Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Retromer in Alzheimer disease, Parkinson disease and other neurological disorders

An Erratum to this article was published on 20 February 2015

Abstract

Retromer is a protein assembly that has a central role in endosomal trafficking, and retromer dysfunction has been linked to a growing number of neurological disorders. First linked to Alzheimer disease, retromer dysfunction causes a range of pathophysiological consequences that have been shown to contribute to the core pathological features of the disease. Genetic studies have established that retromer dysfunction is also pathogenically linked to Parkinson disease, although the biological mechanisms that mediate this link are only now being elucidated. Most recently, studies have shown that retromer is a tractable target in drug discovery for these and other disorders of the nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Retromer's endosomal transport function and molecular organization.
Figure 2: The pathophysiology of retromer dysfunction.

Similar content being viewed by others

References

  1. Schekman, R. Charting the secretory pathway in a simple eukaryote. Mol. Biol. Cell 21, 3781–3784 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Henne, W. M., Buchkovich, N. J. & Emr, S. D. The ESCRT pathway. Dev. Cell 21, 77–91 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Seaman, M. N., McCaffery, J. M. & Emr, S. D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol. 142, 665–681 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haft, C. R. et al. Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol. Biol. Cell 11, 4105–4116 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Seaman, M. N. Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J. Cell Biol. 165, 111–122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arighi, C. N., Hartnell, L. M., Aguilar, R. C., Haft, C. R. & Bonifacino, J. S. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J. Cell Biol. 165, 123–133 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Small, S. A. et al. Model-guided microarray implicates the retromer complex in Alzheimer's disease. Ann. Neurol. 58, 909–919 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Burd, C. & Cullen, P. J. Retromer: a master conductor of endosome sorting. Cold Spring Harb. Perspect. Biol. 6, a016774 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Carroll, R. C., Beattie, E. C., von Zastrow, M. & Malenka, R. C. Role of AMPA receptor endocytosis in synaptic plasticity. Nature Rev. Neurosci. 2, 315–324 (2001).

    Article  CAS  Google Scholar 

  10. Choy, R. W. et al. Retromer mediates a discrete route of local membrane delivery to dendrites. Neuron 82, 55–62 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, D. et al. RAB-6.2 and the retromer regulate glutamate receptor recycling through a retrograde pathway. J. Cell Biol. 196, 85–101 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hussain, N. K., Diering, G. H., Sole, J., Anggono, V. & Huganir, R. L. Sorting nexin 27 regulates basal and activity-dependent trafficking of AMPARs. Proc. Natl Acad. Sci. USA 111, 11840–11845 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Loo, L. S., Tang, N., Al-Haddawi, M., Dawe, G. S. & Hong, W. A role for sorting nexin 27 in AMPA receptor trafficking. Nature Commun. 5, 3176 (2014).

    Article  CAS  Google Scholar 

  14. Feinstein, T. N. et al. Retromer terminates the generation of cAMP by internalized PTH receptors. Nature Chem. Biol. 7, 278–284 (2011).

    Article  CAS  Google Scholar 

  15. Temkin, P. et al. SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nature Cell Biol. 13, 715–721 (2011).

    Article  PubMed  CAS  Google Scholar 

  16. Seaman, M. N. Recycle your receptors with retromer. Trends Cell Biol. 15, 68–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Kerr, M. C. et al. A novel mammalian retromer component, Vps26B. Traffic 6, 991–1001 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Collins, B. M. et al. Structure of Vps26B and mapping of its interaction with the retromer protein complex. Traffic 9, 366–379 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, E. et al. Identification of novel retromer complexes in the mouse testis. Biochem. Biophys. Res. Commun. 375, 16–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Bugarcic, A. et al. Vps26A and Vps26B subunits define distinct retromer complexes. Traffic 12, 1759–1773 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Gallon, M. et al. A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27–retromer. Proc. Natl Acad. Sci. USA 111, E3604–E3613 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim, E. et al. Implication of mouse Vps26b–Vps29–Vps35 retromer complex in sortilin trafficking. Biochem. Biophys. Res. Commun. 403, 167–171 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Attar, N. & Cullen, P. J. The retromer complex. Adv. Enzyme Regul. 50, 216–236 (2010).

    Article  PubMed  Google Scholar 

  24. Rojas, R., Kametaka, S., Haft, C. R. & Bonifacino, J. S. Interchangeable but essential functions of SNX1 and SNX2 in the association of retromer with endosomes and the trafficking of mannose 6-phosphate receptors. Mol. Cell. Biol. 27, 1112–1124 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Wassmer, T. et al. A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J. Cell Sci. 120, 45–54 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Sierecki, E. et al. Rapid mapping of interactions between human SNX–BAR proteins measured in vitro by AlphaScreen and single-molecule spectroscopy. Mol. Cell. Proteom. 13, 2233–2245 (2014).

    Article  CAS  Google Scholar 

  27. van Weering, J. R. et al. Molecular basis for SNX–BAR-mediated assembly of distinct endosomal sorting tubules. EMBO J. 31, 4466–4480 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harbour, M. E. et al. The cargo-selective retromer complex is a recruiting hub for protein complexes that regulate endosomal tubule dynamics. J. Cell Sci. 123, 3703–3717 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harterink, M. et al. A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nature Cell Biol. 13, 914–923 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Rojas, R. et al. Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J. Cell Biol. 183, 513–526 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Seaman, M. N., Harbour, M. E., Tattersall, D., Read, E. & Bright, N. Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab–GAP TBC1D5. J. Cell Sci. 122, 2371–2382 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harrison, M. S. et al. A mechanism for retromer endosomal coat complex assembly with cargo. Proc. Natl Acad. Sci. USA 111, 267–272 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Cozier, G. E. et al. The phox homology (PX) domain-dependent, 3-phosphoinositide-mediated association of sorting nexin-1 with an early sorting endosomal compartment is required for its ability to regulate epidermal growth factor receptor degradation. J. Biol. Chem. 277, 48730–48736 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Steinberg, F. et al. A global analysis of SNX27–retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nature Cell Biol. 15, 461–471 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Derivery, E. & Gautreau, A. Evolutionary conservation of the WASH complex, an actin polymerization machine involved in endosomal fission. Commun. Integr. Biol. 3, 227–230 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gomez, T. S. & Billadeau, D. D. A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev. Cell 17, 699–711 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lucin, K. M. et al. Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer's disease. Neuron 79, 873–886 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rogaeva, E. et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nature Genet. 39, 168–177 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Muhammad, A. et al. Retromer deficiency observed in Alzheimer's disease causes hippocampal dysfunction, neurodegeneration, and Aβ accumulation. Proc. Natl Acad. Sci. USA 105, 7327–7332 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bhalla, A. et al. The location and trafficking routes of the neuronal retromer and its role in amyloid precursor protein transport. Neurobiol. Dis. 47, 126–134 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fjorback, A. W. et al. Retromer binds the FANSHY sorting motif in SorLA to regulate amyloid precursor protein sorting and processing. J. Neurosci. 32, 1467–1480 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lane, R. F. et al. Vps10 family proteins and the retromer complex in aging-related neurodegeneration and diabetes. J. Neurosci. 32, 14080–14086 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Small, S. A. & Gandy, S. Sorting through the cell biology of Alzheimer's disease: intracellular pathways to pathogenesis. Neuron 52, 15–31 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Canuel, M., Korkidakis, A., Konnyu, K. & Morales, C. R. Sortilin mediates the lysosomal targeting of cathepsins D and H. Biochem. Biophys. Res. Commun. 373, 292–297 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Futerman, A. H. & van Meer, G. The cell biology of lysosomal storage disorders. Nature Rev. Mol. Cell Biol. 5, 554–565 (2004).

    Article  CAS  Google Scholar 

  46. Zavodszky, E. et al. Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and inhibits autophagy. Nature Commun. 5, 3828 (2014).

    Article  CAS  Google Scholar 

  47. Nixon, R. A. The role of autophagy in neurodegenerative disease. Nature Med. 19, 983–997 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Dhungel, R. et al. Parkinson's disease genes VPS35 and EIF4G1 interact genetically and converge on α-synuclein. Neuron 85, 76–87 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Walker, L. C., Diamond, M. I., Duff, K. E. & Hyman, B. T. Mechanisms of protein seeding in neurodegenerative diseases. JAMA Neurol. 70, 304–310 (2013).

    Article  PubMed  Google Scholar 

  50. Luk, K. C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Small, S. A. Isolating pathogenic mechanisms embedded within the hippocampal circuit through regional vulnerability. Neuron 84, 32–39 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Moreno, H. et al. Imaging the Aβ-related neurotoxicity of Alzheimer disease. Arch. Neurol. 64, 1467–1477 (2007).

    Article  PubMed  Google Scholar 

  53. Dodson, S. E. et al. LR11/SorLA expression is reduced in sporadic Alzheimer disease but not in familial Alzheimer disease. J. Neuropathol. Exp. Neurol. 65, 866–872 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genet. 45, 1452–1458 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Vardarajan, B. N. et al. Identification of Alzheimer disease-associated variants in genes that regulate retromer function. Neurobiol. Aging 33, 2231.e15–2231.e30 (2012).

    Article  CAS  Google Scholar 

  56. Reitz, C. et al. Independent and epistatic effects of variants in VPS10-d receptors on Alzheimer disease risk and processing of the amyloid precursor protein (APP). Transl Psychiatry 3, e256 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Morel, E. et al. Phosphatidylinositol-3-phosphate regulates sorting and processing of amyloid precursor protein through the endosomal system. Nature Commun. 4, 2250 (2013).

    Article  CAS  Google Scholar 

  58. Wen, L. et al. VPS35 haploinsufficiency increases Alzheimer's disease neuropathology. J. Cell Biol. 195, 765–779 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lane, R. F. et al. Diabetes-associated SorCS1 regulates Alzheimer's amyloid-β metabolism: evidence for involvement of SorL1 and the retromer complex. J. Neurosci. 30, 13110–13115 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vieira, S. I. et al. Retrieval of the Alzheimer's amyloid precursor protein from the endosome to the TGN is S655 phosphorylation state-dependent and retromer-mediated. Mol. Neurodegener. 5, 40 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Mecozzi, V. J. et al. Pharmacological chaperones stabilize retromer to limit APP processing. Nature Chem. Biol. 10, 443–449 (2014).

    Article  CAS  Google Scholar 

  62. Choy, R. W., Cheng, Z. & Schekman, R. Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid β (Aβ) production in the trans-Golgi network. Proc. Natl Acad. Sci. USA 109, E2077–E2082 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guerreiro, R. et al. TREM2 variants in Alzheimer's disease. N. Engl. J. Med. 368, 117–127 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Kleinberger, G. et al. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci. Transl Med. 6, 243ra286 (2014).

    Article  CAS  Google Scholar 

  65. Mosher, K. I. & Wyss-Coray, T. Microglial dysfunction in brain aging and Alzheimer's disease. Biochem. Pharmacol. 88, 594–604 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu, J. W. et al. Small misfolded tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J. Biol. Chem. 288, 1856–1870 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Michel, C. H. et al. Extracellular monomeric tau protein is sufficient to initiate the spread of tau protein pathology. J. Biol. Chem. 289, 956–967 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Khurana, V. et al. Lysosomal dysfunction promotes cleavage and neurotoxicity of tau in vivo. PLoS Genet. 6, e1001026 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Zimprich, A. et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am. J. Hum. Genet. 89, 168–175 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vilarino-Guell, C. et al. VPS35 mutations in Parkinson disease. Am. J. Hum. Genet. 89, 162–167 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Macleod, D. A. et al. RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk. Neuron 77, 425–439 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bi, F., Li, F., Huang, C. & Zhou, H. Pathogenic mutation in VPS35 impairs its protection against MPP+ cytotoxicity. Int. J. Biol. Sci. 9, 149–155 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Follett, J. et al. The Vps35 D620N mutation linked to Parkinson's disease disrupts the cargo sorting function of retromer. Traffic 15, 230–244 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Linhart, R. et al. Vacuolar protein sorting 35 (Vps35) rescues locomotor deficits and shortened lifespan in Drosophila expressing a Parkinson's disease mutant of leucine-rich repeat kinase 2 (LRRK2). Mol. Neurodegener. 9, 23 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. McGough, I. J. et al. Retromer binding to FAM21 and the WASH complex is perturbed by the Parkinson disease-linked VPS35(D620N) mutation. Curr. Biol. 24, 1670–1676 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Miura, E. et al. VPS35 dysfunction impairs lysosomal degradation of α-synuclein and exacerbates neurotoxicity in a Drosophila model of Parkinson's disease. Neurobiol. Dis. 71, 1–13 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Tsika, E. et al. Parkinson's disease-linked mutations in VPS35 induce dopaminergic neurodegeneration. Hum. Mol. Genet. 23, 4621–4638 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dodson, M. W., Leung, L. K., Lone, M., Lizzio, M. A. & Guo, M. Novel ethyl methanesulfonate (EMS)-induced null alleles of the Drosophila homolog of LRRK2 reveal a crucial role in endolysosomal functions and autophagy in vivo. Dis. Model. Mech. 7, 1351–1363 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. Wang, X. et al. Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction by modulating glutamate receptor recycling in Down's syndrome. Nature Med. 19, 473–480 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Blackstone, C., O'Kane, C. J. & Reid, E. Hereditary spastic paraplegias: membrane traffic and the motor pathway. Nature Rev. Neurosci. 12, 31–42 (2011).

    Article  CAS  Google Scholar 

  81. Valdmanis, P. N. et al. Mutations in the KIAA0196 gene at the SPG8 locus cause hereditary spastic paraplegia. Am. J. Hum. Genet. 80, 152–161 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Jalanko, A. & Braulke, T. Neuronal ceroid lipofuscinoses. Biochim. Biophys. Acta 1793, 697–709 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Metcalf, D. J., Calvi, A. A., Seaman, M., Mitchison, H. M. & Cutler, D. F. Loss of the Batten disease gene CLN3 prevents exit from the TGN of the mannose 6-phosphate receptor. Traffic 9, 1905–1914 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Mamo, A., Jules, F., Dumaresq-Doiron, K., Costantino, S. & Lefrancois, S. The role of ceroid lipofuscinosis neuronal protein 5 (CLN5) in endosomal sorting. Mol. Cell. Biol. 32, 1855–1866 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Verges, M., Sebastian, I. & Mostov, K. E. Phosphoinositide 3-kinase regulates the role of retromer in transcytosis of the polymeric immunoglobulin receptor. Exp. Cell Res. 313, 707–718 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Garber, K. Neurodegeneration. Potential Alzheimer's drug spurs protein recycling. Science 344, 351 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Cataldo, A. et al. Endocytic disturbances distinguish among subtypes of Alzheimer's disease and related disorders. Ann. Neurol. 50, 661–665 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Israel, M. A. et al. Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature 482, 216–220 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ye, S. et al. Apolipoprotein (apo) E4 enhances amyloid β peptide production in cultured neuronal cells: apoE structure as a potential therapeutic target. Proc. Natl Acad. Sci. USA 102, 18700–18705 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yu, J. T., Tan, L. & Hardy, J. Apolipoprotein E in Alzheimer's disease: an update. Ann. Rev. Neurosci. 37, 79–100 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Nalls, M. A. et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nature Genet. 46, 989–993 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Khan, U. A. et al. Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer's disease. Nature Neurosci. 17, 304–311 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Small, S. A. Pharmacological chaperones in the age of proteomic pathology. Proc. Natl Acad. Sci. USA 111, 12274–12275 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the US National Institute on Ageing, US National Institutes of Health grants AG025161 and AG08702, The Alzheimer's Association, The McKnight Endowment for Neuroscience, the Ellison Medical Foundation and The Fidelity Biosciences Research Initiative for funding, and give special thanks to S. Weninger for advice and encouragement. The authors also thank G. Di Paolo for discussions regarding the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Scott A. Small or Gregory A. Petsko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Small, S., Petsko, G. Retromer in Alzheimer disease, Parkinson disease and other neurological disorders. Nat Rev Neurosci 16, 126–132 (2015). https://doi.org/10.1038/nrn3896

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3896

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing