Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stress and the social brain: behavioural effects and neurobiological mechanisms

Key Points

  • The effects of stress on social behaviour depend on the timing, the duration and the type of stress exposure.

  • Social withdrawal and aggression are a typical consequence of experiencing, or having experienced, high and persistent stress levels.

  • From a developmental perspective, early stressors impose an increasing pattern of dysfunctional social behaviour, progressing from asociality (elicited by prenatal stressors) to hostility (by postnatal stressors) and to antisociality (by stressors during juvenility).

  • In humans, stress can also elicit prosocial behaviours, particularly towards ingroup members.

  • Individual differences in the effect of stress in social behaviours are partly explained by certain gene polymorphisms (for example, the monoamine oxidase A (MAOA) gene).

  • Glucocorticoids mediate, at least in part, the effects of stress on social behaviours.

  • Monoamines, social neuropeptides, the corticotropin-releasing hormone (CRH) system, cell adhesion molecules and epigenetic mechanisms are implicated in the translation of stress effects in social behaviours.

  • Positive social interactions can protect individuals from the adverse effects of stress.

Abstract

Stress often affects our social lives. When undergoing high-level or persistent stress, individuals frequently retract from social interactions and become irritable and hostile. Predisposition to antisocial behaviours — including social detachment and violence — is also modulated by early life adversity; however, the effects of early life stress depend on the timing of exposure and genetic factors. Research in animals and humans has revealed some of the structural, functional and molecular changes in the brain that underlie the effects of stress on social behaviour. Findings in this emerging field will have implications both for the clinic and for society.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Social behavioural profiles emerging in response to stress exposure.
Figure 2: The social brain in humans and animals.

Similar content being viewed by others

References

  1. de Kloet, E. R., Joels, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nature Rev. Neurosci. 6, 463–475 (2005).

    Article  CAS  Google Scholar 

  2. Joels, M. & Baram, T. Z. The neuro-symphony of stress. Nature Rev. Neurosci. 10, 459–466 (2009).

    Article  CAS  Google Scholar 

  3. Ulrich-Lai, Y. M. & Herman, J. P. Neural regulation of endocrine and autonomic stress responses. Nature Rev. Neurosci. 10, 397–409 (2009).

    Article  CAS  Google Scholar 

  4. Lupien, S. J., McEwen, B. S., Gunnar, M. R. & Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Rev. Neurosci. 10, 434–445 (2009). This is an excellent account of the effects of stress suffered across the lifespan and its impact on brain development, function and the emergence of psychiatric vulnerabilities. In some respects, this is the 'non-social counterpart' of this Review.

    Article  CAS  Google Scholar 

  5. McEwen, B. S. The ever-changing brain: cellular and molecular mechanisms for the effects of stressful experiences. Dev. Neurobiol. 72, 878–890 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cannon, W. B. Bodily Changes in Pain, Hunger, Fear and Rage: an Account of Recent Researches into the Function of Emotional Excitement. (D. Appleton and Co., 1915).

    Book  Google Scholar 

  7. Burkle, F. M. Jr, Argent, A. C., Kissoon, N. & Task Force for Pediatric Emergency Mass Critical Care. The reality of pediatric emergency mass critical care in the developing world. Pediatr. Crit. Care Med. 12, S169–S179 (2011).

    Article  PubMed  Google Scholar 

  8. Wilkinson, R. Why is violence more common where inequality is greater? Ann. NY Acad. Sci. 1036, 1–12 (2004).

    Article  PubMed  Google Scholar 

  9. Nemeroff, C. B. & Vale, W. W. The neurobiology of depression: inroads to treatment and new drug discovery. J. Clin. Psychiatry 66 (Suppl. 7), 5–13 (2005).

    CAS  PubMed  Google Scholar 

  10. Kennedy, D. P. & Adolphs, R. The social brain in psychiatric and neurological disorders. Trends Cogn. Sci. 16, 559–572 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. de Almeida, R. M. & Miczek, K. A. Aggression escalated by social instigation or by discontinuation of reinforcement (“frustration”) in mice: inhibition by anpirtoline: a 5HT1B receptor agonist. Neuropsychopharmacology 27, 171–181 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi, A. et al. Behavioral characterization of escalated aggression induced by GABAB receptor activation in the dorsal raphe nucleus. Psychopharmacol. 224, 155–166 (2012).

    Article  CAS  Google Scholar 

  13. van der Kooij, M. A. et al. Impaired hippocampal neuroligin-2 function by chronic stress or synthetic peptide treatment is linked to social deficits and increased aggression. Neuropsychopharmacology 39, 1148–1158 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. van der Kooij, M. A. et al. Role for MMP9 in stress-induced downregulation of nectin-3 in hippocampal CA1 and associated behavioural alterations. Nature Commun. 5, 4995 (2014). This study implicates a new molecular cascade in the hippocampus that mediates the effects of chronic stress on sociability and cognition.

    Article  CAS  Google Scholar 

  15. Wood, G. E., Young, L. T., Reagan, L. P. & McEwen, B. S. Acute and chronic restraint stress alter the incidence of social conflict in male rats. Horm. Behav. 43, 205–213 (2003).

    Article  PubMed  Google Scholar 

  16. Castro, J. E. et al. Personality traits in rats predict vulnerability and resilience to developing stress-induced depression-like behaviors, HPA axis hyper-reactivity and brain changes in pERK1/2 activity. Psychoneuroendocrinology 37, 1209–1223 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Berton, O. et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311, 864–868 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Van den Berg, C. L. et al. Isolation changes the incentive value of sucrose and social behaviour in juvenile and adult rats. Behav. Brain Res. 106, 133–142 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Harris, B. N., de Jong, T. R., Yang, V. & Saltzman, W. Chronic variable stress in fathers alters paternal and social behavior but not pup development in the biparental California mouse (Peromyscus californicus). Horm. Behav. 64, 799–811 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mineur, Y. S., Prasol, D. J., Belzung, C. & Crusio, W. E. Agonistic behavior and unpredictable chronic mild stress in mice. Behav. Genet. 33, 513–519 (2003).

    Article  PubMed  Google Scholar 

  21. Yohe, L. R., Suzuki, H. & Lucas, L. R. Aggression is suppressed by acute stress but induced by chronic stress: immobilization effects on aggression, hormones, and cortical 5HT1B/ striatal dopamine D2 receptor density. Cogn. Affect Behav. Neurosci. 12, 446–459 (2012).

    Article  PubMed  Google Scholar 

  22. Malick, J. B. The pharmacology of isolation-induced aggressive behavior in mice. Curr. Dev. Psychopharmacol. 5, 1–27 (1979).

    CAS  PubMed  Google Scholar 

  23. Beerda, B., Schilder, M. B., van Hooff, J. A., de Vries, H. W. & Mol, J. A. Chronic stress in dogs subjected to social and spatial restriction. I. Behavioral responses. Physiol. Behav. 66, 233–242 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Blanchard, D. C. et al. Visible burrow system as a model of chronic social stress — behavioral and neuroendocrine correlates. Psychoneuroendocrinology 20, 117–134 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Hsu, Y., Earley, R. L. & Wolf, L. L. Modulation of aggressive behaviour by fighting experience: mechanisms and contest outcomes. Biol. Rev. Camb. Philos. Soc. 81, 33–74 (2006).

    Article  PubMed  Google Scholar 

  26. Huhman, K. L. et al. Conditioned defeat in male and female Syrian hamsters. Horm. Behav. 44, 293–299 (2003).

    Article  PubMed  Google Scholar 

  27. Potegal, M., Huhman, K., Moore, T. & Meyerhoff, J. Conditioned defeat in the Syrian golden hamster (Mesocricetus auratus). Behav. Neural Biol. 60, 93–102 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Nephew, B. C. & Bridges, R. S. Effects of chronic social stress during lactation on maternal behavior and growth in rats. Stress 14, 677–684 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Miczek, K. A., de Boer, S. F. & Haller, J. Excessive aggression as model of violence: a critical evaluation of current preclinical methods. Psychopharmacology 226, 445–458 (2013). This study updates the criteria by which antisocial features can be differentiated in animals, presents in detail three such models and evaluates their translational value for understanding human violence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. de Souza, M. A. et al. Prenatal stress produces social behavior deficits and alters the number of oxytocin and vasopressin neurons in adult rats. Neurochem. Res. 38, 1479–1489 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Franklin, T. B., Linder, N., Russig, H., Thony, B. & Mansuy, I. M. Influence of early stress on social abilities and serotonergic functions across generations in mice. PLoS ONE 6, e21842 (2011). This is the first study to show that early life stress can change social behaviour in individuals across generations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu, P. et al. Early social deprivation impairs pair bonding and alters serum corticosterone and the NAcc dopamine system in mandarin voles. Psychoneuroendocrinology 38, 3128–3138 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Naert, A., Callaerts-Vegh, Z. & D'Hooge, R. Nocturnal hyperactivity, increased social novelty preference and delayed extinction of fear responses in post-weaning socially isolated mice. Brain Res. Bull. 85, 354–362 (2011).

    Article  PubMed  Google Scholar 

  34. Vidal, J., Buwalda, B. & Koolhaas, J. M. Male Wistar rats are more susceptible to lasting social anxiety than wild-type Groningen rats following social defeat stress during adolescence. Behav. Processes 88, 76–80 (2011).

    Article  PubMed  Google Scholar 

  35. Márquez, C. et al. Peripuberty stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and increased prefrontal MAOA gene expression. Transl. Psychiatry 3, e216 (2013). This study presents strong evidence for a role of neurobiological mechanisms in the link from early adversity to antisocial behaviours, and shows that animal models recapitulate changes in brain function that resemble those of individuals with borderline personality disorder.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wei, B. et al. Neonatal tactile stimulation alleviates the negative effects of neonatal isolation on novel object recognition, sociability and neuroendocrine levels in male adult mandarin voles (Microtus mandarinus). Physiol. Behav. 112–113, 14–22 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Jia, R., Tai, F., An, S., Zhang, X. & Broders, H. Effects of neonatal paternal deprivation or early deprivation on anxiety and social behaviors of the adults in mandarin voles. Behav. Processes 82, 271–278 (2009).

    Article  PubMed  Google Scholar 

  38. Workman, J. L., Fonken, L. K., Gusfa, J., Kassouf, K. M. & Nelson, R. J. Post-weaning environmental enrichment alters affective responses and interacts with behavioral testing to alter nNOS immunoreactivity. Pharmacol. Biochem. Behav. 100, 25–32 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Wommack, J. C., Salinas, A., Melloni, R. H. Jr & Delville, Y. Behavioural and neuroendocrine adaptations to repeated stress during puberty in male golden hamsters. J. Neuroendocrinol. 16, 767–775 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Shimozuru, M., Kikusui, T., Takeuchi, Y. & Mori, Y. Effects of isolation-rearing on the development of social behaviors in male Mongolian gerbils (Meriones unguiculatus). Physiol. Behav. 94, 491–500 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Patin, V., Lordi, B., Vincent, A. & Caston, J. Effects of prenatal stress on anxiety and social interactions in adult rats. Brain Res. Dev. Brain Res. 160, 265–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Veenema, A. H., Bredewold, R. & Neumann, I. D. Opposite effects of maternal separation on intermale and maternal aggression in C57BL/6 mice: link to hypothalamic vasopressin and oxytocin immunoreactivity. Psychoneuroendocrinology 32, 437–450 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Veenema, A. H., Blume, A., Niederle, D., Buwalda, B. & Neumann, I. D. Effects of early life stress on adult male aggression and hypothalamic vasopressin and serotonin. Eur. J. Neurosci. 24, 1711–1720 (2006). This study was the first to show that early life adversity in rodents can lead to increased aggression, and identified changes in social neuropeptides and serotonin as potential mediators.

    Article  PubMed  Google Scholar 

  44. Day, H. D., Seay, B. M., Hale, P. & Hendricks, D. Early social deprivation and the ontogeny of unrestricted social behavior in the laboratory rat. Dev. Psychobiol. 15, 47–59 (1982).

    Article  CAS  PubMed  Google Scholar 

  45. Cunningham, R. L. & McGinnis, M. Y. Prepubertal social subjugation and anabolic androgenic steroid-induced aggression in male rats. J. Neuroendocrinol. 20, 997–1005 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Cumming, M. J., Thompson, M. A. & McCormick, C. M. Adolescent social instability stress increases aggression in a food competition task in adult male Long-Evans rats. Dev. Psychobiol. 56, 1575–1588 (2014).

    Article  PubMed  Google Scholar 

  47. Toth, M., Halasz, J., Mikics, E., Barsy, B. & Haller, J. Early social deprivation induces disturbed social communication and violent aggression in adulthood. Behav. Neurosci. 122, 849–854 (2008).

    Article  PubMed  Google Scholar 

  48. Cordero, M. I. et al. Evidence for biological roots in the transgenerational transmission of intimate partner violence. Transl. Psychiatry 2, e106 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Delville, Y., Melloni, R. H. & Ferris, C. F. Behavioral and neurobiological consequences of social subjugation during puberty in golden hamsters. J. Neurosci. 18, 2667–2672 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wommack, J. C., Taravosh-Lahn, K., David, J. T. & Delville, Y. Repeated exposure to social stress alters the development of agonistic behavior in male golden hamsters. Hormones Behav. 43, 229–236 (2003).

    Article  Google Scholar 

  51. Hollis, F., Isgor, C. & Kabbaj, M. The consequences of adolescent chronic unpredictable stress exposure on brain and behavior. Neuroscience 249, 232–241 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Zimmerberg, B. & Sageser, K. A. Comparison of two rodent models of maternal separation on juvenile social behavior. Front. Psychiatry 2, 39 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kempes, M. M., Gulickx, M. M., van Daalen, H. J., Louwerse, A. L. & Sterck, E. H. Social competence is reduced in socially deprived rhesus monkeys (Macaca mulatta). J. Comp. Psychol. 122, 62–67 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Gluckman, P. D., Hanson, M. A. & Beedle, A. S. Early life events and their consequences for later disease: A life history and evolutionary perspective. Am. J. Hum. Biol. 19, 1–19 (2007).

    Article  PubMed  Google Scholar 

  55. Provencal, N. & Binder, E. B. The effects of early life stress on the epigenome: From the womb to adulthood and even before. Exp. Neurol. http://dx.doi.org/10.1016/j.expneurol.2014.09.001 (2014).

  56. Babb, J. A., Carini, L. M., Spears, S. L. & Nephew, B. C. Transgenerational effects of social stress on social behavior, corticosterone, oxytocin, and prolactin in rats. Horm. Behav. 65, 386–393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gapp, K., von Ziegler, L., Tweedie-Cullen, R. Y. & Mansuy, I. M. Early life epigenetic programming and transmission of stress-induced traits in mammals: how and when can environmental factors influence traits and their transgenerational inheritance? Bioessays 36, 491–502 (2014).

    Article  PubMed  Google Scholar 

  58. de Kloet, E. R., Karst, H. & Joels, M. Corticosteroid hormones in the central stress response: Quick-and-slow. Front. Neuroendocrinol. 29, 268–272 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Haller, J., Mikics, E. & Makara, G. B. The effects of non-genomic glucocorticoid mechanisms on bodily functions and the central neural system. A critical evaluation of findings. Front. Neuroendocrinol. 29, 273–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Groeneweg, F. L., Karst, H., de Kloet, E. R. & Joels, M. Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Mol. Cell Endocrinol. 350, 299–309 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Makara, G. B. & Haller, J. Non-genomic effects of glucocorticoids in the neural system - Evidence, mechanisms and implications. Progress Neurobiol. 65, 367–390 (2001).

    Article  CAS  Google Scholar 

  62. Meaney, M. J. et al. Early environmental regulation of forebrain glucocorticoid receptor gene expression: Implications for adrenocortical responses to stress. Dev. Neurosci. 18, 49–72 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Welberg, L. A. M. & Seckl, J. R. Prenatal stress, glucocorticoids and the programming of the brain. J. Neuroendocrinol. 13, 113–128 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Rees, S. L., Steiner, M. & Fleming, A. S. Early deprivation, but not maternal separation, attenuates rise in corticosterone levels after exposure to a novel environment in both juvenile and adult female rats. Behav. Brain Res. 175, 383–391 (2006). This study is important because it showed for the first time that apparently minor technical details of stress exposure have substantial effects on the long-term consequences of stressors. In particular, the authors directly compared the maternal separation and early deprivation models (neonatal separation from the dam and from both the dam and cage-mates, respectively).

    Article  CAS  PubMed  Google Scholar 

  65. Toth, M., Mikics, E., Tulogdi, A., Aliczki, M. & Haller, J. Post-weaning social isolation induces abnormal forms of aggression in conjunction with increased glucocorticoid and autonomic stress responses. Hormones Behav. 60, 28–36 (2011).

    Article  CAS  Google Scholar 

  66. Leshner, A. I. & Schwartz, S. M. Neonatal corticosterone treatment increases submissiveness in adulthood in mice. Physiol. Behav. 19, 163–165 (1977).

    Article  CAS  PubMed  Google Scholar 

  67. Veenit, V., Cordero, M. I. & Sandi, C. Increased corticosterone in peripubertal rats leads to long-lasting alterations in social exploration and aggression. Front Behav. Neurosci. 7, 26 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Poirier, G., Imamura, N., Zanoletti, O. & Sandi, C. Social deficits induced by peripubertal stress in rats are reversed by resveratrol. J. Psychiatr. Res. 57, 157–164 (2014).

    Article  PubMed  Google Scholar 

  69. Tzanoulinou, S., Riccio, O., de Boer, M. W. & Sandi, C. Peripubertal stress-induced behavioral changes are associated with altered expression of genes involved in excitation and inhibition in the amygdala. Transl. Psychiatry 4, e410 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tzanoulinou, S. et al. Long-term behavioral programming induced by peripuberty stress in rats is accompanied by GABAergic-related alterations in the amygdala. PLoS ONE 9, e94666 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mikics, É., Kruk, M. R. & Haller, J. Genomic and non-genomic effects of glucocorticoids on aggressive behavior in male rats. Psychoneuroendocrinology 29, 618–635 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Haller, J. & Kruk, M. R. Normal and abnormal aggression: human disorders and novel laboratory models. Neurosci. Biobehavioral Rev. 30, 292–303 (2006).

    Article  Google Scholar 

  73. File, S. E., Vellucci, S. V. & Wendlandt, S. Corticosterone — an anxiogenic or an anxiolytic agent? J. Pharm. Pharmacol. 31, 300–305 (1979).

    Article  CAS  PubMed  Google Scholar 

  74. Haller, J., van de Schraaf, J. & Kruk, M. R. Deviant forms of aggression in glucocorticoid hyporeactive rats: a model for 'pathological' aggression? J. Neuroendocrinol. 13, 102–107 (2001). This was the first study to demonstrate that the inhibition of glucocorticoid production induces qualitative changes in aggressive behaviour, to propose that these changes were abnormal and to model aspects of human violence. It was also the first to propose criteria for differentiating normal and abnormal forms of attack in rodents.

    Article  CAS  PubMed  Google Scholar 

  75. Barik, J. et al. Chronic stress triggers social aversion via glucocorticoid receptor in dopaminoceptive neurons. Science 339, 332–335 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Bevilacqua, L. et al. Interaction between FKBP5 and childhood trauma and risk of aggressive behavior. Arch. Gen. Psychiatry 69, 62–70 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Buchmann, A. F. et al. Moderating role of FKBP5 genotype in the impact of childhood adversity on cortisol stress response during adulthood. Eur. Neuropsychopharmacol 24, 837–845 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Klengel, T. et al. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nature Neurosci. 16, 33–41 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Insel, T. R. & Fernald, R. D. How the brain processes social information: searching for the social brain. Annu. Rev. Neurosci. 27, 697–722 (2004). This is the first review to explicitly focus on the concept of the social brain. It analyses socially relevant neural systems from animals to humans, and encompasses all aspects of social behaviour from perception to action.

    Article  CAS  PubMed  Google Scholar 

  80. Kas, M. J., Modi, M. E., Saxe, M. D. & Smith, D. G. Advancing the discovery of medications for autism spectrum disorder using new technologies to reveal social brain circuitry in rodents. Psychopharmacology 231, 1147–1165 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Siegel, A., Roeling, T. A. P., Gregg, T. R. & Kruk, M. R. Neuropharmacology of brain-stimulation-evoked aggression. Neurosci. Biobehav. Rev. 23, 359–389 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Yu, R. J., Mobbs, D., Seymour, B., Rowe, J. B. & Calder, A. J. The neural signature of escalating frustration in humans. Cortex 54, 165–178 (2014).

    Article  PubMed  Google Scholar 

  83. White, S. F., Brislin, S. J., Sinclair, S. & Blair, J. R. Punishing unfairness: rewarding or the organization of a reactively aggressive response? Hum. Brain Mapp. 35, 2137–2147 (2014).

    Article  PubMed  Google Scholar 

  84. Glenn, A. L. & Raine, A. Neurocriminology: implications for the punishment, prediction and prevention of criminal behaviour. Nature Rev. Neurosci. 15, 54–63 (2014).

    Article  CAS  Google Scholar 

  85. Bruhl, A. B. et al. Increased cortical thickness in a frontoparietal network in social anxiety disorder. Hum. Brain Mapp. 35, 2966–2977 (2014).

    Article  PubMed  Google Scholar 

  86. Blair, R. J. Dysfunctions of medial and lateral orbitofrontal cortex in psychopathy. Ann. NY Acad. Sci. 1121, 461–479 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Gudsnuk, K. & Champagne, F. A. Epigenetic influence of stress and the social environment. ILAR J. 53, 279–288 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Johnson, M. H., Grossmann, T. & Cohen Kadosh, K. Mapping functional brain development: building a social brain through interactive specialization. Dev. Psychol. 45, 151–159 (2009).

    Article  PubMed  Google Scholar 

  89. McEwen, B. S. Allostasis and allostatic load: implications for neuropsychopharmacology. Neuropsychopharmacology 22, 108–124 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Buss, C., Davis, E. P., Muftuler, L. T., Head, K. & Sandman, C. A. High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6-9-year-old children. Psychoneuroendocrinology 35, 141–153 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sandman, C. A. & Davis, E. P. Neurobehavioral risk is associated with gestational exposure to stress hormones. Expert Rev. Endocrinol. Metab. 7, 445–459 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tobe, I. et al. Effects of repeated maternal stress on FOS expression in the hypothalamic paraventricular nucleus of fetal rats. Neuroscience 134, 387–395 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Fujioka, T. et al. The effects of prenatal stress on the development of hypothalamic paraventricular neurons in fetal rats. Neuroscience 92, 1079–1088 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Mychasiuk, R., Gibb, R. & Kolb, B. Prenatal bystander stress induces neuroanatomical changes in the prefrontal cortex and hippocampus of developing rat offspring. Brain Res. 1412, 55–62 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Zuloaga, D. G. et al. Perinatal dexamethasone-induced alterations in apoptosis within the hippocampus and paraventricular nucleus of the hypothalamus are influenced by age and sex. J. Neurosci. Res. 90, 1403–1412 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. McEwen, B. S. Stress, sex, and neural adaptation to a changing environment: mechanisms of neuronal remodeling. Ann. NY Acad. Sci. 1204, E38–E59 (2010).

    Article  PubMed  Google Scholar 

  97. Sapolsky, R. M. Stress and plasticity in the limbic system. Neurochem. Res. 28, 1735–1742 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Wellman, C. L. Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. J. Neurobiol. 49, 245–253 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Baudin, A. et al. Maternal deprivation induces deficits in temporal memory and cognitive flexibility and exaggerates synaptic plasticity in the rat medial prefrontal cortex. Neurobiol. Learn. Mem. 98, 207–214 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Brenhouse, H. C., Lukkes, J. L. & Andersen, S. L. Early life adversity alters the developmental profiles of addiction-related prefrontal cortex circuitry. Brain Sci. 3, 143–158 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Chocyk, A. et al. Early-life stress affects the structural and functional plasticity of the medial prefrontal cortex in adolescent rats. Eur. J. Neurosci. 38, 2089–2107 (2013).

    Article  PubMed  Google Scholar 

  102. Cooke, B. M., Chowanadisai, W. & Breedlove, S. M. Post-weaning social isolation of male rats reduces the volume of the medial amygdala and leads to deficits in adult sexual behavior. Behav. Brain Res. 117, 107–113 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Schubert, M. I., Porkess, M. V., Dashdorj, N., Fone, K. C. & Auer, D. P. Effects of social isolation rearing on the limbic brain: a combined behavioral and magnetic resonance imaging volumetry study in rats. Neuroscience 159, 21–30 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Bastida, C. C. et al. Chronic social stress in puberty alters appetitive male sexual behavior and neural metabolic activity. Horm. Behav. 66, 220–227 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Buwalda, B., Stubbendorff, C., Zickert, N. & Koolhaas, J. M. Adolescent social stress does not necessarily lead to a compromised adaptive capacity during adulthood: a study on the consequences of social stress in rats. Neuroscience 249, 258–270 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Weathington, J. M., Strahan, J. A. & Cooke, B. M. Social experience induces sex-specific fos expression in the amygdala of the juvenile rat. Horm. Behav. 62, 154–161 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Irles, C., Nava-Kopp, A. T., Moran, J. & Zhang, L. Neonatal maternal separation upregulates protein signalling for cell survival in rat hypothalamus. Stress 17, 275–284 (2014). Most studies focus on brain dysfunctions that develop in the prefrontal cortex and amygdala, whereas this interesting report reveals that early stressors promote cell survival, suppress cell death and increase cell density in the hypothalamus, an important locus of control of aggressiveness. It suggests that disrupted sociality can not only ensue from deficits in brain circuits that control cognitive and emotional functions but also from structural gains in areas that are involved in the execution of behavioural acts.

    Article  PubMed  Google Scholar 

  108. Wang, H. & Gondre-Lewis, M. C. Prenatal nicotine and maternal deprivation stress deregulate the development of CA1, CA3, and dentate gyrus neurons in hippocampus of infant rats. PLoS ONE 8, e65517 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Haller, J. The neurobiology of abnormal manifestations of aggression—a review of hypothalamic mechanisms in cats, rodents, and humans. Brain Res. Bull. 93, 97–109 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Desbonnet, L., Garrett, L., Daly, E., McDermott, K. W. & Dinan, T. G. Sexually dimorphic effects of maternal separation stress on corticotrophin-releasing factor and vasopressin systems in the adult rat brain. Int. J. Dev. Neurosci. 26, 259–268 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Humm, J. L., Lambert, K. G. & Kinsley, C. H. Paucity of cfos expression in the medial preoptic area of prenatally stressed male rats following exposure to sexually receptive females. Brain Res. Bull. 37, 363–368 (1995).

    Article  CAS  PubMed  Google Scholar 

  112. Jahng, J. W. et al. Mesolimbic dopaminergic activity responding to acute stress is blunted in adolescent rats that experienced neonatal maternal separation. Neuroscience 171, 144–152 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Chung, K. K., Martinez, M. & Herbert, J. cfos expression, behavioural, endocrine and autonomic responses to acute social stress in male rats after chronic restraint: modulation by serotonin. Neuroscience 95, 453–463 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Kollack-Walker, S., Don, C., Watson, S. J. & Akil, H. Differential expression of cfos mRNA within neurocircuits of male hamsters exposed to acute or chronic defeat. J. Neuroendocrinol. 11, 547–559 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Martinez, M., Phillips, P. J. & Herbert, J. Adaptation in patterns of cfos expression in the brain associated with exposure to either single or repeated social stress in male rats. Eur. J. Neurosci. 10, 20–33 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Fan, Y. et al. Early life stress modulates amygdala-prefrontal functional connectivity: implications for oxytocin effects. Hum. Brain Mapp. 35, 5328–5339 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Meyer-Lindenberg, A. et al. Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc. Natl Acad. Sci. USA 103, 6269–6274 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pezawas, L. et al. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nature Neurosci. 8, 828–834 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Toth, M. et al. The neural background of hyper-emotional aggression induced by post-weaning social isolation. Behav. Brain Res. 233, 120–129 (2012).

    Article  PubMed  Google Scholar 

  120. Veit, R. et al. Aberrant social and cerebral responding in a competitive reaction time paradigm in criminal psychopaths. Neuroimage 49, 3365–3372 (2010).

    Article  PubMed  Google Scholar 

  121. Tulogdi, A. et al. Brain mechanisms involved in predatory aggression are activated in a laboratory model of violent intra-specific aggression. Eur. J. Neurosci. 32, 1744–1753 (2010).

    Article  PubMed  Google Scholar 

  122. Tulogdi, A. et al. Neural mechanisms of predatory aggression in rats — implications for abnormal intraspecific aggression. Behav. Brain Res. 283, 108–115 (2015).

    Article  PubMed  Google Scholar 

  123. Vitiello, B., Behar, D., Hunt, J., Stoff, D. & Ricciuti, A. Subtyping aggression in children and adolescents. J. Neuropsychiatry Clin. Neurosci. 2, 189–192 (1990).

    Article  CAS  PubMed  Google Scholar 

  124. Kinnally, E. L. et al. Serotonin transporter expression is predicted by early life stress and is associated with disinhibited behavior in infant rhesus macaques. Genes Brain Behav. 9, 45–52 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Higley, J. D. et al. Cerebrospinal fluid monoamine and adrenal correlates of aggression in free-ranging rhesus monkeys. Arch. Gen. Psychiatry 49, 436–441 (1992).

    Article  CAS  PubMed  Google Scholar 

  126. Cao, J. L. et al. Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action. J. Neurosci. 30, 16453–16458 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Russo, S. J. & Nestler, E. J. The brain reward circuitry in mood disorders. Nature Rev. Neurosci. 14, 609–625 (2013).

    Article  CAS  Google Scholar 

  128. Miczek, K. A., Covington, H. E. 3rd, Nikulina, E. M. Jr & Hammer, R. P. Aggression and defeat: persistent effects on cocaine self-administration and gene expression in peptidergic and aminergic mesocorticolimbic circuits. Neurosci. Biobehav Rev. 27, 787–802 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Chaudhury, D. et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493, 532–536 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Francis, T. C. et al. Nucleus accumbens medium spiny neuron subtypes mediate depression-related outcomes to social defeat stress. Biol. Psychiatry 77 212–222 (2015).

    Article  PubMed  Google Scholar 

  131. Trainor, B. C. Stress responses and the mesolimbic dopamine system: social contexts and sex differences. Horm. Behav. 60, 457–469 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Campi, K. L., Greenberg, G. D., Kapoor, A., Ziegler, T. E. & Trainor, B. C. Sex differences in effects of dopamine D1 receptors on social withdrawal. Neuropharmacology 77, 208–216 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Cabib, S. & Puglisi-Allegra, S. The mesoaccumbens dopamine in coping with stress. Neurosci. Biobehav Rev. 36, 79–89 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Lucas, L. R. et al. Repeated exposure to social stress has long-term effects on indirect markers of dopaminergic activity in brain regions associated with motivated behavior. Neuroscience 124, 449–457 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Caspi, A. et al. Role of genotype in the cycle of violence in maltreated children. Science 297, 851–854 (2002). A landmark study showing that early life stress interacts with specific gene polymorphisms (in this case the MAOA gene), increasing the risk of developing violent behaviours.

    Article  CAS  PubMed  Google Scholar 

  136. Schwandt, M. L. et al. Gene-environment interactions and response to social intrusion in male and female rhesus macaques. Biol. Psychiatry 67, 323–330 (2010).

    Article  PubMed  Google Scholar 

  137. Conway, C. C. et al. Coaction of stress and serotonin transporter genotype in predicting aggression at the transition to adulthood. J. Clin. Child Adolesc. Psychol. 41, 53–63 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Verona, E., Joiner, T. E., Johnson, F. & Bender, T. W. Gender specific gene-environment interactions on laboratory-assessed aggression. Biol. Psychol. 71, 33–41 (2006).

    Article  PubMed  Google Scholar 

  139. Lawford, B. R., Young, R., Noble, E. P., Kann, B. & Ritchie, T. The D-2 dopamine receptor (DRD2) gene is associated with comorbid depression, anxiety and social dysfunction in untreated veterans with post-traumatic stress disorder. Eur. Psychiatry 21, 180–185 (2006).

    Article  PubMed  Google Scholar 

  140. Zohsel, K. et al. Mothers' prenatal stress and their children's antisocial outcomes — a moderating role for the dopamine receptor D4 (DRD4) gene. J. Child Psychol. Psychiatry 55, 69–76 (2014).

    Article  PubMed  Google Scholar 

  141. Buchmann, A. F. et al. Interaction between prenatal stress and dopamine D4 receptor genotype in predicting aggression and cortisol levels in young adults. Psychopharmacology 231, 3089–3097 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Lloyd, R. B. & Nemeroff, C. B. The role of corticotropin-releasing hormone in the pathophysiology of depression: therapeutic implications. Curr. Top. Med. Chem. 11, 609–617 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Maestripieri, D., Lindell, S. G., Ayala, A., Gold, P. W. & Higley, J. D. Neurobiological characteristics of rhesus macaque abusive mothers and their relation to social and maternal behavior. Neurosci. Biobehav Rev. 29, 51–57 (2005).

    Article  PubMed  Google Scholar 

  144. Veenit, V., Riccio, O. & Sandi, C. CRHR1 links peripuberty stress with deficits in social and stress-coping behaviors. J. Psychiatr. Res. 53, 1–7 (2014).

    Article  PubMed  Google Scholar 

  145. Ivy, A. S., Brunson, K. L., Sandman, C. & Baram, T. Z. Dysfunctional nurturing behavior in rat dams with limited access to nesting material: a clinically relevant model for early-life stress. Neuroscience 154, 1132–1142 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Sandi, C. et al. Chronic stress-induced alterations in amygdala responsiveness and behavior—modulation by trait anxiety and corticotropin-releasing factor systems. Eur. J. Neurosci. 28, 1836–1848 (2008).

    Article  PubMed  Google Scholar 

  147. Pournajafi-Nazarloo, H. et al. Stress differentially modulates mRNA expression for corticotrophin-releasing hormone receptors in hypothalamus, hippocampus and pituitary of prairie voles. Neuropeptides 43, 113–123 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Tazi, A. et al. Corticotropin-releasing factor antagonist blocks stress-induced fighting in rats. Regul. Pept. 18, 37–42 (1987).

    Article  CAS  PubMed  Google Scholar 

  149. Cooper, M. A. & Huhman, K. L. Corticotropin-releasing factor receptors in the dorsal raphe nucleus modulate social behavior in Syrian hamsters. Psychopharmacol. (Berl.) 194, 297–307 (2007).

    Article  CAS  Google Scholar 

  150. Bosch, O. J., Nair, H. P., Ahern, T. H., Neumann, I. D. & Young, L. J. The CRF system mediates increased passive stress-coping behavior following the loss of a bonded partner in a monogamous rodent. Neuropsychopharmacology 34, 1406–1415 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Hostetler, C. M. & Ryabinin, A. E. The CRF system and social behavior: a review. Front. Neurosci. 7, 92 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Neumann, I. D. & Landgraf, R. Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci. 35, 649–659 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Meyer-Lindenberg, A., Domes, G., Kirsch, P. & Heinrichs, M. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nature Rev. Neurosci. 12, 524–538 (2011).

    Article  CAS  Google Scholar 

  154. Cao, Y. et al. Neonatal paternal deprivation impairs social recognition and alters levels of oxytocin and estrogen receptor alpha mRNA expression in the MeA and NAcc, and serum oxytocin in mandarin voles. Horm. Behav. 65, 57–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Lukas, M. et al. The neuropeptide oxytocin facilitates pro-social behavior and prevents social avoidance in rats and mice. Neuropsychopharmacology 36, 2159–2168 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Timmer, M., Cordero, M. I., Sevelinges, Y. & Sandi, C. Evidence for a role of oxytocin receptors in the long-term establishment of dominance hierarchies. Neuropsychopharmacology 36, 2349–2356 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Cordero, M. I. & Sandi, C. Stress amplifies memory for social hierarchy. Front. Neurosci. 1, 175–184 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Lukas, M., Toth, I., Veenema, A. H. & Neumann, I. D. Oxytocin mediates rodent social memory within the lateral septum and the medial amygdala depending on the relevance of the social stimulus: male juvenile versus female adult conspecifics. Psychoneuroendocrinology 38, 916–926 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Lee, P. R., Brady, D. L., Shapiro, R. A., Dorsa, D. M. & Koenig, J. I. Prenatal stress generates deficits in rat social behavior: Reversal by oxytocin. Brain Res. 1156, 152–167 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Veenema, A. H. Toward understanding how early-life social experiences alter oxytocin- and vasopressin-regulated social behaviors. Horm. Behav. 61, 304–312 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Lukas, M., Bredewold, R., Landgraf, R., Neumann, I. D. & Veenema, A. H. Early life stress impairs social recognition due to a blunted response of vasopressin release within the septum of adult male rats. Psychoneuroendocrinology 36, 843–853 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. Heim, C. et al. Lower CSF oxytocin concentrations in women with a history of childhood abuse. Mol. Psychiatry 14, 954–958 (2009).

    Article  CAS  PubMed  Google Scholar 

  163. Bertsch, K., Schmidinger, I., Neumann, I. D. & Herpertz, S. C. Reduced plasma oxytocin levels in female patients with borderline personality disorder. Horm. Behav. 63, 424–429 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Smearman, E. L., Winiarski, D. A., Brennan, P. A., Najman, J. & Johnson, K. C. Social stress and the oxytocin receptor gene interact to predict antisocial behavior in an atrisk cohort. Dev. Psychopathol., 1–10 (2014).

  165. Zovkic, I. B., Meadows, J. P., Kaas, G. A. & Sweatt, J. D. Interindividual variability in stress susceptibility: a role for epigenetic mechanisms in PTSD. Front. Psychiatry 4, 60 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Weaver, I. C. et al. Epigenetic programming by maternal behavior. Nature Neurosci. 7, 847–854 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. Golden, S. A. et al. Epigenetic regulation of RAC1 induces synaptic remodeling in stress disorders and depression. Nature Med. 19, 337–344 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Hornung, O. P. & Heim, C. M. Gene-environment interactions and intermediate phenotypes: early trauma and depression. Front. Endocrinol. (Lausanne) 5, 14 (2014).

    Article  Google Scholar 

  169. Sandi, C. Stress and cognition. WIREs Cogn. Sci. 4, 245–261 (2013).

    Article  Google Scholar 

  170. Pinker, S. The Better Angels of our Nature (Viking, 2011).

    Google Scholar 

  171. Dang, C. P., Braeken, J., Colom, R., Ferrer, E. & Liu, C. Why is working memory related to intelligence? Different contributions from storage and processing. Memory 22, 426–441 (2014).

    Article  PubMed  Google Scholar 

  172. Vollhardt, J. R. & Staub, E. Inclusive altruism born of suffering: the relationship between adversity and prosocial attitudes and behavior toward disadvantaged outgroups. Am. J. Orthopsychiatry 81, 307–315 (2011).

    Article  PubMed  Google Scholar 

  173. Schreiter, S., Pijnenborg, G. H. M. & Aan Het Rot, M. Empathy in adults with clinical or subclinical depressive symptoms. J. Affect. Disord. 150, 1–16 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Nietlisbach, G., Maercker, A., Rossler, W. & Haker, H. Are empathic abilities impaired in posttraumatic stress disorder? Psychol. Rep. 106, 832–844 (2010).

    Article  PubMed  Google Scholar 

  175. Mazza, M. et al. Social cognition disorders in military police officers affected by posttraumatic stress disorder after the attack of An-Nasiriyah in Iraq 2006. Psychiatry Res. 198, 248–252 (2012).

    Article  PubMed  Google Scholar 

  176. Nazarov, A. et al. Theory of mind performance in women with posttraumatic stress disorder related to childhood abuse. Acta Psychiatr. Scand. 129, 193–201 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Sapolsky, R. M. The influence of social hierarchy on primate health. Science 308, 648–652 (2005). A pioneering work linking status in social hierarchy with different physiological outcomes.

    Article  CAS  PubMed  Google Scholar 

  178. Bushman, B. J., Wang, M. C. & Anderson, C. A. Is the curve relating temperature to aggression linear or curvilinear? Assaults and temperature in Minneapolis reexamined. J. Pers. Soc.Psychol. 89, 62–66 (2005).

    Article  PubMed  Google Scholar 

  179. Freeman, T. W. & Roca, V. Gun use, attitudes toward violence, and aggression among combat veterans with chronic posttraumatic stress disorder. J. Nerv. Mental Dis. 189, 317–320 (2001).

    Article  CAS  Google Scholar 

  180. Painuly, N., Sharan, P. & Mattoo, S. K. Relationship of anger and anger attacks with depression: a brief review. Eur. Arch. Psychiatry Clin. Neurosci. 255, 215–222 (2005).

    Article  PubMed  Google Scholar 

  181. Painuly, N., Sharan, P. & Mattoo, S. K. Antecedents, concomitants and consequences of anger attacks in depression. Psychiatry Res. 153, 39–45 (2007).

    Article  PubMed  Google Scholar 

  182. Bruce, L. C., Heimberg, R. G., Blanco, C., Schneier, F. R. & Liebowitz, M. R. Childhood maltreatment and social anxiety disorder: implications for symptom severity and response to pharmacotherapy. Depress. Anxiety 29, 131–138 (2012).

    Article  PubMed  Google Scholar 

  183. Roth, D. A., Coles, M. E. & Heimberg, R. G. The relationship between memories for childhood teasing and anxiety and depression in adulthood. J. Anxiety Disord. 16, 149–164 (2002).

    Article  PubMed  Google Scholar 

  184. Storch, E. A., Masia-Warner, C., Crisp, H. & Klein, R. G. Peer victimization and social anxiety in adolescence: A prospective study. Aggressive Behav. 31, 437–452 (2005).

    Article  Google Scholar 

  185. Merrifield, C., Balk, D. & Moscovitch, D. A. Self-portrayal concerns mediate the relationship between recalled teasing and social anxiety symptoms in adults with anxiety disorders. J. Anxiety Disord. 27, 456–460 (2013).

    Article  PubMed  Google Scholar 

  186. Kim-Cohen, J. et al. MAOA, maltreatment, and gene-environment interaction predicting children's mental health: new evidence and a meta-analysis. Mol. Psychiatry 11, 903–913 (2006).

    Article  CAS  PubMed  Google Scholar 

  187. Perepletchikova, F. & Kaufman, J. Emotional and behavioral sequelae of childhood maltreatment. Curr. Opin. Pediatr. 22, 610–615 (2010).

    PubMed  PubMed Central  Google Scholar 

  188. Eaves, L. J., Prom, E. C. & Silberg, J. L. The mediating effect of parental neglect on adolescent and young adult anti-sociality: a longitudinal study of twins and their parents. Behav. Genet. 40, 425–437 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Verona, E. & Sachs-Ericsson, N. The intergenerational transmission of externalizing behaviors in adult participants: the mediating role of childhood abuse. J. Consult Clin. Psychol. 73, 1135–1145 (2005).

    Article  PubMed  Google Scholar 

  190. McKinney, C. M., Caetano, R., Ramisetty-Mikler, S. & Nelson, S. Childhood family violence and perpetration and victimization of intimate partner violence: findings from a national population-based study of couples. Ann. Epidemiol. 19, 25–32 (2009).

    Article  PubMed  Google Scholar 

  191. Staub, E. & Vollhardt, J. Altruism born of suffering: the roots of caring and helping after victimization and other trauma. Am. J. Orthopsychiatry 78, 267–280 (2008).

    Article  PubMed  Google Scholar 

  192. von Dawans, B., Fischbacher, U., Kirschbaum, C., Fehr, E. & Heinrichs, M. The social dimension of stress reactivity acute stress increases prosocial behavior in humans. Psychol. Sci. 23, 651–660 (2012).

    Article  PubMed  Google Scholar 

  193. Vinkers, C. H. et al. Time-dependent changes in altruistic punishment following stress. Psychoneuroendocrinology 38, 1467–1475 (2013).

    Article  PubMed  Google Scholar 

  194. Gneezy, A. & Fessler, D. M. Conflict, sticks and carrots: war increases prosocial punishments and rewards. Proc. Biol. Sci. 279, 219–223 (2012).

    Article  PubMed  Google Scholar 

  195. Bauer, M., Cassar, A., Chytilova, J. & Henrich, J. War's enduring effects on the development of egalitarian motivations and ingroup biases. Psychol. Sci. 25, 47–57 (2014).

    Article  PubMed  Google Scholar 

  196. Gutman, D. A. & Nemeroff, C. B. Neurobiology of early life stress: rodent studies. Semin. Clin. Neuropsychiatry 7, 89–95 (2002).

    Article  PubMed  Google Scholar 

  197. Darnaudery, M. & Maccari, S. Epigenetic programming of the stress response in male and female rats by prenatal restraint stress. Brain Res. Rev. 57, 571–585 (2008).

    Article  CAS  PubMed  Google Scholar 

  198. Ruedi-Bettschen, D. et al. Early deprivation leads to altered behavioural, autonomic and endocrine responses to environmental challenge in adult Fischer rats. Eur. J. Neurosci. 24, 2879–2893 (2006).

    Article  PubMed  Google Scholar 

  199. Sandi, C. Stress, cognitive impairment and cell adhesion molecules. Nature Rev. Neurosci. 5, 917–930 (2004).

    Article  CAS  Google Scholar 

  200. Bisaz, R. & Sandi, C. The role of NCAM in auditory fear conditioning and its modulation by stress: a focus on the amygdala. Genes. Brain Behav. 9, 353–364 (2010).

    Article  CAS  PubMed  Google Scholar 

  201. Kohl, C. et al. The interplay of conditional NCAM-knockout and chronic unpredictable stress leads to increased aggression in mice. Stress 16, 647–654 (2013).

    Article  CAS  PubMed  Google Scholar 

  202. Stork, O., Welzl, H., Cremer, H. & Schachner, M. Increased intermale aggression and neuroendocrine response in mice deficient for the neural cell adhesion molecule (NCAM). Eur. J. Neurosci. 9, 1117–1125 (1997).

    Article  CAS  PubMed  Google Scholar 

  203. Calandreau, L., Márquez, C., Bisaz, R., Fantin, M. & Sandi, C. Differential impact of polysialyltransferase ST8SiaII and ST8iaIV knockout on social interaction and aggression. Genes Brain Behav. 9, 958–967 (2010).

    Article  CAS  PubMed  Google Scholar 

  204. Gregg, T. R. & Siegel, A. Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression. Prog. Neuropsychopharmacol. Biol. Psychiatry 25, 91–140 (2001).

    Article  CAS  PubMed  Google Scholar 

  205. Sudhof, T. C. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455, 903–911 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Gogolla, N. et al. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J. Neurodev. Disord. 1, 172–181 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Karst, H. & Joels, M. Effect of chronic stress on synaptic currents in rat hippocampal dentate gyrus neurons. J. Neurophysiol. 89, 625–633 (2003).

    Article  PubMed  Google Scholar 

  209. Reagan, L. P. et al. Chronic restraint stress upregulates GLT1 mRNA and protein expression in the rat hippocampus: reversal by tianeptine. Proc. Natl Acad. Sci. USA 101, 2179–2184 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Hu, W., Zhang, M., Czeh, B., Flugge, G. & Zhang, W. Stress impairs GABAergic network function in the hippocampus by activating nongenomic glucocorticoid receptors and affecting the integrity of the parvalbumin-expressing neuronal network. Neuropsychopharmacology 35, 1693–1707 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Kohl, C. et al. Hippocampal neuroligin2 overexpression leads to reduced aggression and inhibited novelty reactivity in rats. PLoS ONE 8, e56871 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Ditzen, B. & Heinrichs, M. Psychobiology of social support: the social dimension of stress buffering. Restor. Neurol. Neurosci. 32, 149–162 (2014).

    PubMed  Google Scholar 

  213. Windle, R. J., Shanks, N., Lightman, S. L. & Ingram, C. D. Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats. Endocrinology 138, 2829–2834 (1997).

    Article  CAS  PubMed  Google Scholar 

  214. Waldherr, M. & Neumann, I. D. Centrally released oxytocin mediates mating-induced anxiolysis in male rats. Proc. Natl Acad. Sci. USA 104, 16681–16684 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Smith, A. S. & Wang, Z. Hypothalamic oxytocin mediates social buffering of the stress response. Biol. Psychiatry 76, 281–288 (2014).

    Article  CAS  PubMed  Google Scholar 

  216. Berardi, A. et al. An updated animal model capturing both the cognitive and emotional features of post-traumatic stress disorder (PTSD). Front. Behav. Neurosci. 8, 142 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Daskalakis, N. P. et al. Early experience of a novel-environment in isolation primes a fearful phenotype characterized by persistent amygdala activation. Psychoneuroendocrinology 39, 39–57 (2014). An interesting study showing that social buffering of stress is not only reflected in immediate effects but can also have long-term consequences when it occurs during early life.

    Article  PubMed  Google Scholar 

  218. Stamatakis, A., Diamantopoulou, A., Panagiotaropoulos, T., Raftogianni, A. & Stylianopoulou, F. Effects of an early experience involving training in a T-maze under either denial or receipt of expected reward through maternal contact. Front. Endocrinol. 4, 178 (2013).

    Article  Google Scholar 

  219. Rincon-Cortes, M. & Sullivan, R. M. Early life trauma and attachment: immediate and enduring effects on neurobehavioral and stress axis development. Front. Endocrinol. 5, 33 (2014).

    Google Scholar 

  220. Sarro, E. C., Wilson, D. A. & Sullivan, R. M. Maternal regulation of infant brain state. Curr. Biol. 24, 1664–1669 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Swiss National Science Foundation (31003AB-135710 and 31003A_152614; the NCCR 'The synaptic basis of mental diseases'), the Oak Foundation, the European Union (MEMSTICK, FP7HEALTHF2M2007201600), the Hungarian Academy of Sciences Distinguished Visiting Scientist Program and intramural funding from the Swiss Federal Insitute of Technology Lausanne (EPFL) to C.S. and ERC2011ADG294313 (SERRACO) grant to J.H. The authors thank members of their respective laboratories for their original scientific contributions to the work reviewed here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Sandi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Stress response

The activation of coordinated neurophysiological responses in the brain and periphery — that is, the sympathetic nervous system and the hypothalamic–pituitary–adrenal (HPA) axis — to restore homeostasis disturbed by environmental demands or stressors.

Stressors

Noxious stimuli that elicit a stress response.

Conspecifics

Individuals of the same species.

Social defeat

After confrontation between conspecific individuals, social defeat may be experienced by the losing individual. Its symptoms are submissive postures shown to the winner and the avoidance of social and aggressive contacts.

Antisociality

Agonistic behaviours that break behavioural 'rules' that have evolved to limit dangerous forms of aggression. They include excessive levels and displaced targeting of attack and deficient social communication.

Behavioural agitation

Rapid switches from one behaviour to another, including running around the perimeter of the cage, jumping, repeated self-grooming and/or performing repeated, stereotypy-like behaviours.

Offensive ambiguity

Increased aggression against small opponents together with decreased aggression against large opponents. It is also characterized by increased defensiveness against a background of increased offensiveness.

Instrumental aggression

A premeditated aggressive action that has a specific goal, such as material gain. It is associated with low emotional and physiological arousal, and these features also characterize animal analogues of this behaviour.

Extrahypothalamic CRH system

Neurons containing corticotropin-releasing hormone (CRH) and/or CRH receptors that have their cell bodies localized in brain regions other than the hypothalamus.

Epigenetic mechanisms

Changes in gene expression that do not arise from changes to the DNA sequence and that include alterations in DNA methylation, histone modifications and non-coding RNAs (microRNAs and long non-coding RNAs).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandi, C., Haller, J. Stress and the social brain: behavioural effects and neurobiological mechanisms. Nat Rev Neurosci 16, 290–304 (2015). https://doi.org/10.1038/nrn3918

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3918

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing