Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Development, evolution and pathology of neocortical subplate neurons

Key Points

  • The subplate zone is a highly dynamic structure that contains diverse cell populations that are derived from cortical (ventricular and subventricular zones) and extracortical (rostro-medial telencephalic wall and ganglionic eminence) sources. Interneurons may be underrepresented in the postnatal subplate.

  • Subplate cells in rodents and primates share similarities, such as an early birth date and their location below the cortical plate, but they exhibit marked differences in relative cell survival times, molecular expression profiles and cell morphologies.

  • Subplate cells pioneer axonal projections from the cortex to subcortical targets, but there are species differences in the targets that they innervate.

  • Ablation of the subplate by excitotoxicity or immunotoxicity impairs circuit-level maturation of the primary sensory cortex, and an absence of subplate neurons prevents thalamic afferents from crossing the pallial–subpallial boundary and invading the cortex.

  • Transcriptomic evidence highlights the relative maturity of embryonic and fetal subplate cells and suggests novel roles for subplate neurons in the secretion of various extracellular molecules involved in axon pathfinding, cell survival or differentiation, and synaptic plasticity.

  • Histological, MRI and transcriptomic evidence points towards a role for the subplate in schizophrenia and autism. Whether this is causal or a consequence of earlier malformations remains unclear.

Abstract

Subplate neurons have an essential role in cortical circuit formation. They are among the earliest formed neurons of the cerebral cortex, are located at the junction of white and grey matter, and are necessary for correct thalamocortical axon ingrowth. Recent transcriptomic studies have provided opportunities for monitoring and modulating selected subpopulations of these cells. Analyses of mouse lines expressing reporter genes have demonstrated novel, extracortical subplate neurogenesis and have shown how subplate cells are integrated under the influence of sensory activity into cortical and extracortical circuits. Recent studies have revealed that the subplate is involved in neurosecretion and modification of the extracellular milieu.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Compartments and zones of the developing human cerebral cortex.
Figure 2: Compartments and zones of the developing cerebral cortex in macaques and mice.
Figure 3: Origin and migratory routes of mouse subplate and other extracortical neurons.
Figure 4: Subplate cell morphology and dendritic remodelling.
Figure 5: Transient subplate developmental stages.
Figure 6: Mouse mutants with abnormal subplate position.

References

  1. 1

    Allendoerfer, K. L. & Shatz, C. J. The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu. Rev. Neurosci. 17, 185–218 (1994). A comprehensive review of the literature published at the time on the role of the subplate in thalamocortical connection formation.

    Article  CAS  PubMed  Google Scholar 

  2. 2

    Rakic, P. Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183, 425–427 (1974).

    Article  CAS  PubMed  Google Scholar 

  3. 3

    Price, D. J., Aslam, S., Tasker, L. & Gillies, K. Fates of the earliest generated cells in the developing murine neocortex. J. Comp. Neurol. 377, 414–422 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. 4

    Robertson, R. T. Do subplate neurons comprise a transient population of cells in developing neocortex of rats? J. Comp. Neurol. 426, 632–650 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. 5

    Hoerder-Suabedissen, A. & Molnár, Z. Molecular diversity of early-born subplate neurons. Cereb. Cortex 23, 1473–1483 (2013).

    Article  PubMed  Google Scholar 

  6. 6

    Moore, A. R. et al. Electrical excitability of early neurons in the human cerebral cortex during the second trimester of gestation. Cereb. Cortex 19, 1795–1805 (2009). The first evidence for the early electrophysiological maturity of subplate neurons in the human brain.

    Article  PubMed  Google Scholar 

  7. 7

    Luhmann, H. J., Reiprich, R. A., Hanganu, I. & Kilb, W. Cellular physiology of the neonatal rat cerebral cortex: intrinsic membrane properties, sodium and calcium currents. J. Neurosci. Res. 62, 574–584 (2000). The first evidence in rodents for the early functional maturation of subplate neurons.

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Kanold, P. O. & Shatz, C. J. Subplate neurons regulate maturation of cortical inhibition and outcome of ocular dominance plasticity. Neuron 51, 627–638 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. 9

    Hoerder-Suabedissen, A. et al. Novel markers reveal subpopulations of subplate neurons in the murine cerebral cortex. Cereb. Cortex 19, 1738–1750 (2009).

    Article  PubMed  Google Scholar 

  10. 10

    Hoerder-Suabedissen, A. et al. Expression profiling of mouse subplate reveals a dynamic gene network and disease association with autism and schizophrenia. Proc. Natl Acad. Sci. USA 110, 3555–3560 (2013). The first transcriptomic evidence for subplate involvement in neurodevelopmental diseases.

    Article  PubMed  Google Scholar 

  11. 11

    Pedraza, M., Hoerder-Suabedissen, A., Albert-Maestro, M. A., Molnár, Z. & De Carlos, J. A. Extracortical origin of some murine subplate cell populations. Proc. Natl Acad. Sci. USA 111, 8613–8618 (2014). Evidence for a novel, extracortical site of subplate neurogenesis, and the first evidence for co-generation of GABAergic and excitatory neurons in the same neuroepithelial compartment.

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Kanold, P. O. & Luhmann, H. J. The subplate and early cortical circuits. Annu. Rev. Neurosci. 33, 23–48 (2010). A comprehensive review of the circuit function and electrophysiological properties of the subplate and its constituent neurons.

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Reep, R. L. Cortical layer VII and persistent subplate cells in mammalian brains. Brain Behav. Evol. 56, 212–234 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Wang, W. Z. et al. Comparative aspects of subplate zone studied with gene expression in sauropsids and mammals. Cereb. Cortex 21, 2187–2203 (2011).

    Article  PubMed  Google Scholar 

  15. 15

    Montiel, J. F. et al. Hypothesis on the dual origin of the mammalian subplate. Front. Neuroanat. 5, 25 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Angevine, J. B. Jr & Sidman, R. L. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192, 766–768 (1961).

    Article  PubMed  Google Scholar 

  17. 17

    Luskin, M. B. & Shatz, C. J. Studies of the earliest-generated cells of the cat's visual cortex: cogeneration of subplate and marginal zones. J. Neurosci. 5, 1062–1075 (1985).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Valverde, F., Facal-Valverde, M. V., Santacana, M. & Heredia, M. Development and differentiation of early generated cells of sublayer VIb in the somatosensory cortex of the rat: a correlated Golgi and autoradiographic study. J. Comp. Neurol. 290, 118–140 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Kostovic, I. & Judas, M. The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatr. 99, 1119–1127 (2010).

    Article  PubMed  Google Scholar 

  20. 20

    Clowry, G., Molnár, Z. & Rakic, P. Renewed focus on the developing human neocortex. J. Anat. 217, 276–288 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Kostovic, I. & Rakic, P. Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J. Comp. Neurol. 297, 441–470 (1990). A highly detailed description of the different stages of subplate formation in the human cerebral cortex.

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Bayatti, N. et al. A molecular neuroanatomical study of the developing human neocortex from 8 to 17 postconceptional weeks revealing the early differentiation of the subplate and subventricular zone. Cereb. Cortex 18, 1536–1548 (2008).

    Article  PubMed  Google Scholar 

  23. 23

    Kostovic, I., Judas, M., Rados, M. & Hrabac, P. Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb. Cortex 12, 536–544 (2002).

    Article  PubMed  Google Scholar 

  24. 24

    Judas, M. et al. Structural, immunocytochemical, and MR imaging properties of periventricular crossroads of growing cortical pathways in preterm infants. AJNR Am. J. Neuroradiol. 26, 2671–2684 (2005).

    PubMed  Google Scholar 

  25. 25

    Rakic, P. Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 261, 467–471 (1976).

    Article  CAS  PubMed  Google Scholar 

  26. 26

    Lund, R. D. & Mustari, M. J. Development of the geniculocortical pathway in rats. J. Comp. Neurol. 173, 289–306 (1977).

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Wise, S. P. & Jones, E. G. Developmental studies of thalamocortical and commissural connections in the rat somatic sensory cortex. J. Comp. Neurol. 178, 187–208 (1978).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Kostovic, I. Prenatal development of nucleus basalis complex and related fiber systems in man: a histochemical study. Neuroscience 17, 1047–1077 (1986).

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Goldman-Rakic, P. S. Neuronal development and plasticity of association cortex in primates. Neurosci. Res. Program Bull. 20, 520–532 (1982).

    CAS  PubMed  Google Scholar 

  30. 30

    Schwartz, M. L. & Goldman-Rakic, P. S. Prenatal specification of callosal connections in rhesus monkey. J. Comp. Neurol. 307, 144–162 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    deAzevedo, L. C., Hedin-Pereira, C. & Lent, R. Callosal neurons in the cingulate cortical plate and subplate of human fetuses. J. Comp. Neurol. 386, 60–70 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Altman, J. & Bayer, S. A. Regional differences in the stratified transitional field and the honeycomb matrix of the developing human cerebral cortex. J. Neurocytol. 31, 613–632 (2002).

    Article  PubMed  Google Scholar 

  33. 33

    Corbett-Detig, J. et al. 3D global and regional patterns of human fetal subplate growth determined in utero. Brain Struct. Funct. 215, 255–263 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Wang, W. Z. et al. Subplate in the developing cortex of mouse and human. J. Anat. 217, 368–380 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Perkins, L. et al. Exploring cortical subplate evolution using magnetic resonance imaging of the fetal brain. Dev. Neurosci. 30, 211–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. 36

    Chun, J. J. & Shatz, C. J. The earliest-generated neurons of the cat cerebral cortex: characterization by MAP2 and neurotransmitter immunohistochemistry during fetal life. J. Neurosci. 9, 1648–1667 (1989).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Suarez-Sola, M. L. et al. Neurons in the white matter of the adult human neocortex. Front. Neuroanat. 3, 7 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Kostovic, I. & Rakic, P. Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J. Neurocytol. 9, 219–242 (1980).

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Angevine, A. B. Jr et al. Embryonic vertebrate central nervous system: revised terminology. Anat. Rec. 166, 257–261 (1970).

    Article  Google Scholar 

  40. 40

    Bystron, I., Blakemore, C. & Rakic, P. Development of the human cerebral cortex: Boulder Committee revisited. Nature Rev. Neurosci. 9, 110–122 (2008).

    Article  CAS  Google Scholar 

  41. 41

    Smart, I. H., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 12, 37–53 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Garcia-Moreno, F., Vasistha, N. A., Trevia, N., Bourne, J. A. & Molnár, Z. Compartmentalization of cerebral cortical germinal zones in a lissencephalic primate and gyrencephalic rodent. Cereb. Cortex 22, 482–492 (2012).

    Article  PubMed  Google Scholar 

  43. 43

    Cheung, A. F. et al. The subventricular zone is the developmental milestone of a 6-layered neocortex: comparisons in metatherian and eutherian mammals. Cereb. Cortex 20, 1071–1081 (2010).

    Article  PubMed  Google Scholar 

  44. 44

    Lui, J. H., Hansen, D. V. & Kriegstein, A. R. Development and evolution of the human neocortex. Cell 146, 18–36 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Vasistha, N. A. et al. Cortical and clonal contribution of Tbr2 expressing progenitors in the developing mouse brain. Cereb. Cortex http://dx.doi.org/10.1093/cercor/bhu125 (2014).

  46. 46

    Tan, S. S. et al. Cell dispersion patterns in different cortical regions studied with an X-inactivated transgenic marker. Development 121, 1029–1039 (1995).

    CAS  PubMed  Google Scholar 

  47. 47

    Anderson, S. A., Eisenstat, D. D., Shi, L. & Rubenstein, J. L. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474–476 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Luskin, M. B., Parnavelas, J. G. & Barfield, J. A. Neurons, astrocytes, and oligodendrocytes of the rat cerebral cortex originate from separate progenitor cells: an ultrastructural analysis of clonally related cells. J. Neurosci. 13, 1730–1750 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Reid, C. B., Tavazoie, S. F. & Walsh, C. A. Clonal dispersion and evidence for asymmetric cell division in ferret cortex. Development 124, 2441–2450 (1997).

    CAS  PubMed  Google Scholar 

  50. 50

    Reid, C. B., Liang, I. & Walsh, C. Systematic widespread clonal organization in cerebral cortex. Neuron 15, 299–310 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. 51

    Walsh, C. & Cepko, C. L. Clonal dispersion in proliferative layers of developing cerebral cortex. Nature 362, 632–635 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. 52

    Kornack, D. R. & Rakic, P. Radial and horizontal deployment of clonally related cells in the primate neocortex: relationship to distinct mitotic lineages. Neuron 15, 311–321 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Garcia-Moreno, F., Vasistha, N. A., Begbie, J. & Molnár, Z. CLoNe is a new method to target single progenitors and study their progeny in mouse and chick. Development 141, 1589–1598 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Rakic, P. Prenatal development of the visual system in rhesus monkey. Phil. Trans. R. Soc. Lond. B 278, 245–260 (1977).

    Article  CAS  Google Scholar 

  55. 55

    Lukaszewicz, A. et al. The concerted modulation of proliferation and migration contributes to the specification of the cytoarchitecture and dimensions of cortical areas. Cereb. Cortex 16 (Suppl. 1), 26–34 (2006).

    Article  Google Scholar 

  56. 56

    Miyoshi, G., Butt, S. J., Takebayashi, H. & Fishell, G. Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. J. Neurosci. 27, 7786–7798 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Gorski, J. A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci. 22, 6309–6314 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. 58

    Osheroff, H. & Hatten, M. E. Gene expression profiling of preplate neurons destined for the subplate: genes involved in transcription, axon extension, neurotransmitter regulation, steroid hormone signaling, and neuronal survival. Cereb. Cortex 19 (Suppl. 1), 126–134 (2009).

    Article  Google Scholar 

  59. 59

    Oeschger, F. M. et al. Gene expression analysis of the embryonic subplate. Cereb. Cortex 22, 1343–1359 (2012).

    Article  PubMed  Google Scholar 

  60. 60

    Belgard, T. G. et al. A transcriptomic atlas of mouse neocortical layers. Neuron 71, 605–616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    McKellar, C. E. & Shatz, C. J. Synaptogenesis in purified cortical subplate neurons. Cereb. Cortex 19, 1723–1737 (2009).

    Article  PubMed  Google Scholar 

  62. 62

    Miller, J. A. et al. Transcriptional landscape of the prenatal human brain. Nature 508, 199–206 (2014). A highly detailed transcriptomic analysis of human brain development, which will ultimately help to identify if there are human-specific populations of subplate neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Connor, C. M., Guo, Y. & Akbarian, S. Cingulate white matter neurons in schizophrenia and bipolar disorder. Biol. Psychiatry 66, 486–493 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64

    Marx, M. & Feldmeyer, D. Morphology and physiology of excitatory neurons in layer 6b of the somatosensory rat barrel cortex. Cereb. Cortex 23, 2803–2817 (2013). A comprehensive summary of the morphological and electrophysiological properties of subplate cells in a rodent.

    Article  PubMed  Google Scholar 

  65. 65

    Garcia-Marin, V., Blazquez-Llorca, L., Rodriguez, J. R., Gonzalez-Soriano, J. & DeFelipe, J. Differential distribution of neurons in the gyral white matter of the human cerebral cortex. J. Comp. Neurol. 518, 4740–4759 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. 66

    Wahle, P., Lubke, J. & Naegele, J. R. Inverted pyramidal neurons and interneurons in cat cortical subplate zone are labelled by monoclonal antibody SP1. Eur. J. Neurosci. 6, 1167–1178 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. 67

    Hanganu, I. L., Kilb, W. & Luhmann, H. L. Spontaneous synaptic activity of subplate neurons in neonatal rat somatosensory cortex. Cereb. Cortex 11, 400–410 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Hoerder-Suabedissen, A. & Molnár, Z. The morphology of mouse subplate cells with identified projection targets changes with age. J. Comp. Neurol. 520, 174–185 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Pinon, M. C., Jethwa, A., Jacobs, E., Campagnoni, A. & Molnár, Z. Dynamic integration of subplate neurons into the cortical barrel field circuitry during postnatal development in the Golli-tau-eGFP (GTE) mouse. J. Physiol. 587, 1903–1915 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Mizukawa, K., Vincent, S. R., McGeer, P. L. & McGeer, E. G. Distribution of reduced-nicotinamide-adenine-dinucleotide-phosphate diaphorase-positive cells and fibers in the cat central nervous system. J. Comp. Neurol. 279, 281–311 (1989).

    Article  CAS  PubMed  Google Scholar 

  71. 71

    Luth, H. J., Hedlich, A., Hilbig, H., Winkelmann, E. & Mayer, B. Morphological analyses of NADPH-diaphorase/nitric oxide synthase positive structures in human visual cortex. J. Neurocytol. 23, 770–782 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. 72

    Estrada, C. & DeFelipe, J. Nitric oxide-producing neurons in the neocortex: morphological and functional relationship with intraparenchymal microvasculature. Cereb. Cortex 8, 193–203 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. 73

    DelRio, J. A., Soriano, E. & Ferrer, I. Development of GABA-immunoreactivity in the neocortex of the mouse. J. Comp. Neurol. 326, 501–526 (1992).

    Article  CAS  Google Scholar 

  74. 74

    McConnell, S. K., Ghosh, A. & Shatz, C. J. Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science. 245, 978–982 (1989).

    Article  CAS  PubMed  Google Scholar 

  75. 75

    DeCarlos, J. A. & O'Leary, D. D. Growth and targeting of subplate axons and establishment of major cortical pathways. J. Neurosci. 12, 1194–1211 (1992).

    Article  CAS  Google Scholar 

  76. 76

    Grant, E., Hoerder-Suabedissen, A. & Molnár, Z. Development of the corticothalamic projections. Front. Neurosci. 6, 53 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  77. 77

    Jacobs, E. C. et al. Visualization of corticofugal projections during early cortical development in a tau-GFP-transgenic mouse. Eur. J. Neurosci. 25, 17–30 (2007).

    Article  PubMed  Google Scholar 

  78. 78

    Seabrook, T. A., El-Danaf, R. N., Krahe, T. E., Fox, M. A. & Guido, W. Retinal input regulates the timing of corticogeniculate innervation. J. Neurosci. 33, 10085–10097 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Antonini, A. & Shatz, C. Relation between putative transmitter phenotypes and connectivity of subplate neurons during cerebral cortical development. Eur. J. Neurosci. 2, 744–761 (1990).

    Article  PubMed  Google Scholar 

  80. 80

    Friauf, E., McConnell, S. K. & Shatz, C. J. Functional synaptic circuits in the subplate during fetal and early postnatal development of cat visual cortex. J. Neurosci. 10, 2601–2613 (1990).

    Article  CAS  PubMed  Google Scholar 

  81. 81

    Friauf, E. & Shatz, C. J. Changing patterns of synaptic input to subplate and cortical plate during development of visual cortex. J. Neurophysiol. 66, 2059–2071 (1991). The first circuit-level analysis of subplate function, which highlights the transient and dynamic nature of subplate integration into the developing thalamocortical connectivity.

    Article  CAS  PubMed  Google Scholar 

  82. 82

    Finney, E. M., Stone, J. R. & Shatz, C. J. Major glutamatergic projection from subplate into visual cortex during development. J. Comp. Neurol. 398, 105–118 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. 83

    Hanganu, I. L., Kilb, W. & Luhmann, H. L. Functional synaptic projections onto subplate neurons in neonatal rat somatosensory cortex. J. Neurosci. 22, 7165–7176 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. 84

    Kanold, P. O., Kara, P., Reid, R. C. & Shatz, C. J. Role of subplate neurons in functional maturation of visual cortical columns. Science 301, 521–525 (2003). The first evidence for subplate involvement in circuit maturation beyond direct effects on thalamocortical afferents.

    Article  CAS  PubMed  Google Scholar 

  85. 85

    Ozaki, H. S. & Wahlsten, D. Timing and origin of the first cortical axons to project through the corpus callosum and the subsequent emergence of callosal projection cells in mouse. J. Comp. Neurol. 400, 197–206 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    DelRio, J. A., Martinez, A., Auladell, C. & Soriano, E. Developmental history of the subplate and developing white matter in the murine neocortex. Neuronal organization and relationship with the main afferent systems at embryonic and perinatal stages. Cereb. Cortex 10, 784–801 (2000).

    Article  CAS  Google Scholar 

  87. 87

    Tomioka, R. et al. Demonstration of long-range GABAergic connections distributed throughout the mouse neocortex. Eur. J. Neurosci. 21, 1587–1600 (2005).

    Article  PubMed  Google Scholar 

  88. 88

    Tomioka, R. & Rockland, K. S. Long-distance corticocortical GABAergic neurons in the adult monkey white and gray matter. J. Comp. Neurol. 505, 526–538 (2007).

    Article  PubMed  Google Scholar 

  89. 89

    Magnani, D., Hasenpusch-Theil, K. & Theil, T. Gli3 controls subplate formation and growth of cortical axons. Cereb. Cortex 23, 2542–2551 (2013).

    Article  PubMed  Google Scholar 

  90. 90

    Ghosh, A., Antonini, A., McConnell, S. K. & Shatz, C. J. Requirement for subplate neurons in the formation of thalamocortical connections. Nature 347, 179–181 (1990).

    Article  CAS  PubMed  Google Scholar 

  91. 91

    Tolner, E. A., Sheikh, A., Yukin, A. Y., Kaila, K. & Kanold, P. O. Subplate neurons promote spindle bursts and thalamocortical patterning in the neonatal rat somatosensory cortex. J. Neurosci. 32, 692–702 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Dupont, E., Hanganu, I. L., Kilb, W., Hirsch, S. & Luhmann, H. J. Rapid developmental switch in the mechanisms driving early cortical columnar networks. Nature 439, 79–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. 93

    Viswanathan, S., Bandyopadhyay, S., Kao, J. P. & Kanold, P. O. Changing microcircuits in the subplate of the developing cortex. J. Neurosci. 32, 1589–1601 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Meng, X., Kao, J. P. & Kanold, P. O. Differential signaling to subplate neurons by spatially specific silent synapses in developing auditory cortex. J. Neurosci. 34, 8855–8864 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Heuer, H. et al. Connective tissue growth factor: a novel marker of layer VII neurons in the rat cerebral cortex. Neuroscience 119, 43–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. 96

    Landry, C. F. et al. Embryonic expression of the myelin basic protein gene: identification of a promoter region that targets transgene expression to pioneer neurons. J. Neurosci. 18, 7315–7327 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. 97

    Tissir, F. & Goffinet, A. M. Reelin and brain development. Nature Rev. Neurosci. 4, 496–505 (2003).

    Article  CAS  Google Scholar 

  98. 98

    Caviness, V. S. Jr & Sidman, R. L. Time of origin or corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: an autoradiographic analysis. J. Comp. Neurol. 148, 141–151 (1973).

    Article  PubMed  Google Scholar 

  99. 99

    Molnár, Z., Adams, R., Goffinet, A. M. & Blakemore, C. The role of the first postmitotic cortical cells in the development of thalamocortical innervation in the reeler mouse. J. Neurosci. 18, 5746–5765 (1998).

    Article  PubMed  Google Scholar 

  100. 100

    Kwon, Y. T. & Tsai, L. H. A novel disruption of cortical development in p35−/− mice distinct from reeler. J. Comp. Neurol. 395, 510–522 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. 101

    Rakic, S., Davis, C., Molnár, Z., Nikolic, M. & Parnavelas, J. G. Role of p35/Cdk5 in preplate splitting in the developing cerebral cortex. Cereb. Cortex 16 (Suppl. 1), 35–45 (2006).

    Article  Google Scholar 

  102. 102

    Theil, T. Gli3 is required for the specification and differentiation of preplate neurons. Dev. Biol. 286, 559–571 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. 103

    Chen, Y., Magnani, D., Theil, T., Pratt, T. & Price, D. J. Evidence that descending cortical axons are essential for thalamocortical axons to cross the pallial-subpallial boundary in the embryonic forebrain. PLoS ONE 7, e33105 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Hevner, R. F. et al. Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29, 353–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. 105

    Molnár, Z. & Blakemore, C. How do thalamic axons find their way to the cortex? Trends Neurosci. 18, 389–397 (1995).

    Article  PubMed  Google Scholar 

  106. 106

    López-Bendito, G. & Molnár, Z. Thalamocortical development: how are we going to get there? Nature Rev. Neurosci. 4, 276–289 (2003).

    Article  CAS  Google Scholar 

  107. 107

    Lai, T. et al. SOX5 controls the sequential generation of distinct corticofugal neuron subtypes. Neuron 57, 232–247 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. 108

    Johnson, M. B. et al. Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 62, 494–509 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Kang, H. J. et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483–489 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Bernard, A. et al. Transcriptional architecture of the primate neocortex. Neuron 73, 1083–1099 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Molnár, Z. & Belgard, T. G. Transcriptional profiling of layers of the primate cerebral cortex. Neuron 73, 1053–1055 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. 112

    Kostovic, I. et al. Perinatal and early postnatal reorganization of the subplate and related cellular compartments in the human cerebral wall as revealed by histological and MRI approaches. Brain Struct. Funct. 219, 231–253 (2014).

    Article  PubMed  Google Scholar 

  113. 113

    Bicknese, A. R., Sheppard, A. M., O'Leary, D. D. M. & Pearlman, A. L. Thalamocortical axons extend along a chondroitin sulfate proteoglycan-enriched pathway coincident with the neocortical subplate and distinct from the efferent path. J. Neurosci. 14, 3500–3510 (1994).

    Article  CAS  PubMed  Google Scholar 

  114. 114

    Krueger, S. R. et al. Expression of neuroserpin, an inhibitor of tissue plasminogen activator, in the developing and adult nervous system of the mouse. J. Neurosci. 17, 8984–8996 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. 115

    Schlimgen, A. K., Helms, J. A., Vogel, H. & Perin, M. S. Neuronal pentraxin, a secreted protein with homology to acute phase proteins of the immune system. Neuron 14, 519–526 (1995).

    Article  CAS  PubMed  Google Scholar 

  116. 116

    Dodds, D. C., Omeis, I. A., Cushman, S. J., Helms, J. A. & Perin, M. S. Neuronal pentraxin receptor, a novel putative integral membrane pentraxin that interacts with neuronal pentraxin 1 and 2 and taipoxin-associated calcium-binding protein 49. J. Biol. Chem. 272, 21488–21494 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. 117

    Borges, V. M., Lee, T. W., Christie, D. L. & Birch, N. P. Neuroserpin regulates the density of dendritic protrusions and dendritic spine shape in cultured hippocampal neurons. J. Neurosci. Res. 88, 2610–2617 (2010).

    CAS  PubMed  Google Scholar 

  118. 118

    Marin-Padilla, M. Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study I. The primordial neocortical organization. Anat. Embryol. 134, 117–145 (1971).

    CAS  Google Scholar 

  119. 119

    Nacher, J., Ramirez, C., Molowny, A. & Lopez-Garcia, C. Ontogeny of somatostatin immunoreactive neurons in the medial cerebral cortex and other cortical areas of the lizard Podarcis hispanica. J. Comp. Neurol. 374, 118–135 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. 120

    Supeèr, H. & Uylings, H. B. The early differentiation of the neocortex: a hypothesis on neocortical evolution. Cereb. Cortex 11, 1101–1109 (2001).

    Article  Google Scholar 

  121. 121

    Aboitiz, F. Garcia R. R., M. J. Ancestry of the mammalian preplate and its derivatives: evolutionary relicts or embryonic adaptations? Rev. Neurosci. 16, 359–376 (2005).

    Article  PubMed  Google Scholar 

  122. 122

    Belgard, T. G. et al. Adult pallium transcriptomes surprise in not reflecting predicted homologies across diverse chicken and mouse pallial sectors. Proc. Natl Acad. Sci. USA 110, 13150–13155 (2013).

    Article  PubMed  Google Scholar 

  123. 123

    Montiel, J. F. & Molnár, Z. The impact of gene expression analysis on evolving views of avian brain organization. J. Comp. Neurol. 521, 3604–3613 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. 124

    Judas, M., Sedmak, G. & Pletikos, M. Early history of subplate and interstitial neurons: from Theodor Meynert (1867) to the discovery of the subplate zone (1974). J. Anat. 217, 344–367 (2010). An interesting historical review of early studies on cortical development that identifies much of the terminology previously used to refer to the subplate compartment.

    Article  PubMed  PubMed Central  Google Scholar 

  125. 125

    Mathern, G. W. et al. A hypothesis regarding the pathogenesis and epileptogenesis of pediatric cortical dysplasia and hemimegalencephaly based on MRI cerebral volumes and NeuN cortical cell densities. Epilepsia 48 (Suppl. 5), 74–78 (2007).

    Article  PubMed  Google Scholar 

  126. 126

    Mühlebner, A. et al. Neuropathologic measurements in focal cortical dysplasias: validation of the ILAE 2011 classification system and diagnostic implications for MRI. Acta Neuropathol. 123, 259–272 (2012).

    Article  PubMed  Google Scholar 

  127. 127

    Rossini, L. et al. Layer-specific gene expression in epileptogenic type II focal cortical dysplasia: normal-looking neurons reveal the presence of a hidden laminar organization. Acta Neuropathol. Commun. 2, 45 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  128. 128

    Connor, C. M., Crawford, B. C. & Akbarian, S. White matter neuron alterations in schizophrenia and related disorders. Int. J. Dev. Neurosci. 29, 325–334 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. 129

    Kostovic, I., Judas, M. & Sedmak, G. Developmental history of the subplate zone, subplate neurons and interstitial white matter neurons: relevance for schizophrenia. Int. J. Dev. Neurosci. 29, 193–205 (2011).

    Article  PubMed  Google Scholar 

  130. 130

    Akbarian, S. et al. Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. Arch. Gen. Psychiatry 50, 178–187 (1993).

    Article  CAS  PubMed  Google Scholar 

  131. 131

    Akbarian, S. et al. Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch. Gen. Psychiatry 50, 169–177 (1993).

    Article  CAS  PubMed  Google Scholar 

  132. 132

    Eastwood, S. L. & Harrison, P. J. Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis. Mol. Psychiatry 769, 821–831 (2003).

    Article  CAS  Google Scholar 

  133. 133

    Eastwood, S. L. & Harrison, P. J. Interstitial white matter neuron density in the dorsolateral prefrontal cortex and parahippocampal gyrus in schizophrenia. Schizophr. Res. 79, 181–188 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. 134

    Navarro, D. et al. Late maternal hypothyroidism alters the expression of Camk4 in neocortical subplate neurons: a comparison with Nurr1 labeling. Cereb. Cortex 24, 2694–2706 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. 135

    Mäki, P. et al. Predictors of schizophrenia — a review. Br. Med. Bull. 73–74, 1–15 (2005).

    Article  PubMed  Google Scholar 

  136. 136

    Bailey, A. et al. A clinicopathological study of autism. Brain 121, 889–905 (1998).

    Article  PubMed  Google Scholar 

  137. 137

    Wegiel, J. et al. The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol. 119, 755–770 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  138. 138

    Avino, T. A. & Hutsler, J. J. Abnormal cell patterning at the cortical gray–white matter boundary in autism spectrum disorders. Brain Res. 1360, 138–146 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. 139

    McFadden, K. & Minshew, N. J. Evidence for dysregulation of axonal growth and guidance in the etiology of ASD. Front. Hum. Neurosci. 7, 671 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  140. 140

    Volpe, J. J. Subplate neurons — missing link in brain injury of the premature infant? Pediatrics 97, 112–113 (1996).

    CAS  PubMed  Google Scholar 

  141. 141

    McQuillen, P. S., Sheldon, R. A., Shatz, C. J. & Ferriero, D. M. Selective vulnerability of subplate neurons after early neonatal hypoxia-ischemia. J. Neurosci. 23, 3308–3315 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Lewis, D. A. & Levitt, P. Schizophrenia as a disorder of neurodevelopment. Annu. Rev. Neurosci. 25, 409–432 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. 143

    Rice, J. E., Vannucci, R. C. & Brierley, J. B. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann. Neurol. 9, 131–141 (1981).

    Article  PubMed  Google Scholar 

  144. 144

    Okusa, C. et al. Subplate in a rat model of preterm hypoxia-ischemia. Ann. Clin. Transl. Neurol. 1, 679–691 (2014). A recent publication identifying that subplate cells are not particularly damaged during perinatal hypoxia in rodent models when compared with other deep-layer cortical neurons.

    Article  PubMed  PubMed Central  Google Scholar 

  145. 145

    Albrecht, J., Hanganu, I. L., Heck, N. & Luhmann, H. J. Oxygen and glucose deprivation induces major dysfunction in the somatosensory cortex of the newborn rat. Eur. J. Neurosci. 22, 2295–2305 (2005).

    Article  PubMed  Google Scholar 

  146. 146

    Willsey, A. J. et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 155, 997–1007 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. 147

    Molnár, Z. & Rutherford, M. Brain maturation after preterm birth. Sci. Transl. Med. 5, 168ps2 (2013).

    Article  PubMed  Google Scholar 

  148. 148

    Teissier, A. et al. A novel transient glutamatergic population migrating from the pallial-subpallial boundary contributes to neocortical development. J. Neurosci. 30, 10563–10574 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Teissier, A., Waclaw, R. R., Griveau, A., Campbell, K. & Pierani, A. Tangentially migrating transient glutamatergic neurons control neurogenesis and maintenance of cerebral cortical progenitor pools. Cereb. Cortex 22, 403–416 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. 150

    Bielle, F. et al. Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nature Neurosci. 8, 1002–1012 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. 151

    Takiguchi-Hayashi, K. et al. Generation of reelin-positive marginal zone cells from the caudomedial wall of telencephalic vesicles. J. Neurosci. 24, 2286–2295 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. 152

    Garcia-Moreno, F., Lopez-Mascaraque, L. & de Carlos, J. A. Early telencephalic migration topographically converging in the olfactory cortex. Cereb. Cortex 18, 1239–1252 (2008).

    Article  PubMed  Google Scholar 

  153. 153

    Molnár, Z., López-Bendito, G., Blakey, D., Thompson, A. & Higashi, S. in Development and Plasticity in Sensory Thalamus and Cortex (eds Erzurumlu, R., Guido, W. & Molnár, Z.) 54–78 (Springer, 2006).

    Book  Google Scholar 

  154. 154

    Hay, Y. A., Andjelic, S., Badr, S. & Lambolez, B. Orexin-dependent activation of layer VIb enhances cortical network activity and integration of non-specific thalamocortical inputs. Brain Struct. Funct. http://dx.doi.org/10.1007/s00429-014-0869-7 (2014).

  155. 155

    Molnár, Z., Higashi, S., Adams, R. & Toyama, K. in Plasticity of Adult Barrel Cortex (ed. Kossut, M.) 47–79 (Graham Publishing, 2000).

    Google Scholar 

Download references

Acknowledgements

The authors thank R. Guillery and K. Korrell for their thoughtful comments on an earlier version of this manuscript. Our laboratory is supported by grants from the UK Medical Research Council (G0700377 and G00900901), the UK Biotechnology and Biological Sciences Research Council (B/I021833/1) and the Wellcome Trust (092071/Z/10/Z). Z.M. received support from St John's College Research Centre, Oxford.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zoltán Molnár.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (box)

Resources for subplate specific gene expression. (PDF 76 kb)

Supplementary information S2 (figure)

Subplate-specific gene expression is temporally highly dynamic. (PDF 1228 kb)

PowerPoint slides

Glossary

Callosal

Cells projecting across the corpus callosum or located within the corpus callosum, a fibre tract connecting the two cerebral hemispheres.

Lissencephalic

'Smooth' brains; that is, those without ridges (gyri) or crevices (sulci) on the surface.

Cajal–Retzius cells

Early-born neurons of the cortical anlage that express a secreted molecule called reelin, which is essential for normal cortical lamination to occur.

Bromodeoxyuridine

(BrdU). A synthetic analogue of the nucleic acid thymidine that incorporates into DNA during replication and repair. It can subsequently be detected by immunohistochemistry and is used to label cells during the DNA replication stage (S phase) of cell division.

Barrel hollows

The cell-sparse centre of each 'barrel' of cells in the barrel cortex. Thalamic afferents cluster inside this cylinder of cells.

Barrel septa

This is the region in between adjacent barrel walls.

First-order thalamic nuclei

The thalamic nuclei that receive direct innervation from the sensory periphery.

Higher-order thalamic nuclei

The thalamic nuclei with a cortico-cortical relay function that receive the majority of extrinsic excitatory input from the cerebral cortex.

Barrel field

The mouse and rat barrel field is the somatosensory region of the cerebral cortex that receives input from the whiskers. The name derives from the 'barrel-like' cylindrical cell arrangement in layer 4.

Heterotopias

Clusters of cells or neurons in abnormal locations.

Rice–Vannucci model

A rodent model of perinatal hypoxia injury obtained by ligation of the common carotid artery on one side of the body followed by a period of low oxygen in the inspired air.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hoerder-Suabedissen, A., Molnár, Z. Development, evolution and pathology of neocortical subplate neurons. Nat Rev Neurosci 16, 133–146 (2015). https://doi.org/10.1038/nrn3915

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing