Univ. Press, 1968).

    Google Scholar 

  147. 147

    Luria, A. R. Cognitive Development. Its Cultural and Social Foundations (Harvard Univ. Press, 1976).

    Google Scholar 

  148. 148

    Scribner, S. & Cole, M. The Psychology of Literacy (Harvard Univ. Press, 1981).

    Google Scholar 

  149. 149

    Dias, M., Roazzi, A. & Harris, P. L. Reasoning from unfamiliar premises: a study with unschooled adults. Psychol. Sci. 16, 550–554 (2005).

    Article  PubMed  Google Scholar 

  150. 150

    Verhaeghe, A. & Kolinsky, R. What Illiterate People Teach us about Intelligence Tests (Fund Gulbenkian- FCT, 2006) (in Portuguese).

    Google Scholar 

  151. 151

    Landgraf, S. Dissociating improvement of attention and intelligence during written language acquisition in adults. Int. J. Intell. Sci. 1, 17–24 (2011).

    Article  Google Scholar 

  152. 152

    National Institute of Child Health and Human Development. Report of the National Reading Panel. Teaching Children to Read: An Evidence-Based Assessment of the Scientific Research Literature on Reading and Its Implications for Reading Instruction. NIH Publication No. 00–4769 (US Government Printing Office, 2000).

  153. 153

    Hoeft, F. et al. Neural systems predicting long-term outcome in dyslexia. Proc. Natl Acad. Sci. USA 108, 361–366 (2011).

    Article  PubMed  Google Scholar 

  154. 154

    Pugh, K. R. et al. Glutamate and choline levels predict individual differences in reading ability in emergent readers. J. Neurosci. 34, 4082–4089 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. 155

    Srihasam, K., Mandeville, J. B., Morocz, I. A., Sullivan, K. J. & Livingstone, M. S. Behavioral and anatomical consequences of early versus late symbol training in macaques. Neuron 73, 608–619 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. 156

    Fernandes, T., Vale, A. P., Martins, B., Morais, J. & Kolinsky, R. The deficit of letter processing in developmental dyslexia: combining evidence from dyslexics, typical readers and illiterate adults. Dev. Sci. 17, 125–141 (2014).

    Article  PubMed  Google Scholar 

  157. 157

    DeFrancis, J. Visible Speech: The Diverse Oneness of Writing Systems (Univ. of Hawaii, 1989).

    Google Scholar 

  158. 158

    Nakamura, K. et al. Universal brain systems for recognizing word shapes and handwriting gestures during reading. Proc. Natl Acad. Sci. USA 109, 20762–20767 (2012).

    Article  PubMed  Google Scholar 

  159. 159

    Nakamura, K., Dehaene, S., Jobert, A., Le Bihan, D. & Kouider, S. Subliminal convergence of Kanji and Kana words: further evidence for functional parcellation of the posterior temporal cortex in visual word perception. J. Cogn. Neurosci. 17, 954–968 (2005).

    Article  PubMed  Google Scholar 

  160. 160

    Lee, C. Y. et al. Neuronal correlates of consistency and frequency effects on Chinese character naming: an event-related fMRI study. NeuroImage 23, 1235–1245 (2004).

    Article  PubMed  Google Scholar 

  161. 161

    Wu, C. Y., Ho, M. H. & Chen, S. H. A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing. NeuroImage 63, 381–391 (2012).

    Article  PubMed  Google Scholar 

  162. 162

    Frost, R. Towards a universal model of reading. Behav. Brain Sci. 35, 263–279 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  163. 163

    Yoncheva, Y. N., Blau, V. C., Maurer, U. & McCandliss, B. D. Attentional focus during learning impacts N170 ERP responses to an artificial script. Dev. Neuropsychol. 35, 423–445 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  164. 164

    Velan, H. & Frost, R. Letter-transposition effects are not universal: the impact of transposing letters in Hebrew. J. Mem. Lang. 61, 285–302 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  165. 165

    Bick, A. S., Goelman, G. & Frost, R. Hebrew brain versus English brain: language modulates the way it is processed. J. Cogn. Neurosci. 23, 2280–2290 (2011).

    Article  PubMed  Google Scholar 

  166. 166

    Seymour, P. H., Aro, M. & Erskine, J. M. Foundation literacy acquisition in European orthographies. Br. J. Psychol. 94, 143–174 (2003).

    Article  PubMed  Google Scholar 

  167. 167

    Paulesu, E. et al. A cultural effect on brain function. Nature Neurosci. 3, 91–96 (2000).

    Article  CAS  PubMed  Google Scholar 

  168. 168

    Cheung, H., Chen, H. C., Lai, C. Y., Wong, O. C. & Hills, M. The development of phonological awareness: effects of spoken language experience and orthography. Cognition 81, 227–241 (2001).

    Article  CAS  PubMed  Google Scholar 

  169. 169

    Cheung, H. & Chen, H. C. Early orthographic experience modifies both phonological awareness and on-line speech processing. Lang. Cogn. Process. 19, 1–28 (2004).

    Article  Google Scholar 

  170. 170

    Read, C., Zhang, Y. F., Nie, H. Y. & Ding, B. Q. The ability to manipulate speech sounds depends on knowing alphabetic writing. Cognition 24, 31–44 (1986).

    Article  CAS  PubMed  Google Scholar 

  171. 171

    Tan, L. H., Laird, A. R., Li, K. & Fox, P. T. Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: a meta-analysis. Hum. Brain Mapp. 25, 83–91 (2005).

    Article  PubMed  Google Scholar 

  172. 172

    Bara, F., Gentaz, E., Colé, P. & Sprenger-Charolles, L. The visuo-haptic and haptic exploration of letters increases the kindergarten-children's understanding of the alphabetic principle. Cogn. Dev. 19, 433–449 (2004).

    Article  Google Scholar 

  173. 173

    James, K. H. Sensori-motor experience leads to changes in visual processing in the developing brain. Dev. Sci. 13, 279–288 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  174. 174

    Longcamp, M. et al. Learning through hand- or typewriting influences visual recognition of new graphic shapes: behavioral and functional imaging evidence. J. Cogn. Neurosci. 20, 802–815 (2008).

    Article  PubMed  Google Scholar 

  175. 175

    Tan, L. H., Spinks, J. A., Eden, G. F., Perfetti, C. A. & Siok, W. T. Reading depends on writing, in Chinese. Proc. Natl Acad. Sci. USA 102, 8781–8785 (2005).

    Article  CAS  PubMed  Google Scholar 

  176. 176

    Abadzi, H. Can adults become fluent readers in newly learned scripts? Educ. Res. Int. 2012, 1–8 (2012).

    Article  Google Scholar 

  177. 177

    Wilhelm, I. et al. The sleeping child outplays the adult's capacity to convert implicit into explicit knowledge. Nature Neurosci. 16, 391–393 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. 178

    Dehaene-Lambertz, G., Dehaene, S. & Hertz-Pannier, L. Functional neuroimaging of speech perception in infants. Science 298, 2013–2015 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the French Institut National de la Santé et de la Recherche Médicale (INSERM), the French Commissariat à l'Energie Atomique (CEA), the Collège de France, an Agence Nationale de la Recherche grant to S.D. and L.C. (project CoreLex), the Fonds de la Recherche Scientifique-FNRS (FRS-FNRS, grant FRFC 2.4515.12) and an Interuniversity Attraction Poles (IAP) grant 7/33, Belspo to R.K.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stanislas Dehaene.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dehaene, S., Cohen, L., Morais, J. et al. Illiterate to literate: behavioural and cerebral changes induced by reading acquisition. Nat Rev Neurosci 16, 234–244 (2015). https://doi.org/10.1038/nrn3924

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing