Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stress-related synaptic plasticity in the hypothalamus

Key Points

  • Glutamate and GABAergic synapses on stress-responsive neuroendocrine cells in the paraventricular nucleus of the hypothalamus (PVN) exhibit different forms of plasticity in response to acute stress.

  • Following acute stress, glutamatergic synapses switch to a multivesicular release mode in response to bursts of presynaptic activity.

  • GABAergic synapses become conditionally excitatory following stress. This is due to a collapse of transmembrane chloride gradients.

  • GABAergic synapses can exhibit potentiation or depression after stress. The polarity is dictated by the amount of time that has elapsed since the stress.

  • Endocannabinoid signalling is highly labile in the PVN. It is enhanced by acute stress, collapses in response to repeated homotypic stress, and is reset by a novel experience after the repeated stress.

Abstract

Stress necessitates an immediate engagement of multiple neural and endocrine systems. However, exposure to a single stressor causes adaptive changes that modify responses to subsequent stressors. Recent studies examining synapses onto neuroendocrine cells in the paraventricular nucleus of the hypothalamus demonstrate that stressful experiences leave indelible marks that alter the ability of these synapses to undergo plasticity. These adaptations include a unique form of metaplasticity at glutamatergic synapses, bidirectional changes in endocannabinoid signalling and bidirectional changes in strength at GABAergic synapses that rely on distinct temporal windows following stress. This rich repertoire of plasticity is likely to represent an important building block for dynamic, experience-dependent modulation of neuroendocrine stress adaptation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stress and functional connectivity.
Figure 2: Major direct and indirect CNS connections to the PVN.
Figure 3: Glutamatergic synapses — function and plasticity.
Figure 4: GABAergic synapses — function and plasticity.

Similar content being viewed by others

References

  1. McEwen, B. S. Mood disorders and allostatic load. Biol. Psychiatry 54, 200–207 (2003).

    Article  PubMed  Google Scholar 

  2. Dias, C. et al. β-catenin mediates stress resilience through Dicer1/microRNA regulation. Nature 516, 51–55 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chaudhury, D. et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493, 532–536 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Dias-Ferreira, E. et al. Chronic stress causes frontostriatal reorganization and affects decision-making. Science 325, 621–625 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Armario, A., Escorihuela, R. M. & Nadal, R. Long-term neuroendocrine and behavioural effects of a single exposure to stress in adult animals. Neurosci. Biobehav. Rev. 32, 1121–1135 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Andrés, R., Martí, O. & Armario, A. Direct evidence of acute stress-induced facilitation of ACTH response to subsequent stress in rats. Am. J. Physiol. 277, R863–R868 (1999).

    PubMed  Google Scholar 

  7. Ons, S., Rotllant, D., Marín-Blasco, I. J. & Armario, A. Immediate-early gene response to repeated immobilization: Fos protein and arc mRNA levels appear to be less sensitive than c-fos mRNA to adaptation. Eur. J. Neurosci. 31, 2043–2052 (2010).

    Article  PubMed  Google Scholar 

  8. Dallman, M. F. et al. Stress, feedback and facilitation in the hypothalamo-pituitary-adrenal axis. J. Neuroendocrinol. 4, 517–526 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Bhatnagar, S. & Dallman, M. Neuroanatomical basis for facilitation of hypothalamic-pituitary-adrenal responses to a novel stressor after chronic stress. Neuroscience 84, 1025–1039 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Keller-Wood, M. E. & Dallman, M. F. Corticosteroid inhibition of ACTH secretion. Endocr. Rev. 5, 1–24 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Girotti, M. et al. Habituation to repeated restraint stress is associated with lack of stress-induced c-fos expression in primary sensory processing areas of the rat brain. Neuroscience 138, 1067–1081 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Grissom, N. & Bhatnagar, S. Habituation to repeated stress: get used to it. Neurobiol. Learn. Mem. 92, 215–224 (2009).

    Article  PubMed  Google Scholar 

  13. Joels, M. & Baram, T. Z. The neuro-symphony of stress. Nat. Rev. Neurosci. 10, 459–466 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sapolsky, R. M., Krey, L. C. & McEwen, B. S. Prolonged glucocorticoid exposure reduces hippocampal neuron number: implications for aging. J. Neurosci. 5, 1222–1227 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Sapolsky, R. M. & Pulsinelli, W. A. Glucocorticoids potentiate ischemic injury to neurons: therapeutic implications. Science 229, 1397–1400 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. Pavlides, C., Watanabe, Y. & McEwen, B. S. Effects of glucocorticoids on hippocampal long-term potentiation. Hippocampus 3, 183–192 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Bruhn, T. O., Plotsky, P. M. & Vale, W. W. Effect of paraventricular lesions on corticotropin-releasing factor (CRF)-like immunoreactivity in the stalk-median eminence: studies on the adrenocorticotropin response to ether stress and exogenous CRF. Endocrinology 114, 57–62 (1984).

    Article  CAS  PubMed  Google Scholar 

  18. Swanson, L. W. & Sawchenko, P. E. Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology 31, 410–417 (1980).

    Article  CAS  PubMed  Google Scholar 

  19. Denver, R. J. Structural and functional evolution of vertebrate neuroendocrine stress systems. Ann. NY Acad. Sci. 1163, 1–16 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Makara, G. B., Stark, E., Kapocs, G. & Antoni, F. A. Long-term effects of hypothalamic paraventricular lesion on CRF content and stimulated ACTH secretion. Am. J. Physiol. 250, E319–E324 (1986).

    Article  CAS  PubMed  Google Scholar 

  21. Ulrich-Lai, Y. M. & Herman, J. P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 10, 397–409 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Makara, G. B. & Stark, E. Effects of gamma-aminobutyric acid (GABA) and GABA antagonist drugs on ACTH release. Neuroendocrinology 16, 178–190 (1974).

    Article  CAS  PubMed  Google Scholar 

  23. Makara, G. B. & Stark, E. Effect of intraventricular glutamate on ACTH release. Neuroendocrinology 18, 213–216 (1975).

    Article  CAS  PubMed  Google Scholar 

  24. Decavel, C. & van den Pol, A. N. Converging GABA- and glutamate-immunoreactive axons make synaptic contact with identified hypothalamic neurosecretory neurons. J. Comp. Neurol. 316, 104–116 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Decavel, C. & van den Pol, A. N. GABA: a dominant neurotransmitter in the hypothalamus. J. Comp. Neurol. 302, 1019–1037 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. van den Pol, A. N., Wuarin, J. P. & Dudek, F. E. Glutamate, the dominant excitatory transmitter in neuroendocrine regulation. Science 250, 1276–1278 (1990). This was the first demonstration of glutamate as a fast, excitatory synaptic signal in the PVN.

    Article  CAS  PubMed  Google Scholar 

  27. van den Pol, A. N. Glutamate and aspartate immunoreactivity in hypothalamic presynaptic axons. J. Neurosci. 11, 2087–2101 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Meister, B., Hokfelt, T., Geffard, M. & Oertel, W. Glutamic acid decarboxylase- and γ-aminobutyric acid-like immunoreactivities in corticotropin-releasing factor-containing parvocellular neurons of the hypothalamic paraventricular nucleus. Neuroendocrinology 48, 516–526 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Miklos, I. H. & Kovacs, K. J. GABAergic innervation of corticotropin-releasing hormone (CRH)-secreting parvocellular neurons and its plasticity as demonstrated by quantitative immunoelectron microscopy. Neuroscience 113, 581–592 (2002). This paper provides electron microscopy evidence that GABA innervation of CRH-producing neurons exhibits morphological plasticity.

    Article  CAS  PubMed  Google Scholar 

  30. Boudaba, C., Szabo, K. & Tasker, J. G. Physiological mapping of local inhibitory inputs to the hypothalamic paraventricular nucleus. J. Neurosci. 16, 7151–7160 (1996). Using glutamate microdrops, this study maps the potential locations of GABA cells that provide input to the PVN.

    Article  CAS  PubMed  Google Scholar 

  31. Boudaba, C., Schrader, L. A. & Tasker, J. G. Physiological evidence for local excitatory synaptic circuits in the rat hypothalamus. J. Neurophysiol. 77, 3396–3400 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Gordon, G. R. & Bains, J. S. Noradrenaline triggers multivesicular release at glutamatergic synapses in the hypothalamus. J. Neurosci. 25, 11385–11395 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Iremonger, K. J. & Bains, J. S. Integration of asynchronously released quanta prolongs the postsynaptic spike window. J. Neurosci. 27, 6684–6691 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marty, V., Kuzmiski, J. B., Baimoukhametova, D. V. & Bains, J. S. Short-term plasticity impacts information transfer at glutamate synapses onto parvocellular neuroendocrine cells in the paraventricular nucleus of the hypothalamus. J. Physiol. 589, 4259–4270 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuzmiski, J. B., Marty, V., Baimoukhametova, D. V. & Bains, J. S. Stress-induced priming of glutamate synapses unmasks associative short-term plasticity. Nat. Neurosci. 13, 1257–1264 (2011).

    Article  CAS  Google Scholar 

  36. Atasoy, D., Betley, J. N., Su, H. H. & Sternson, S. M. Deconstruction of a neural circuit for hunger. Nature 488, 172–177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Betley, J. N., Cao, Z. F. H., Ritola, K. D. & Sternson, S. M. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155, 1337–1350 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kiss, J. Z. et al. Quantitative histological studies on the hypothalamic paraventricular nucleus in rats: I. Number of cells and synaptic boutons. Brain Res. 262, 217–224 (1983).

    Article  CAS  PubMed  Google Scholar 

  39. Kiss, J. Z. et al. Quantitative histological studies on the hypothalamic paraventricular nucleus in rats. II. Number of local and certain afferent nerve terminals. Brain Res. 265, 11–20 (1983).

    Article  CAS  PubMed  Google Scholar 

  40. Hiscock, J. J., Murphy, S. & Willoughby, J. O. Confocal microscopic estimation of GABAergic nerve terminals in the central nervous system. J. Neurosci. Methods 95, 1–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Liposits, Z., Phelix, C. & Paull, W. K. Adrenergic innervation of corticotropin releasing factor (CRF)-synthesizing neurons in the hypothalamic paraventricular nucleus of the rat. A combined light and electron microscopic immunocytochemical study. Histochemistry 84, 201–205 (1986).

    Article  CAS  PubMed  Google Scholar 

  42. DePuy, S. D. et al. Glutamatergic neurotransmission between the C1 neurons and the parasympathetic preganglionic neurons of the dorsal motor nucleus of the vagus. J. Neurosci. 33, 1486–1497 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Holloway, B. B. et al. Monosynaptic glutamatergic activation of locus coeruleus and other lower brainstem noradrenergic neurons by the C1 cells in mice. J. Neurosci. 33, 18792–18805 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miklos, I. H. & Kovacs, K. J. Reorganization of synaptic inputs to the hypothalamic paraventricular nucleus during chronic psychogenic stress in rats. Biol. Psychiatry 71, 301–308 (2012). This paper provides anatomical evidence for changes in synaptic inputs to PVN neurons following stress.

    Article  PubMed  Google Scholar 

  45. Rho, J. H. & Swanson, L. W. A morphometric analysis of functionally defined subpopulations of neurons in the paraventricular nucleus of the rat with observations on the effects of colchicine. J. Neurosci. 9, 1375–1388 (1989).

    Article  CAS  PubMed  Google Scholar 

  46. Mitra, R., Jadhav, S., McEwen, B. S., Vyas, A. & Chattarji, S. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc. Natl Acad. Sci. USA 102, 9371–9376 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Radley, J. J., Anderson, R. M., Hamilton, B. A., Alcock, J. A. & Romig-Martin, S. A. Chronic stress-induced alterations of dendritic spine subtypes predict functional decrements in an hypothalamo-pituitary-adrenal-inhibitory prefrontal circuit. J. Neurosci. 33, 14379–14391 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aubry, J. M., Bartanusz, V., Pagliusi, S., Schulz, P. & Kiss, J. Z. Expression of ionotropic glutamate receptor subunit mRNAs by paraventricular corticotropin-releasing factor (CRF) neurons. Neurosci. Lett. 205, 95–98 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Herman, J. P., Eyigor, O., Ziegler, D. R. & Jennes, L. Expression of ionotropic glutamate receptor subunit mRNAs in the hypothalamic paraventricular nucleus of the rat. J. Comp. Neurol. 422, 352–362 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Eyigor, O., Centers, A. & Jennes, L. Distribution of ionotropic glutamate receptor subunit mRNAs in the rat hypothalamus. J. Comp. Neurol. 434, 101–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Ziegler, D. R., Cullinan, W. E. & Herman, J. P. Organization and regulation of paraventricular nucleus glutamate signaling systems: N-methyl-d-aspartate receptors. J. Comp. Neurol. 484, 43–56 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Margeta-Mitrovic, M., Mitrovic, I., Riley, R. C., Jan, L. Y. & Basbaum, A. I. Immunohistochemical localization of GABAB receptors in the rat central nervous system. J. Comp. Neurol. 405, 299–321 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Ziegler, D. R. & Herman, J. P. Local integration of glutamate signaling in the hypothalamic paraventricular region: regulation of glucocorticoid stress responses. Endocrinology 141, 4801–4804 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Cole, R. L. & Sawchenko, P. E. Neurotransmitter regulation of cellular activation and neuropeptide gene expression in the paraventricular nucleus of the hypothalamus. J. Neurosci. 22, 959–969 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Darlington, D. N., Miyamoto, M., Keil, L. C. & Dallman, M. F. Paraventricular stimulation with glutamate elicits bradycardia and pituitary responses. Am. J. Physiol. 256, R112–R119 (1989).

    CAS  PubMed  Google Scholar 

  56. Hewitt, S. A., Wamsteeker, J. I., Kurz, E. U. & Bains, J. S. Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis. Nat. Neurosci. 12, 438–443 (2009). This was the first demonstration of changes in chloride gradients as a possible cause of disinhibition during stress.

    Article  CAS  PubMed  Google Scholar 

  57. Bartanusz, V. et al. Local γ-aminobutyric acid and glutamate circuit control of hypophyseotrophic corticotropin-releasing factor neuron activity in the paraventricular nucleus of the hypothalamus. Eur. J. Neurosci. 19, 777–782 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Herman, J. P. et al. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front. Neuroendocrinol. 24, 151–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Bali, B., Erdélyi, F., Szabó, G. & Kovács, K. J. Visualization of stress-responsive inhibitory circuits in the GAD65-eGFP transgenic mice. Neurosci. Lett. 380, 60–65 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Anthony, T. E. et al. Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. Cell 156, 522–536 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhu, W., Umegaki, H., Suzuki, Y., Miura, H. & Iguchi, A. Involvement of the bed nucleus of the stria terminalis in hippocampal cholinergic system-mediated activation of the hypothalamo–pituitary–adrenocortical axis in rats. Brain Res. 916, 101–106 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Mongeau, R., Miller, G. A., Chiang, E. & Anderson, D. J. Neural correlates of competing fear behaviors evoked by an innately aversive stimulus. J. Neurosci. 23, 3855–3868 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stornetta, R. L., Macon, C. J., Nguyen, T. M., Coates, M. B. & Guyenet, P. G. Cholinergic neurons in the mouse rostral ventrolateral medulla target sensory afferent areas. Brain Struct. Funct. 218, 455–475 (2013).

    Article  PubMed  Google Scholar 

  64. Zheng, H., Stornetta, R. L., Agassandian, K. & Rinaman, L. Glutamatergic phenotype of glucagon-like peptide 1 neurons in the caudal nucleus of the solitary tract in rats. Brain Struct. Funct. http://dx.doi.org/10.1007/s00429-014-0841-6 (2014).

  65. Gunn, B. G. et al. Dysfunctional astrocytic and synaptic regulation of hypothalamic glutamatergic transmission in a mouse model of early-life adversity: relevance to neurosteroids and programming of the stress response. J. Neurosci. 33, 19534–19554 (2013). This was the first demonstration of synaptic effects in the PVN of early life stress.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Koenig, J. I. & Cho, J. Y. Provocation of kainic acid receptor mRNA changes in the rat paraventricular nucleus by insulin-induced hypoglycaemia. J. Neuroendocrinol. 17, 111–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Evanson, N. K., Van Hooren, D. C. & Herman, J. P. GluR5-mediated glutamate signaling regulates hypothalamo-pituitary-adrenocortical stress responses at the paraventricular nucleus and median eminence. Psychoneuroendocrinology 34, 1370–1379 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. van den Pol, A. N. Metabotropic glutamate receptor mGluR1 distribution and ultrastructural localization in hypothalamus. J. Comp. Neurol. 349, 615–632 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Kocsis, K., Kiss, J., Gorcs, T. & Halasz, B. Metabotropic glutamate receptor in vasopressin, CRF and VIP hypothalamic neurones. Neuroreport 9, 4029–4033 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Inoue, W. et al. Noradrenaline is a stress-associated metaplastic signal at GABA synapses. Nat. Neurosci. 16, 605–612 (2013). This paper shows that stress causes a postsynaptic LTP due to GABA A receptor insertion that requires priming by noradrenaline.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wamsteeker Cusulin, J. I., Füzesi, T., Inoue, W. & Bains, J. S. Glucocorticoid feedback uncovers retrograde opioid signaling at hypothalamic synapses. Nat. Neurosci. 16, 596–604 (2013). This paper demonstrates that stress causes a presynaptic LTD that relies on CORT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pacak, K., Palkovits, M., Kopin, I. J. & Goldstein, D. S. Stress-induced norepinephrine release in the hypothalamic paraventricular nucleus and pituitary-adrenocortical and sympathoadrenal activity: in vivo microdialysis studies. Front. Neuroendocrinol. 16, 89–150 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Pacak, K. & Palkovits, M. Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocr. Rev. 22, 502–548 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Boudaba, C., Di, S. & Tasker, J. G. Presynaptic noradrenergic regulation of glutamate inputs to hypothalamic magnocellular neurones. J. Neuroendocrinol. 15, 803–810 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Feldman, S. & Weidenfeld, J. Involvement of endogeneous glutamate in the stimulatory effect of norepinephrine and serotonin on the hypothalamo-pituitary-adrenocortical axis. Neuroendocrinology 79, 43–53 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Steiner, M. A., Marsicano, G., Wotjak, C. T. & Lutz, B. Conditional cannabinoid receptor type 1 mutants reveal neuron subpopulation-specific effects on behavioral and neuroendocrine stress responses. Psychoneuroendocrinology 33, 1165–1170 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Steiner, M. A. & Wotjak, C. T. Role of the endocannabinoid system in regulation of the hypothalamic-pituitary-adrenocortical axis. Prog. Brain Res. 170, 397–432 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Lu, A. et al. Conditional mouse mutants highlight mechanisms of corticotropin-releasing hormone effects on stress-coping behavior. Mol. Psychiatry 13, 1028–1042 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Wamsteeker, J. I., Kuzmiski, J. B. & Bains, J. S. Repeated stress impairs endocannabinoid signaling in the paraventricular nucleus of the hypothalamus. J. Neurosci. 30, 11188–11196 (2010). This paper shows that homotypic stress causes a collapse of eCB signalling at GABA and glutamatergic synapses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Di, S., Maxson, M. M., Franco, A. & Tasker, J. G. Glucocorticoids regulate glutamate and GABA synapse-specific retrograde transmission via divergent nongenomic signaling pathways. J. Neurosci. 29, 393–401 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Di, S., Malcher-Lopes, R., Halmos, K. C. & Tasker, J. G. Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J. Neurosci. 23, 4850–4857 (2003). This was the frst demonstration of the rapid effects CORT has on eCB signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ono, N., Bedran de Castro, J. C. & McCann, S. M. Ultrashort-loop positive feedback of corticotropin (ACTH)-releasing factor to enhance ACTH release in stress. Proc. Natl Acad. Sci. USA 82, 3528–3531 (1985).

    Article  CAS  PubMed  Google Scholar 

  83. Parkes, D. G., Yamamoto, G. Y., Vaughan, J. M. & Vale, W. W. Characterization and regulation of corticotropin-releasing factor in the human hepatoma NPLC-KC cell line. Neuroendocrinology 57, 663–669 (1993).

    Article  CAS  PubMed  Google Scholar 

  84. Regehr, W. G., Carey, M. R. & Best, A. R. Activity-dependent regulation of synapses by retrograde messengers. Neuron 63, 154–170 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Givalois, L., Arancibia, S. & Tapia-Arancibia, L. Concomitant changes in CRH mRNA levels in rat hippocampus and hypothalamus following immobilization stress. Brain Res. Mol. Brain Res. 75, 166–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Pechnick, R. N., Bresee, C. J. & Poland, R. E. The role of antagonism of NMDA receptor-mediated neurotransmission and inhibition of the dopamine reuptake in the neuroendocrine effects of phencyclidine. Life Sci. 78, 2006–2011 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Lee, S., Rivier, C. & Torres, G. Induction of c-fos and CRF mRNA by MK-801 in the parvocellular paraventricular nucleus of the rat hypothalamus. Brain Res. Mol. Brain Res. 24, 192–198 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Armario, A., Martí, O., Vallès, A., Dal-Zotto, S. & Ons, S. Long-term effects of a single exposure to immobilization on the hypothalamic-pituitary-adrenal axis: neurobiologic mechanisms. Ann. NY Acad. Sci. 1018, 162–172 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Akana, S. F. et al. Feedback and facilitation in the adrenocortical system: unmasking facilitation by partial inhibition of the glucocorticoid response to prior stress. Endocrinology 131, 57–68 (1992).

    Article  CAS  PubMed  Google Scholar 

  90. Akana, S. F. et al. Feedback sensitivity of the rat hypothalamo-pituitary-adrenal axis and its capacity to adjust to exogenous corticosterone. Endocrinology 131, 585–594 (1992).

    CAS  PubMed  Google Scholar 

  91. Flak, J. N., Ostrander, M. M., Tasker, J. G. & Herman, J. P. Chronic stress-induced neurotransmitter plasticity in the PVN. J. Comp. Neurol. 517, 156–165 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kusek, M., Tokarski, K. & Hess, G. Repeated restraint stress enhances glutamatergic transmission in the paraventricular nucleus of the rat hypothalamus. J. Physiol. Pharmacol. 64, 565–570 (2013).

    CAS  PubMed  Google Scholar 

  93. Korosi, A. et al. Early-life experience reduces excitation to stress-responsive hypothalamic neurons and reprograms the expression of corticotropin-releasing hormone. J. Neurosci. 30, 703–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Levine, S. Maternal and environmental influences on the adrenocortical response to stress in weanling rats. Science 156, 258–260 (1967).

    Article  CAS  PubMed  Google Scholar 

  95. Francis, D. D., Champagne, F. A., Liu, D. & Meaney, M. J. Maternal care, gene expression, and the development of individual differences in stress reactivity. Ann. NY Acad. Sci. 896, 66–84 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Avishai-Eliner, S., Eghbal-Ahmadi, M., Tabachnik, E., Brunson, K. L. & Baram, T. Z. Down-regulation of hypothalamic corticotropin-releasing hormone messenger ribonucleic acid (mRNA) precedes early-life experience-induced changes in hippocampal glucocorticoid receptor mRNA. Endocrinology 142, 89–97 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cullinan, W. E., Ziegler, D. R. & Herman, J. P. Functional role of local GABAergic influences on the HPA axis. Brain Struct. Funct. 213, 63–72 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Sarkar, J., Wakefield, S., MacKenzie, G., Moss, S. J. & Maguire, J. Neurosteroidogenesis is required for the physiological response to stress: role of neurosteroid-sensitive GABAA receptors. J. Neurosci. 31, 18198–18210 (2011). This paper shows that stress causes a post-translational modification of KCC2 to modify chloride gradients and also demonstrates a clear role for extrasynaptic GABA A receptors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wamsteeker Cusulin, J. I., Füzesi, T., Watts, A. G. & Bains, J. S. Characterization of corticotropin-releasing hormone neurons in the paraventricular nucleus of the hypothalamus of Crh-IRES-Cre mutant mice. PLoS ONE 8, e64943 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Verkuyl, J. M., Karst, H. & Joëls, M. GABAergic transmission in the rat paraventricular nucleus of the hypothalamus is suppressed by corticosterone and stress. Eur. J. Neurosci. 21, 113–121 (2005).

    Article  PubMed  Google Scholar 

  101. Inoue, W. & Bains, J. S. Beyond inhibition: GABA synapses tune the neuroendocrine stress axis. Bioessays 36, 561–569 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Lee, V., Sarkar, J. & Maguire, J. Loss of Gabrd in CRH neurons blunts the corticosterone response to stress and diminishes stress-related behaviors. Psychoneuroendocrinology 41, 75–88 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Cullinan, W. E. & Wolfe, T. J. Chronic stress regulates levels of mRNA transcripts encoding β subunits of the GABAA receptor in the rat stress axis. Brain Res. 887, 118–124 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Verkuyl, J. M., Hemby, S. E. & Joëls, M. Chronic stress attenuates GABAergic inhibition and alters gene expression of parvocellular neurons in rat hypothalamus. Eur. J. Neurosci. 20, 1665–1673 (2004).

    Article  PubMed  Google Scholar 

  105. Staley, K. J. & Proctor, W. R. Modulation of mammalian dendritic GABAA receptor function by the kinetics of Cl and HCO3 transport. J. Physiol. 519, 693–712 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Deeb, T. Z., Lee, H. H. C., Walker, J. A., Davies, P. A. & Moss, S. J. Hyperpolarizing GABAergic transmission depends on KCC2 function and membrane potential. Channels 5, 475–481 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ma, S. & Morilak, D. A. Chronic intermittent cold stress sensitises the hypothalamic-pituitary-adrenal response to a novel acute stress by enhancing noradrenergic influence in the rat paraventricular nucleus. J. Neuroendocrinol. 17, 761–769 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Morilak, D. A. et al. Role of brain norepinephrine in the behavioral response to stress. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 1214–1224 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Weiser, M. J., Osterlund, C. & Spencer, R. L. Inhibitory effects of corticosterone in the hypothalamic paraventricular nucleus (PVN) on stress-induced adrenocorticotrophic hormone secretion and gene expression in the PVN and anterior pituitary. J. Neuroendocrinol. 23, 1231–1240 (2011). This paper provides evidence for CORT as an adaptogenic signal in the PVN.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Abraham, W. C. Metaplasticity: tuning synapses and networks for plasticity. Nat. Rev. Neurosci. 9, 387 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Diamond, D. M., Campbell, A. M., Park, C. R., Halonen, J. & Zoladz, P. R. The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law. Neural Plast. 2007, 60803 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Wamsteeker Cusulin, J. I., Senst, L., Teskey, G. C. & Bains, J. S. Experience salience gates endocannabinoid signaling at hypothalamic synapses. J. Neurosci. 34, 6177–6181 (2014). This paper demonstrates that a novel stressor, translated through an increase in local synaptic activity, can reset synapses compromised by repeated homotypic stress.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Itoi, K. et al. Visualization of corticotropin-releasing factor neurons by fluorescent proteins in the mouse brain and characterization of labeled neurons in the paraventricular nucleus of the hypothalamus. Endocrinology 155, 4054–4060 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Dabrowska, J., Hazra, R., Guo, J.-D., Dewitt, S. & Rainnie, D. G. Central CRF neurons are not created equal: phenotypic differences in CRF-containing neurons of the rat paraventricular hypothalamus and the bed nucleus of the stria terminalis. Front. Neurosci. 7, 156 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research by the authors is supported by the Canadian Institutes for Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaideep S. Bains.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Metaplasticity

A change in synapses that alters their ability to express plasticity.

Kairoplasticity

Derived from the Greek 'kairos', meaning the opportune or correct moment, it refers to observations that different forms of metaplasticity following stress that can be induced only during specific and distinct temporal windows.

Spillover

When a neurotransmitter from one synapse acts at a neighbouring synapse; for example, when glutamate escapes the synaptic cleft and acts on nearby synapses.

Heterosynaptic modulation

When one transmitter system (for example, glutamate) affects a neighbouring but different system (for example, GABA).

Homotypic stress

Repeated administration of the same stressor to an animal.

K-Cl co-transporter 2

(KCC2). A transmembrane potassium–chloride co-transporter that extrudes chloride and maintains the driving force for chloride influx into cells upon the opening of GABAA receptors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bains, J., Cusulin, J. & Inoue, W. Stress-related synaptic plasticity in the hypothalamus. Nat Rev Neurosci 16, 377–388 (2015). https://doi.org/10.1038/nrn3881

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3881

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing