Key Points
-
Glutamate and GABAergic synapses on stress-responsive neuroendocrine cells in the paraventricular nucleus of the hypothalamus (PVN) exhibit different forms of plasticity in response to acute stress.
-
Following acute stress, glutamatergic synapses switch to a multivesicular release mode in response to bursts of presynaptic activity.
-
GABAergic synapses become conditionally excitatory following stress. This is due to a collapse of transmembrane chloride gradients.
-
GABAergic synapses can exhibit potentiation or depression after stress. The polarity is dictated by the amount of time that has elapsed since the stress.
-
Endocannabinoid signalling is highly labile in the PVN. It is enhanced by acute stress, collapses in response to repeated homotypic stress, and is reset by a novel experience after the repeated stress.
Abstract
Stress necessitates an immediate engagement of multiple neural and endocrine systems. However, exposure to a single stressor causes adaptive changes that modify responses to subsequent stressors. Recent studies examining synapses onto neuroendocrine cells in the paraventricular nucleus of the hypothalamus demonstrate that stressful experiences leave indelible marks that alter the ability of these synapses to undergo plasticity. These adaptations include a unique form of metaplasticity at glutamatergic synapses, bidirectional changes in endocannabinoid signalling and bidirectional changes in strength at GABAergic synapses that rely on distinct temporal windows following stress. This rich repertoire of plasticity is likely to represent an important building block for dynamic, experience-dependent modulation of neuroendocrine stress adaptation.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Inhibition of c-Jun in AgRP neurons increases stress-induced anxiety and colitis susceptibility
Communications Biology Open Access 14 January 2023
-
Brain-wide perception of the emotional valence of light is regulated by distinct hypothalamic neurons
Molecular Psychiatry Open Access 28 April 2022
-
Plasticity of intrinsic excitability across the estrous cycle in hypothalamic CRH neurons
Scientific Reports Open Access 17 August 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
McEwen, B. S. Mood disorders and allostatic load. Biol. Psychiatry 54, 200–207 (2003).
Dias, C. et al. β-catenin mediates stress resilience through Dicer1/microRNA regulation. Nature 516, 51–55 (2014).
Chaudhury, D. et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493, 532–536 (2013).
Dias-Ferreira, E. et al. Chronic stress causes frontostriatal reorganization and affects decision-making. Science 325, 621–625 (2009).
Armario, A., Escorihuela, R. M. & Nadal, R. Long-term neuroendocrine and behavioural effects of a single exposure to stress in adult animals. Neurosci. Biobehav. Rev. 32, 1121–1135 (2008).
Andrés, R., Martí, O. & Armario, A. Direct evidence of acute stress-induced facilitation of ACTH response to subsequent stress in rats. Am. J. Physiol. 277, R863–R868 (1999).
Ons, S., Rotllant, D., Marín-Blasco, I. J. & Armario, A. Immediate-early gene response to repeated immobilization: Fos protein and arc mRNA levels appear to be less sensitive than c-fos mRNA to adaptation. Eur. J. Neurosci. 31, 2043–2052 (2010).
Dallman, M. F. et al. Stress, feedback and facilitation in the hypothalamo-pituitary-adrenal axis. J. Neuroendocrinol. 4, 517–526 (1992).
Bhatnagar, S. & Dallman, M. Neuroanatomical basis for facilitation of hypothalamic-pituitary-adrenal responses to a novel stressor after chronic stress. Neuroscience 84, 1025–1039 (1998).
Keller-Wood, M. E. & Dallman, M. F. Corticosteroid inhibition of ACTH secretion. Endocr. Rev. 5, 1–24 (1984).
Girotti, M. et al. Habituation to repeated restraint stress is associated with lack of stress-induced c-fos expression in primary sensory processing areas of the rat brain. Neuroscience 138, 1067–1081 (2006).
Grissom, N. & Bhatnagar, S. Habituation to repeated stress: get used to it. Neurobiol. Learn. Mem. 92, 215–224 (2009).
Joels, M. & Baram, T. Z. The neuro-symphony of stress. Nat. Rev. Neurosci. 10, 459–466 (2009).
Sapolsky, R. M., Krey, L. C. & McEwen, B. S. Prolonged glucocorticoid exposure reduces hippocampal neuron number: implications for aging. J. Neurosci. 5, 1222–1227 (1985).
Sapolsky, R. M. & Pulsinelli, W. A. Glucocorticoids potentiate ischemic injury to neurons: therapeutic implications. Science 229, 1397–1400 (1985).
Pavlides, C., Watanabe, Y. & McEwen, B. S. Effects of glucocorticoids on hippocampal long-term potentiation. Hippocampus 3, 183–192 (1993).
Bruhn, T. O., Plotsky, P. M. & Vale, W. W. Effect of paraventricular lesions on corticotropin-releasing factor (CRF)-like immunoreactivity in the stalk-median eminence: studies on the adrenocorticotropin response to ether stress and exogenous CRF. Endocrinology 114, 57–62 (1984).
Swanson, L. W. & Sawchenko, P. E. Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology 31, 410–417 (1980).
Denver, R. J. Structural and functional evolution of vertebrate neuroendocrine stress systems. Ann. NY Acad. Sci. 1163, 1–16 (2009).
Makara, G. B., Stark, E., Kapocs, G. & Antoni, F. A. Long-term effects of hypothalamic paraventricular lesion on CRF content and stimulated ACTH secretion. Am. J. Physiol. 250, E319–E324 (1986).
Ulrich-Lai, Y. M. & Herman, J. P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 10, 397–409 (2009).
Makara, G. B. & Stark, E. Effects of gamma-aminobutyric acid (GABA) and GABA antagonist drugs on ACTH release. Neuroendocrinology 16, 178–190 (1974).
Makara, G. B. & Stark, E. Effect of intraventricular glutamate on ACTH release. Neuroendocrinology 18, 213–216 (1975).
Decavel, C. & van den Pol, A. N. Converging GABA- and glutamate-immunoreactive axons make synaptic contact with identified hypothalamic neurosecretory neurons. J. Comp. Neurol. 316, 104–116 (1992).
Decavel, C. & van den Pol, A. N. GABA: a dominant neurotransmitter in the hypothalamus. J. Comp. Neurol. 302, 1019–1037 (1990).
van den Pol, A. N., Wuarin, J. P. & Dudek, F. E. Glutamate, the dominant excitatory transmitter in neuroendocrine regulation. Science 250, 1276–1278 (1990). This was the first demonstration of glutamate as a fast, excitatory synaptic signal in the PVN.
van den Pol, A. N. Glutamate and aspartate immunoreactivity in hypothalamic presynaptic axons. J. Neurosci. 11, 2087–2101 (1991).
Meister, B., Hokfelt, T., Geffard, M. & Oertel, W. Glutamic acid decarboxylase- and γ-aminobutyric acid-like immunoreactivities in corticotropin-releasing factor-containing parvocellular neurons of the hypothalamic paraventricular nucleus. Neuroendocrinology 48, 516–526 (1988).
Miklos, I. H. & Kovacs, K. J. GABAergic innervation of corticotropin-releasing hormone (CRH)-secreting parvocellular neurons and its plasticity as demonstrated by quantitative immunoelectron microscopy. Neuroscience 113, 581–592 (2002). This paper provides electron microscopy evidence that GABA innervation of CRH-producing neurons exhibits morphological plasticity.
Boudaba, C., Szabo, K. & Tasker, J. G. Physiological mapping of local inhibitory inputs to the hypothalamic paraventricular nucleus. J. Neurosci. 16, 7151–7160 (1996). Using glutamate microdrops, this study maps the potential locations of GABA cells that provide input to the PVN.
Boudaba, C., Schrader, L. A. & Tasker, J. G. Physiological evidence for local excitatory synaptic circuits in the rat hypothalamus. J. Neurophysiol. 77, 3396–3400 (1997).
Gordon, G. R. & Bains, J. S. Noradrenaline triggers multivesicular release at glutamatergic synapses in the hypothalamus. J. Neurosci. 25, 11385–11395 (2005).
Iremonger, K. J. & Bains, J. S. Integration of asynchronously released quanta prolongs the postsynaptic spike window. J. Neurosci. 27, 6684–6691 (2007).
Marty, V., Kuzmiski, J. B., Baimoukhametova, D. V. & Bains, J. S. Short-term plasticity impacts information transfer at glutamate synapses onto parvocellular neuroendocrine cells in the paraventricular nucleus of the hypothalamus. J. Physiol. 589, 4259–4270 (2011).
Kuzmiski, J. B., Marty, V., Baimoukhametova, D. V. & Bains, J. S. Stress-induced priming of glutamate synapses unmasks associative short-term plasticity. Nat. Neurosci. 13, 1257–1264 (2011).
Atasoy, D., Betley, J. N., Su, H. H. & Sternson, S. M. Deconstruction of a neural circuit for hunger. Nature 488, 172–177 (2012).
Betley, J. N., Cao, Z. F. H., Ritola, K. D. & Sternson, S. M. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155, 1337–1350 (2013).
Kiss, J. Z. et al. Quantitative histological studies on the hypothalamic paraventricular nucleus in rats: I. Number of cells and synaptic boutons. Brain Res. 262, 217–224 (1983).
Kiss, J. Z. et al. Quantitative histological studies on the hypothalamic paraventricular nucleus in rats. II. Number of local and certain afferent nerve terminals. Brain Res. 265, 11–20 (1983).
Hiscock, J. J., Murphy, S. & Willoughby, J. O. Confocal microscopic estimation of GABAergic nerve terminals in the central nervous system. J. Neurosci. Methods 95, 1–11 (2000).
Liposits, Z., Phelix, C. & Paull, W. K. Adrenergic innervation of corticotropin releasing factor (CRF)-synthesizing neurons in the hypothalamic paraventricular nucleus of the rat. A combined light and electron microscopic immunocytochemical study. Histochemistry 84, 201–205 (1986).
DePuy, S. D. et al. Glutamatergic neurotransmission between the C1 neurons and the parasympathetic preganglionic neurons of the dorsal motor nucleus of the vagus. J. Neurosci. 33, 1486–1497 (2013).
Holloway, B. B. et al. Monosynaptic glutamatergic activation of locus coeruleus and other lower brainstem noradrenergic neurons by the C1 cells in mice. J. Neurosci. 33, 18792–18805 (2013).
Miklos, I. H. & Kovacs, K. J. Reorganization of synaptic inputs to the hypothalamic paraventricular nucleus during chronic psychogenic stress in rats. Biol. Psychiatry 71, 301–308 (2012). This paper provides anatomical evidence for changes in synaptic inputs to PVN neurons following stress.
Rho, J. H. & Swanson, L. W. A morphometric analysis of functionally defined subpopulations of neurons in the paraventricular nucleus of the rat with observations on the effects of colchicine. J. Neurosci. 9, 1375–1388 (1989).
Mitra, R., Jadhav, S., McEwen, B. S., Vyas, A. & Chattarji, S. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc. Natl Acad. Sci. USA 102, 9371–9376 (2005).
Radley, J. J., Anderson, R. M., Hamilton, B. A., Alcock, J. A. & Romig-Martin, S. A. Chronic stress-induced alterations of dendritic spine subtypes predict functional decrements in an hypothalamo-pituitary-adrenal-inhibitory prefrontal circuit. J. Neurosci. 33, 14379–14391 (2013).
Aubry, J. M., Bartanusz, V., Pagliusi, S., Schulz, P. & Kiss, J. Z. Expression of ionotropic glutamate receptor subunit mRNAs by paraventricular corticotropin-releasing factor (CRF) neurons. Neurosci. Lett. 205, 95–98 (1996).
Herman, J. P., Eyigor, O., Ziegler, D. R. & Jennes, L. Expression of ionotropic glutamate receptor subunit mRNAs in the hypothalamic paraventricular nucleus of the rat. J. Comp. Neurol. 422, 352–362 (2000).
Eyigor, O., Centers, A. & Jennes, L. Distribution of ionotropic glutamate receptor subunit mRNAs in the rat hypothalamus. J. Comp. Neurol. 434, 101–124 (2001).
Ziegler, D. R., Cullinan, W. E. & Herman, J. P. Organization and regulation of paraventricular nucleus glutamate signaling systems: N-methyl-d-aspartate receptors. J. Comp. Neurol. 484, 43–56 (2005).
Margeta-Mitrovic, M., Mitrovic, I., Riley, R. C., Jan, L. Y. & Basbaum, A. I. Immunohistochemical localization of GABAB receptors in the rat central nervous system. J. Comp. Neurol. 405, 299–321 (1999).
Ziegler, D. R. & Herman, J. P. Local integration of glutamate signaling in the hypothalamic paraventricular region: regulation of glucocorticoid stress responses. Endocrinology 141, 4801–4804 (2000).
Cole, R. L. & Sawchenko, P. E. Neurotransmitter regulation of cellular activation and neuropeptide gene expression in the paraventricular nucleus of the hypothalamus. J. Neurosci. 22, 959–969 (2002).
Darlington, D. N., Miyamoto, M., Keil, L. C. & Dallman, M. F. Paraventricular stimulation with glutamate elicits bradycardia and pituitary responses. Am. J. Physiol. 256, R112–R119 (1989).
Hewitt, S. A., Wamsteeker, J. I., Kurz, E. U. & Bains, J. S. Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis. Nat. Neurosci. 12, 438–443 (2009). This was the first demonstration of changes in chloride gradients as a possible cause of disinhibition during stress.
Bartanusz, V. et al. Local γ-aminobutyric acid and glutamate circuit control of hypophyseotrophic corticotropin-releasing factor neuron activity in the paraventricular nucleus of the hypothalamus. Eur. J. Neurosci. 19, 777–782 (2004).
Herman, J. P. et al. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front. Neuroendocrinol. 24, 151–180 (2003).
Bali, B., Erdélyi, F., Szabó, G. & Kovács, K. J. Visualization of stress-responsive inhibitory circuits in the GAD65-eGFP transgenic mice. Neurosci. Lett. 380, 60–65 (2005).
Anthony, T. E. et al. Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. Cell 156, 522–536 (2014).
Zhu, W., Umegaki, H., Suzuki, Y., Miura, H. & Iguchi, A. Involvement of the bed nucleus of the stria terminalis in hippocampal cholinergic system-mediated activation of the hypothalamo–pituitary–adrenocortical axis in rats. Brain Res. 916, 101–106 (2001).
Mongeau, R., Miller, G. A., Chiang, E. & Anderson, D. J. Neural correlates of competing fear behaviors evoked by an innately aversive stimulus. J. Neurosci. 23, 3855–3868 (2003).
Stornetta, R. L., Macon, C. J., Nguyen, T. M., Coates, M. B. & Guyenet, P. G. Cholinergic neurons in the mouse rostral ventrolateral medulla target sensory afferent areas. Brain Struct. Funct. 218, 455–475 (2013).
Zheng, H., Stornetta, R. L., Agassandian, K. & Rinaman, L. Glutamatergic phenotype of glucagon-like peptide 1 neurons in the caudal nucleus of the solitary tract in rats. Brain Struct. Funct. http://dx.doi.org/10.1007/s00429-014-0841-6 (2014).
Gunn, B. G. et al. Dysfunctional astrocytic and synaptic regulation of hypothalamic glutamatergic transmission in a mouse model of early-life adversity: relevance to neurosteroids and programming of the stress response. J. Neurosci. 33, 19534–19554 (2013). This was the first demonstration of synaptic effects in the PVN of early life stress.
Koenig, J. I. & Cho, J. Y. Provocation of kainic acid receptor mRNA changes in the rat paraventricular nucleus by insulin-induced hypoglycaemia. J. Neuroendocrinol. 17, 111–118 (2005).
Evanson, N. K., Van Hooren, D. C. & Herman, J. P. GluR5-mediated glutamate signaling regulates hypothalamo-pituitary-adrenocortical stress responses at the paraventricular nucleus and median eminence. Psychoneuroendocrinology 34, 1370–1379 (2009).
van den Pol, A. N. Metabotropic glutamate receptor mGluR1 distribution and ultrastructural localization in hypothalamus. J. Comp. Neurol. 349, 615–632 (1994).
Kocsis, K., Kiss, J., Gorcs, T. & Halasz, B. Metabotropic glutamate receptor in vasopressin, CRF and VIP hypothalamic neurones. Neuroreport 9, 4029–4033 (1998).
Inoue, W. et al. Noradrenaline is a stress-associated metaplastic signal at GABA synapses. Nat. Neurosci. 16, 605–612 (2013). This paper shows that stress causes a postsynaptic LTP due to GABA A receptor insertion that requires priming by noradrenaline.
Wamsteeker Cusulin, J. I., Füzesi, T., Inoue, W. & Bains, J. S. Glucocorticoid feedback uncovers retrograde opioid signaling at hypothalamic synapses. Nat. Neurosci. 16, 596–604 (2013). This paper demonstrates that stress causes a presynaptic LTD that relies on CORT.
Pacak, K., Palkovits, M., Kopin, I. J. & Goldstein, D. S. Stress-induced norepinephrine release in the hypothalamic paraventricular nucleus and pituitary-adrenocortical and sympathoadrenal activity: in vivo microdialysis studies. Front. Neuroendocrinol. 16, 89–150 (1995).
Pacak, K. & Palkovits, M. Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocr. Rev. 22, 502–548 (2001).
Boudaba, C., Di, S. & Tasker, J. G. Presynaptic noradrenergic regulation of glutamate inputs to hypothalamic magnocellular neurones. J. Neuroendocrinol. 15, 803–810 (2003).
Feldman, S. & Weidenfeld, J. Involvement of endogeneous glutamate in the stimulatory effect of norepinephrine and serotonin on the hypothalamo-pituitary-adrenocortical axis. Neuroendocrinology 79, 43–53 (2004).
Steiner, M. A., Marsicano, G., Wotjak, C. T. & Lutz, B. Conditional cannabinoid receptor type 1 mutants reveal neuron subpopulation-specific effects on behavioral and neuroendocrine stress responses. Psychoneuroendocrinology 33, 1165–1170 (2008).
Steiner, M. A. & Wotjak, C. T. Role of the endocannabinoid system in regulation of the hypothalamic-pituitary-adrenocortical axis. Prog. Brain Res. 170, 397–432 (2008).
Lu, A. et al. Conditional mouse mutants highlight mechanisms of corticotropin-releasing hormone effects on stress-coping behavior. Mol. Psychiatry 13, 1028–1042 (2008).
Wamsteeker, J. I., Kuzmiski, J. B. & Bains, J. S. Repeated stress impairs endocannabinoid signaling in the paraventricular nucleus of the hypothalamus. J. Neurosci. 30, 11188–11196 (2010). This paper shows that homotypic stress causes a collapse of eCB signalling at GABA and glutamatergic synapses.
Di, S., Maxson, M. M., Franco, A. & Tasker, J. G. Glucocorticoids regulate glutamate and GABA synapse-specific retrograde transmission via divergent nongenomic signaling pathways. J. Neurosci. 29, 393–401 (2009).
Di, S., Malcher-Lopes, R., Halmos, K. C. & Tasker, J. G. Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J. Neurosci. 23, 4850–4857 (2003). This was the frst demonstration of the rapid effects CORT has on eCB signalling.
Ono, N., Bedran de Castro, J. C. & McCann, S. M. Ultrashort-loop positive feedback of corticotropin (ACTH)-releasing factor to enhance ACTH release in stress. Proc. Natl Acad. Sci. USA 82, 3528–3531 (1985).
Parkes, D. G., Yamamoto, G. Y., Vaughan, J. M. & Vale, W. W. Characterization and regulation of corticotropin-releasing factor in the human hepatoma NPLC-KC cell line. Neuroendocrinology 57, 663–669 (1993).
Regehr, W. G., Carey, M. R. & Best, A. R. Activity-dependent regulation of synapses by retrograde messengers. Neuron 63, 154–170 (2009).
Givalois, L., Arancibia, S. & Tapia-Arancibia, L. Concomitant changes in CRH mRNA levels in rat hippocampus and hypothalamus following immobilization stress. Brain Res. Mol. Brain Res. 75, 166–171 (2000).
Pechnick, R. N., Bresee, C. J. & Poland, R. E. The role of antagonism of NMDA receptor-mediated neurotransmission and inhibition of the dopamine reuptake in the neuroendocrine effects of phencyclidine. Life Sci. 78, 2006–2011 (2006).
Lee, S., Rivier, C. & Torres, G. Induction of c-fos and CRF mRNA by MK-801 in the parvocellular paraventricular nucleus of the rat hypothalamus. Brain Res. Mol. Brain Res. 24, 192–198 (1994).
Armario, A., Martí, O., Vallès, A., Dal-Zotto, S. & Ons, S. Long-term effects of a single exposure to immobilization on the hypothalamic-pituitary-adrenal axis: neurobiologic mechanisms. Ann. NY Acad. Sci. 1018, 162–172 (2004).
Akana, S. F. et al. Feedback and facilitation in the adrenocortical system: unmasking facilitation by partial inhibition of the glucocorticoid response to prior stress. Endocrinology 131, 57–68 (1992).
Akana, S. F. et al. Feedback sensitivity of the rat hypothalamo-pituitary-adrenal axis and its capacity to adjust to exogenous corticosterone. Endocrinology 131, 585–594 (1992).
Flak, J. N., Ostrander, M. M., Tasker, J. G. & Herman, J. P. Chronic stress-induced neurotransmitter plasticity in the PVN. J. Comp. Neurol. 517, 156–165 (2009).
Kusek, M., Tokarski, K. & Hess, G. Repeated restraint stress enhances glutamatergic transmission in the paraventricular nucleus of the rat hypothalamus. J. Physiol. Pharmacol. 64, 565–570 (2013).
Korosi, A. et al. Early-life experience reduces excitation to stress-responsive hypothalamic neurons and reprograms the expression of corticotropin-releasing hormone. J. Neurosci. 30, 703–713 (2010).
Levine, S. Maternal and environmental influences on the adrenocortical response to stress in weanling rats. Science 156, 258–260 (1967).
Francis, D. D., Champagne, F. A., Liu, D. & Meaney, M. J. Maternal care, gene expression, and the development of individual differences in stress reactivity. Ann. NY Acad. Sci. 896, 66–84 (1999).
Avishai-Eliner, S., Eghbal-Ahmadi, M., Tabachnik, E., Brunson, K. L. & Baram, T. Z. Down-regulation of hypothalamic corticotropin-releasing hormone messenger ribonucleic acid (mRNA) precedes early-life experience-induced changes in hippocampal glucocorticoid receptor mRNA. Endocrinology 142, 89–97 (2001).
Cullinan, W. E., Ziegler, D. R. & Herman, J. P. Functional role of local GABAergic influences on the HPA axis. Brain Struct. Funct. 213, 63–72 (2008).
Sarkar, J., Wakefield, S., MacKenzie, G., Moss, S. J. & Maguire, J. Neurosteroidogenesis is required for the physiological response to stress: role of neurosteroid-sensitive GABAA receptors. J. Neurosci. 31, 18198–18210 (2011). This paper shows that stress causes a post-translational modification of KCC2 to modify chloride gradients and also demonstrates a clear role for extrasynaptic GABA A receptors.
Wamsteeker Cusulin, J. I., Füzesi, T., Watts, A. G. & Bains, J. S. Characterization of corticotropin-releasing hormone neurons in the paraventricular nucleus of the hypothalamus of Crh-IRES-Cre mutant mice. PLoS ONE 8, e64943 (2013).
Verkuyl, J. M., Karst, H. & Joëls, M. GABAergic transmission in the rat paraventricular nucleus of the hypothalamus is suppressed by corticosterone and stress. Eur. J. Neurosci. 21, 113–121 (2005).
Inoue, W. & Bains, J. S. Beyond inhibition: GABA synapses tune the neuroendocrine stress axis. Bioessays 36, 561–569 (2014).
Lee, V., Sarkar, J. & Maguire, J. Loss of Gabrd in CRH neurons blunts the corticosterone response to stress and diminishes stress-related behaviors. Psychoneuroendocrinology 41, 75–88 (2014).
Cullinan, W. E. & Wolfe, T. J. Chronic stress regulates levels of mRNA transcripts encoding β subunits of the GABAA receptor in the rat stress axis. Brain Res. 887, 118–124 (2000).
Verkuyl, J. M., Hemby, S. E. & Joëls, M. Chronic stress attenuates GABAergic inhibition and alters gene expression of parvocellular neurons in rat hypothalamus. Eur. J. Neurosci. 20, 1665–1673 (2004).
Staley, K. J. & Proctor, W. R. Modulation of mammalian dendritic GABAA receptor function by the kinetics of Cl− and HCO3− transport. J. Physiol. 519, 693–712 (1999).
Deeb, T. Z., Lee, H. H. C., Walker, J. A., Davies, P. A. & Moss, S. J. Hyperpolarizing GABAergic transmission depends on KCC2 function and membrane potential. Channels 5, 475–481 (2011).
Ma, S. & Morilak, D. A. Chronic intermittent cold stress sensitises the hypothalamic-pituitary-adrenal response to a novel acute stress by enhancing noradrenergic influence in the rat paraventricular nucleus. J. Neuroendocrinol. 17, 761–769 (2005).
Morilak, D. A. et al. Role of brain norepinephrine in the behavioral response to stress. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 1214–1224 (2005).
Weiser, M. J., Osterlund, C. & Spencer, R. L. Inhibitory effects of corticosterone in the hypothalamic paraventricular nucleus (PVN) on stress-induced adrenocorticotrophic hormone secretion and gene expression in the PVN and anterior pituitary. J. Neuroendocrinol. 23, 1231–1240 (2011). This paper provides evidence for CORT as an adaptogenic signal in the PVN.
Abraham, W. C. Metaplasticity: tuning synapses and networks for plasticity. Nat. Rev. Neurosci. 9, 387 (2008).
Diamond, D. M., Campbell, A. M., Park, C. R., Halonen, J. & Zoladz, P. R. The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law. Neural Plast. 2007, 60803 (2007).
Wamsteeker Cusulin, J. I., Senst, L., Teskey, G. C. & Bains, J. S. Experience salience gates endocannabinoid signaling at hypothalamic synapses. J. Neurosci. 34, 6177–6181 (2014). This paper demonstrates that a novel stressor, translated through an increase in local synaptic activity, can reset synapses compromised by repeated homotypic stress.
Itoi, K. et al. Visualization of corticotropin-releasing factor neurons by fluorescent proteins in the mouse brain and characterization of labeled neurons in the paraventricular nucleus of the hypothalamus. Endocrinology 155, 4054–4060 (2014).
Dabrowska, J., Hazra, R., Guo, J.-D., Dewitt, S. & Rainnie, D. G. Central CRF neurons are not created equal: phenotypic differences in CRF-containing neurons of the rat paraventricular hypothalamus and the bed nucleus of the stria terminalis. Front. Neurosci. 7, 156 (2013).
Acknowledgements
Research by the authors is supported by the Canadian Institutes for Health Research.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Glossary
- Metaplasticity
-
A change in synapses that alters their ability to express plasticity.
- Kairoplasticity
-
Derived from the Greek 'kairos', meaning the opportune or correct moment, it refers to observations that different forms of metaplasticity following stress that can be induced only during specific and distinct temporal windows.
- Spillover
-
When a neurotransmitter from one synapse acts at a neighbouring synapse; for example, when glutamate escapes the synaptic cleft and acts on nearby synapses.
- Heterosynaptic modulation
-
When one transmitter system (for example, glutamate) affects a neighbouring but different system (for example, GABA).
- Homotypic stress
-
Repeated administration of the same stressor to an animal.
- K-Cl co-transporter 2
-
(KCC2). A transmembrane potassium–chloride co-transporter that extrudes chloride and maintains the driving force for chloride influx into cells upon the opening of GABAA receptors.
Rights and permissions
About this article
Cite this article
Bains, J., Cusulin, J. & Inoue, W. Stress-related synaptic plasticity in the hypothalamus. Nat Rev Neurosci 16, 377–388 (2015). https://doi.org/10.1038/nrn3881
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrn3881
This article is cited by
-
Inhibition of c-Jun in AgRP neurons increases stress-induced anxiety and colitis susceptibility
Communications Biology (2023)
-
Brain-wide perception of the emotional valence of light is regulated by distinct hypothalamic neurons
Molecular Psychiatry (2022)
-
Stress and immunity — the circuit makes the difference
Nature Immunology (2022)
-
Acute Sleep Deprivation-Induced Anxiety and Disruption of Hypothalamic Cell Survival and Plasticity: A Mechanistic Study of Protection by Butanol Extract of Tinospora cordifolia
Neurochemical Research (2022)
-
Plasticity of intrinsic excitability across the estrous cycle in hypothalamic CRH neurons
Scientific Reports (2021)