Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endocannabinoid signalling and the deteriorating brain

Key Points

  • Endocannabinoids are lipid mediators derived from arachidonic acid and produced on demand to restore homeostasis. By activating cannabinoid CB1 and CB2 receptors, they produce neuromodulatory and immune modulatory actions.

  • Endocannabinoid levels and CB1 and CB2 expression vary during ageing and neuroinflammatory and neurodegenerative disorders. CB1 loss or overactivation may affect cognition negatively in advanced or young age, respectively.

  • CB2 receptors control inflammatory cytochine production in brain-invading T lymphocytes during neuroinflammatory conditions. CB1 and CB2 receptors also control the cellular features of 'inflammaging', whereas, with age, CB1 may participate in the neuroinflammation accompanying a disrupted hypothalamic–pituitary–adrenal (HPA) axis in obesity.

  • The endocannabinoid system controls the activity of molecular and subcellular master regulators of cell metabolism, such as mammalian target of rapamycin (mTOR) and mitochondria, lysosomes and autophagosomes, which are also involved in the correct functioning of the CNS during ageing and neurological conditions. These effects might also be mediated by intracellular populations of CB1 receptors.

  • Endocannabinoids are accompanied in tissues by several metabolically related bioactive fatty acid amides and esters, which act at non-cannabinoid receptors. This renders the pharmacological manipulation of endocannabinoid levels, and hence the indirect modulation of cannabinoid receptor activity with inhibitors of endocannabinoid metabolic enzymes, more problematic.

  • Nevertheless, several preclinical studies indicate that CB1 and, particularly, CB2 agonists, as well as inhibitors of endocannabinoid inactivation, may be useful as disease-modifying agents for neurodegenerative and neuroinflammatory conditions such as multiple sclerosis. This, together with other mechanisms of action, may explain the recent clinical success of plant cannabinoids against spasticity and pain in multiple sclerosis.

Abstract

Ageing is characterized by the progressive impairment of physiological functions and increased risk of developing debilitating disorders, including chronic inflammation and neurodegenerative diseases. These disorders have common molecular mechanisms that can be targeted therapeutically. In the wake of the approval of the first cannabinoid-based drug for the symptomatic treatment of multiple sclerosis, we examine how endocannabinoid (eCB) signalling controls — and is affected by — normal ageing and neuroinflammatory and neurodegenerative disorders. We propose a conceptual framework linking eCB signalling to the control of the cellular and molecular hallmarks of these processes, and categorize the key components of endocannabinoid signalling that may serve as targets for novel therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Main biosynthetic and inactivating enzymes in endocannabinoid signalling.
Figure 2: Age-related changes at different system levels and their regulation by endocannabinoid signalling. Ageing is accompanied by changes in cellular processes, impairments in the integration of cellular activities, and deficits in physiological functions.
Figure 3: Effect of neuroinflammation on endocannabinoid signalling.
Figure 4: The endocannabinoidome in neurodegenerative diseases.

Similar content being viewed by others

References

  1. Mechoulam, R. (ed.) in Cannabis as Therapeutic Agent 1–19 (CRC Press Roca Ranton, 1986). [CE: Could not find reference to check]

    Google Scholar 

  2. Kmietowicz, Z. Cannabis based drug is licensed for spasticity in patients with MS. BMJ 340, c3363 (2010).

    Article  PubMed  Google Scholar 

  3. Pertwee, R. G. Cannabinoid pharmacology: the first 66 years. Br. J. Pharmacol. 147, S153–S171 (2006).

    Article  CAS  Google Scholar 

  4. Bilkei-Gorzo, A. The endocannabinoid system in normal and pathological brain ageing. Phil. Trans. R. Soc. B 367, 3326–3341 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Velayudhan, L. et al. Therapeutic potential of cannabinoids in neurodegenerative disorders: a selective review. Curr. Pharm. Des. 20, 2218–2230 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Devane, W. A., Dysarz, F. A., Johnson, M. R., Melvin, L. S. & Howlett, A. C. Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol. 34, 605–613 (1988).

    CAS  PubMed  Google Scholar 

  7. Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C. & Bonner, T. I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561–564 (1990).

    CAS  PubMed  Google Scholar 

  8. Munro, S., Thomas, K. L. & Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 61–65 (1993).

    CAS  PubMed  Google Scholar 

  9. Devane, W. A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Mechoulam, R. et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50, 83–90 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Sugiura, T. et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Commun. 215, 89–97 (1995).

    Article  CAS  Google Scholar 

  12. Di Marzo, V. Targeting the endocannabinoid system: to enhance or reduce? Nature Rev. Drug Discov. 7, 438–455 (2008).

    Article  CAS  Google Scholar 

  13. Onaivi, E. S., Ishiguro, H., Gu, S. & Liu, Q. R. CNS effects of CB2 cannabinoid receptors: beyond neuro-immuno-cannabinoid activity. J. Psychopharmacol. 26, 92–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Mackie, K. Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb Exp. Pharmacol. 168, 299–325 (2005).

    Article  CAS  Google Scholar 

  15. Dalton, G. D., Bass, C. E., Van Horn, C. G. & Howlett, A. C. Signal transduction via cannabinoid receptors. CNS Neurol. Disord. Drug Targets 8, 422–431 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gonsiorek, W. et al. Endocannabinoid 2-arachidonyl glycerol is a full agonist through human type 2 cannabinoid receptor: antagonism by anandamide. Mol. Pharmacol. 57, 1045–1050 (2000).

    CAS  PubMed  Google Scholar 

  17. Di Marzo, V. et al. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 372, 686–691 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Okamoto, Y., Morishita, J., Tsuboi, K., Tonai, T. & Ueda, N. Molecular characterization of a phospholipase D generating anandamide and its congeners. J. Biol. Chem. 279, 5298–5305 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Simon, G. M. & Cravatt, B. F. Anandamide biosynthesis catalyzed by the phosphodiesterase GDE1 and detection of glycerophospho-N-acyl ethanolamine precursors in mouse brain. J. Biol. Chem. 283, 9341–9349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, J. et al. Multiple pathways involved in the biosynthesis of anandamide. Neuropharmacology 54, 1–7 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Bisogno, T. et al. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J. Cell Biol. 163, 463–468 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tanimura, A. et al. The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase α mediates retrograde suppression of synaptic transmission. Neuron 65, 320–327 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Lehmann, D. M., Yuan, C. & Smrcka, A. V. Analysis and pharmacological targeting of phospholipase C β interactions with G proteins. Methods Enzymol. 434, 29–48 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Cadas, H., di Tomaso, E. & Piomelli, D. Occurrence and biosynthesis of endogenous cannabinoid precursor, N-arachidonoyl phosphatidylethanolamine, in rat brain. J. Neurosci. 17, 1226–1242 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fowler, C. J. Transport of endocannabinoids across the plasma membrane and within the cell. FEBS J. 280, 1895–1904 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Cravatt, B. F. et al. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384, 83–87 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Dinh, T. P. et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl Acad. Sci. USA 99, 10819–10824 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marrs, W. R. et al. The serine hydrolase ABHD6 controls the accumulation and efficacy of 2-AG at cannabinoid receptors. Nature Neurosci. 13, 951–957 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Blankman, J. L., Simon, G. M. & Cravatt, B. F. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem. Biol. 14, 1347–1356 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kozak, K. R. et al. Metabolism of the endocannabinoids, 2-arachidonylglycerol and anandamide, into prostaglandin, thromboxane, and prostacyclin glycerol esters and ethanolamides. J. Biol. Chem. 277, 44877–44885 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Ohno-Shosaku, T. & Kano, M. Endocannabinoid-mediated retrograde modulation of synaptic transmission. Curr. Opin. Neurobiol. 29, 1–8 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Di Marzo, V., Bifulco, M. & De Petrocellis, L. The endocannabinoid system and its therapeutic exploitation. Nature Rev. Drug Discov. 3, 771–784 (2004).

    Article  CAS  Google Scholar 

  33. Zygmunt, P. M. et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400, 452–457 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Bouaboula, M. et al. Anandamide induced PPARγ transcriptional activation and 3T3-L1 preadipocyte differentiation. Eur. J. Pharmacol. 517, 174–181 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Rodriguez de Fonseca, F., Ramos, J. A., Bonnin, A. & Fernández-Ruiz, J. J. Presence of cannabinoid binding sites in the brain from early postnatal ages. Neuroreport 4, 135–138 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Berrendero, F. et al. Changes in cannabinoid receptor binding and mRNA levels in several brain regions of aged rats. Biochim. Biophys. Acta 1407, 205–214 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. McLaughlin, C. R., Martin, B. R., Compton, D. R. & Abood, M. E. Cannabinoid receptors in developing rats: detection of mRNA and receptor binding. Drug Alcohol Depend. 36, 27–31 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, L., Liu, J., Harvey-White, J., Zimmer, A. & Kunos, G. Endocannabinoid signaling via cannabinoid receptor 1 is involved in ethanol preference and its age-dependent decline in mice. Proc. Natl Acad. Sci. USA 100, 1393–1398 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morishita, J. et al. Regional distribution and age-dependent expression of N-acylphosphatidylethanolamine-hydrolyzing phospholipase D in rat brain. J. Neurochem. 94, 753–762 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Berrendero, F., Sepe, N., Ramos, J. A., Di Marzo, V. & Fernández-Ruiz, J. J. Analysis of cannabinoid receptor binding and mRNA expression and endogenous cannabinoid contents in the developing rat brain during late gestation and early postnatal period. Synapse 33, 181–191 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Wenger, T. et al. The hypothalamic levels of the endocannabinoid, anandamide, peak immediately before the onset of puberty in female rats. Life Sci. 70, 1407–1414 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Glass, M., Dragunow, M. & Faull, R. L. Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 77, 299–318 (1997). The first study showing impaired endocannabinoid signalling in Huntington's disease.

    Article  CAS  PubMed  Google Scholar 

  43. Choi, K. et al. Expression pattern of the cannabinoid receptor genes in the frontal cortex of mood disorder patients and mice selectively bred for high and low fear. J. Psych Res. 46, 882–889 (2012).

    Article  Google Scholar 

  44. Long, L. E., Lind, J., Webster, M. & Weickert, C. S. Developmental trajectory of the endocannabinoid system in human dorsolateral prefrontal cortex. BMC Neurosci. 13, 87 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Westlake, T. M., Howlett, A. C., Bonner, T. I., Matsuda, L. A. & Herkenham, M. Cannabinoid receptor binding and messenger RNA expression in human brain: an in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and Alzheimer's brains. Neuroscience 63, 637–652 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Bilkei-Gorzo, A. et al. Early age-related cognitive impairment in mice lacking cannabinoid CB1 receptors. Proc. Natl Acad. Sci. USA 102, 15670–15675 (2005). This paper shows that brain ageing is accelerated in mice lacking cannabinoid CB1 receptors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Albayram, O. et al. Role of CB1 cannabinoid receptors on GABAergic neurons in brain aging. Proc. Natl Acad. Sci. USA 108, 11256–11261 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Albayram, O., Bilkei-Gorzó, A. & Zimmer, A. Loss of CB1 receptors leads to differential age-related changes in reward-driven learning and memory. Front. Aging Neurosci. 4, 34 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Han, J. et al. Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD. Cell 148, 1039–1050 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Solowij, N. et al. Verbal learning and memory in adolescent cannabis users, alcohol users and non-users. Psychopharmacology 216, 131–144 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Bolla, K. I., Brown, K., Eldreth, D., Tate, K. & Cadet, J. L. Dose-related neurocognitive effects of marijuana use. Neurology 59, 1337–1343 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Mata, I. et al. Gyrification brain abnormalities associated with adolescence and early-adulthood cannabis use. Brain Res. 1317, 297–304 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Solowij, N. et al. Cerebellar white-matter changes in cannabis users with and without schizophrenia. Psychol. Med. 41, 2349–2359 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Lundqvist, T. Cognitive consequences of cannabis use: comparison with abuse of stimulants and heroin with regard to attention, memory and executive functions. Pharmacol. Biochem. Behav. 81, 319–330 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Solowij, N. & Battisti, R. The chronic effects of cannabis on memory in humans: a review. Curr. Drug Abuse Rev. 1, 81–98 (2008).

    Article  PubMed  Google Scholar 

  56. Bilkei-Gorzó, A. et al. Early onset of aging-like changes is restricted to cognitive abilities and skin structure in Cnr1−/− mice. Neurobiol. Aging 33, 200.e11–22 (2012).

    Article  Google Scholar 

  57. Ofek, O. et al. Peripheral cannabinoid receptor, CB2, regulates bone mass. Proc. Natl Acad. Sci. USA 103, 696–701 (2006). This paper demonstrates that mice lacking cannabinoid CB2 receptors have an age-related osteoporosis phenotype.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bab, I. & Zimmer, A. Cannabinoid receptors and the regulation of bone mass. Br. J. Pharmacol. 153, 182–188 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. López- Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013). This review provides a comprehensive overview of prominent physiological changes that are associated with the ageing process.

    Article  CAS  Google Scholar 

  60. Hamilton, L. K., Joppé, S. E., Cochard, M. & Fernandes, K. J. L. Aging and neurogenesis in the adult forebrain: what we have learned and where we should go from here. Eur. J. Neurosci. 37, 1978–1986 (2013).

    Article  PubMed  Google Scholar 

  61. Molofsky, A. V. et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443, 448–452 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jin, K. et al. Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell 2, 175–183 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Jiang, W. et al. Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects. J. Clin. Invest. 115, 3104–3116 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Palazuelos, J. et al. Non-psychoactive CB2 cannabinoid agonists stimulate neural progenitor proliferation. FASEB J. 20, 2405–2407 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Goncalves, M. B. et al. A diacylglycerol lipase-CB2 cannabinoid pathway regulates adult subventricular zone neurogenesis in an age-dependent manner. Mol. Cell Neurosci. 38, 526–536 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Díaz-Alonso, J., Guzmán, M. & Galve-Roperh, I. Endocannabinoids via CB□ receptors act as neurogenic niche cues during cortical development. Phil. Trans. R. Soc. B 367, 3229–3241 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Gao, Y. et al. Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J. Neurosci. 30, 2017–2024 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Oudin, M. J., Hobbs, C. & Doherty, P. DAGL-dependent endocannabinoid signalling: roles in axonal pathfinding, synaptic plasticity and adult neurogenesis. Eur. J. Neurosci. 34, 1634–1646 (2011).

    Article  PubMed  Google Scholar 

  69. Jin, K. et al. Defective adult neurogenesis in CB1 cannabinoid receptor knockout mice. Mol. Pharmacol. 66, 204–208 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Aguado, T. et al. The endocannabinoid system drives neural progenitor proliferation. FASEB J. 19, 1704–1706 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Tortoriello, G. et al. Miswiring the brain: Δ9-tetrahydrocannabinol disrupts cortical development by inducing an SCG10/stathmin-2 degradation pathway. EMBO J. 33, 668–685 (2014). An important study showing for the first time the molecular mechanisms through which overactivation of CB1 may disrupt cortical development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Arévalo- Martín, A. et al. Cannabinoids modulate Olig2 and polysialylated neural cell adhesion molecule expression in the subventricular zone of post-natal rats through cannabinoid receptor 1 and cannabinoid receptor 2. Eur. J. Neurosci. 26, 1548–1559 (2007).

    Article  Google Scholar 

  73. Stella, N. Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia 58, 1017–1030 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hegde, V. L., Nagarkatti, M. & Nagarkatti, P. S. Cannabinoid receptor activation leads to massive mobilization of myeloid-derived suppressor cells with potent immunosuppressive properties. Eur. J. Immunol. 40, 3358–3371 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Maresz, K., Carrier, E. J., Ponomarev, E. D., Hillard, C. J. & Dittel, B. N. Modulation of the cannabinoid CB receptor in microglial cells in response to inflammatory stimuli. J. Neurochem. 95, 437–445 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Stella, N. Endocannabinoid signaling in microglial cells. Neuropharmacology 56, 244–253 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Maresz, K. et al. Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells. Nature Med. 13, 492–497 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Jean-Gilles, L. et al. Plasma endocannabinoid levels in multiple sclerosis. J. Neurol. Sci. 287, 212–215 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Centonze, D. Finazzi-Agro, A. Bernardi, G. & Maccarrone, M. The endocannabinoid system in targeting inflammatory neurodegenerative diseases. Trends Pharmacol. Sci. 28, 180–187 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Russell, S. J. & Kahn, C. R. Endocrine regulation of ageing. Nature Rev. Mol. Cell. Biol. 8, 681–691 (2007).

    Article  CAS  Google Scholar 

  81. Franceschi, C. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. NY Acad. Sci. 908, 244–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Patel, S. et al. Endocannabinoid signaling negatively modulates stress-induced activation of the hypothalamic-pituitary-adrenal axis. Endocrinology 145, 5431–5438 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Zoppi, S. et al. Regulatory role of cannabinoid receptor 1 in stress-induced excitotoxicity and neuroinflammation. Neuropsychopharmacology 36, 805–818 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Cutando, L. et al. Microglial activation underlies cerebellar deficits produced by repeated cannabis exposure. J. Clin. Invest. 123, 2816–2831 (2013). This paper identifies microglial cell activation as the non-cell-autonomous mechanism mediating cerebellar deficits induced by semi-chronic exposure to THC, emphasizing the remarkable specificity in cell damage occurring under such regimen.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, G. et al. Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497, 211–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Di Marzo, V. et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410, 822–825 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Conde, J. et al. At the crossroad between immunity and metabolism: focus on leptin. Expert Rev. Clin. Immunol. 6, 801–808 (2010).

    Article  PubMed  Google Scholar 

  88. Cristino, L. et al. Obesity-driven synaptic remodeling affects endocannabinoid control of orexinergic neurons. Proc. Natl Acad. Sci. USA 110, E2229–E2238 (2013). The first paper describing endocannabinoid-mediated mechanisms through which the orexinergic control of basic functions can be disrupted in obesity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Matarese, G. et al. Leptin as a metabolic link to multiple sclerosis. Nature Rev. Neurol. 6, 455–461 (2010).

    Article  CAS  Google Scholar 

  90. Martínez de Morentin, P. B. et al. Hypothalamic mTOR: the rookie energy sensor. Curr. Mol. Med. 14, 3–21 (2014).

    Article  PubMed  CAS  Google Scholar 

  91. Puighermanal, E. et al. Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nature Neurosci. 12, 1152–1158 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Puighermanal, E. et al. Dissociation of the Pharmacological Effects of THC by mTOR Blockade. Neuropsychopharmacology 38, 1334–1343 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Busquets-Garcia, A. et al. Targeting the endocannabinoid system in the treatment of fragile X syndrome. Nature Med. 19, 603–607 (2013). The first study indicating how blockade of CB1 receptors might be useful in some rare forms of autism.

    Article  CAS  PubMed  Google Scholar 

  94. Rubinsztein, D. C., Mariño, G. & Kroemer, G. Autophagy and aging. Cell 146, 682–695 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Kapahi, P. et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell. Metab. 11, 453–465 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Salazar, M. et al. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J. Clin. Invest. 119, 1359–1372 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Salazar, M. et al.TRB3 links ER stress to autophagy in cannabinoid anti-tumoral action. Autophagy 57, 1048–1049 (2009).

    Article  Google Scholar 

  98. Koay, L. C., Rigby, R. J. & Wright, K. L. Cannabinoid-induced autophagy regulates suppressor of cytokine signaling-3 in intestinal epithelium. Am. J. Physiol. Gastrointest Liver Physiol. 307, G140–G148 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hiebel, C., Kromm, T., Stark, M. & Behl, C. Cannabinoid receptor 1 modulates the autophagic flux independent of mTOR- and BECLIN1-complex. J Neurochem. 131, 484–497 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Piyanova, A. et al. Loss of CB1 receptors leads to decreased cathepsin D levels and accelerated lipofuscin accumulation in the hippocampus. Mech. Ageing Dev. 134, 391–399 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Höhn, A. & Grune, T. Lipofuscin: formation, effects and role of macroautophagy. Redox Biol. 1, 140–144 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Andrew, S. E. et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nature Gen. 4, 398–403 (1993).

    Article  CAS  Google Scholar 

  103. Byers, R. K. Gilles, F. H. & Fung, C. Huntington's disease in children. Neuropathologic study of four cases. Neurology 23, 561–569 (1973).

    Article  CAS  PubMed  Google Scholar 

  104. Blazquez, C. et al. Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington's disease. Brain 134, 119–136 (2011).

    Article  PubMed  Google Scholar 

  105. Naydenov, A. V. et al. Genetic rescue of CB1 receptors on medium spiny neurons prevents loss of excitatory striatal synapses but not motor impairment in HD mice. Neurobiol. Dis. 71, 140–150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chiarlone, A. et al. A restricted population of CB1 cannabinoid receptors with neuroprotective activity. Proc. Natl Acad. Sci. USA 111, 8257–8262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Noonan, J. et al. Endocannabinoids prevent β-amyloid-mediated lysosomal destabilization in cultured neurons. J. Biol. Chem. 285, 38543–38554 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sarnataro, D. et al. Plasma membrane and lysosomal localization of CB1 cannabinoid receptor are dependent on lipid rafts and regulated by anandamide in human breast cancer cells. FEBS Lett. 579, 6343–6349 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Rozenfeld, R. Type I cannabinoid receptor trafficking: all roads lead to lysosome. Traffic 12, 12–18 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Brailoiu, G. C. et al. Agonist-selective effects of opioid receptor ligands on cytosolic calcium concentration in rat striatal neurons. Drug Alcohol Depend. 123, 277–281 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Bénard, G. et al. Mitochondrial CB1 receptors regulate neuronal energy metabolism. Nature Neurosci. 15, 558–564 (2012). This paper suggests that CB1 receptors are present on mitochondria and that mitochondrial CB1 signalling modulates neuronal functions.

    Article  PubMed  CAS  Google Scholar 

  112. Morozov, Y. M. et al. Antibodies to cannabinoid type 1 receptor co-react with stomatin-like protein 2 in mouse brain mitochondria. Eur. J. Neurosci. 38, 2341–2348 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Witte, M. E., Mahad, D. J., Lassmann, H. & van Horssen, J. Mitochondrial dysfunction contributes to neurodegeneration in multiple sclerosis. Trends Mol. Med. 20, 179–187 (2014).

    Article  PubMed  Google Scholar 

  114. Cravatt, B. F. et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl Acad. Sci. USA 98, 9371–9376 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Taschler, U. et al. Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet-induced insulin resistance. J. Biol. Chem. 286, 17467–17477 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Morgese, M. G., Cassano, T., Cuomo, V. & Giuffrida, A. Anti-dyskinetic effects of cannabinoids in a rat model of Parkinson's disease: role of CB(1) and TRPV1 receptors. Exp. Neurol. 208, 110–119 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lastres-Becker, I. et al. Compounds acting at the endocannabinoid and/or endovanilloid systems reduce hyperkinesia in a rat model of Huntington's disease. J. Neurochem. 84, 1097–1109 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Huang, S. M. et al. Identification of a new class of molecules, the arachidonyl amino acids, and characterization of one member that inhibits pain. J. Biol. Chem. 276, 42639–42644 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Verhoeckx, K. C. et al. Presence, formation and putative biological activities of N-acyl serotonins, a novel class of fatty-acid derived mediators, in the intestinal tract. Biochim. Biophys. Acta 1811, 578–586 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Hu, S. S. et al. The biosynthesis of N-arachidonoyl dopamine (NADA), a putative endocannabinoid and endovanilloid, via conjugation of arachidonic acid with dopamine. Prostaglandins Leukot. Essent. Fatty Acids 81, 291–301 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Schmidt-Hieber, C., Jonas, P. & Bischofberger, J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429, 184–187 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Chemin, J., Cazade, M. & Lory, P. Modulation of T-type calcium channels by bioactive lipids. Pflugers Arch. 466, 689–700 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Alhouayek, M. & Muccioli, G. G. COX-2-derived endocannabinoid metabolites as novel inflammatory mediators. Trends Pharmacol. Sci. 35, 284–292 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Woodward, D. F. et al. The pharmacology and therapeutic relevance of endocannabinoid derived cyclo-oxygenase (COX)-2 products. Pharmacol. Ther. 120, 71–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Valdeolivas, S. et al. The inhibition of 2-arachidonoyl-glycerol (2-AG) biosynthesis, rather than enhancing striatal damage, protects striatal neurons from malonate-induced death: a potential role of cyclooxygenase-2-dependent metabolism of 2-AG. Cell Death Dis. 4, e862 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nomura, D. K. et al. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science 334, 809–813 (2011). This study identifies COX2 as a major metabolism pathway of the endocannabinoid 2-AG that mediates neuroinflammation and neuronal loss in a mouse model of Parkinson's disease, suggesting that COX2 inhibitors might represent promising therapeutic approaches for this neurodegenerative disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen, X., Zhang, J. & Chen, C. Endocannabinoid 2-arachidonoylglycerol protects neurons against β-amyloid insults. Neuroscience 178, 159–168 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Chen, R. et al. Monoacylglycerol lipase is a therapeutic target for Alzheimer's disease. Cell Rep. 2, 1329–1339 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ho, K. W., Ward, N. J. & Calkins, D. J. TRPV1: a stress response protein in the central nervous system. Am. J. Neurodegener. Dis. 1, 1–14 (2012).

    PubMed  PubMed Central  Google Scholar 

  130. Li, H. B. et al. Antistress effect of TRPV1 channel on synaptic plasticity and spatial memory. Biol. Psychiatry 64, 286–292 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. González-Aparicio, R. & Moratalla, R. Oleoylethanolamide reduces l-DOPA-induced dyskinesia via TRPV1 receptor in a mouse model of Parkinson´s disease. Neurobiol. Dis. 62, 416–425 (2014).

    Article  PubMed  CAS  Google Scholar 

  132. Razavinasab, M. et al. Pharmacological blockade of TRPV1 receptors modulates the effects of 6-OHDA on motor and cognitive functions in a rat model of Parkinson's disease. Fundam. Clin. Pharmacol. 27, 632–640 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Sigel, E. et al. The major central endocannabinoid directly acts at GABAA receptors. Proc. Natl Acad. Sci. USA 108, 18150–18155 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Du, H., Chen, X., Zhang, J. & Chen, C. Inhibition of COX-2 expression by endocannabinoid 2-arachidonoylglycerol is mediated via PPAR-γ. Br. J. Pharmacol. 163, 1533–1549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Naydenov, A. V. et al. ABHD6 blockade exerts antiepileptic activity in PTZ-induced seizures and in spontaneous seizures in R6/2 mice. Neuron 83, 361–371 (2014). This study identified ABHD6 as a therapeutically valid anti-epileptic target that is not associated with drug-treatment tolerance and psychotropic effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pryce, G. et al. Control of experimental spasticity by targeting the degradation of endocannabinoids using selective fatty acid amide hydrolase inhibitors. Mult. Scler. 19, 1896–1904 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. De Petrocellis, L. et al. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br. J. Pharmacol. 163, 1479–1494 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Leweke, F. M. et al. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl. Psychiatry 2, e94 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Webb, M., Luo, L., Ma, J. Y. & Tham, C. S. Genetic deletion of fatty acid amide hydrolase results in improved long-term outcome in chronic autoimmune encephalitis. Neurosci. Lett. 439, 106–110 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Rossi, S. et al. Cannabinoid CB1 receptors regulate neuronal TNF-α effects in experimental autoimmune encephalomyelitis. Brain Behav. Immun. 25, 1242–1248 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Mazzola, C., Micale, V. & Drago, F. Amnesia induced by β-amyloid fragments is counteracted by cannabinoid CB1 receptor blockade. Eur. J. Pharmacol. 477, 219–225 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. van der Stelt, M. et al. A role for endocannabinoids in the generation of parkinsonism and levodopa-induced dyskinesia in MPTP-lesioned non-human primate models of Parkinson's disease. FASEB J. 19, 1140–1142 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Horne, E. A. et al. Downregulation of cannabinoid receptor 1 from neuropeptide Y interneurons in the basal ganglia of patients with Huntington's disease and mouse models. Eur. J. Neurosci. 37, 429–440 (2013).

    Article  PubMed  Google Scholar 

  144. Dowie, M. J. et al. Altered CB1 receptor and endocannabinoid levels precede motor symptom onset in a transgenic mouse model of Huntington's disease. Neuroscience 163, 456–465 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Bilsland, L. G. et al. Increasing cannabinoid levels by pharmacological and genetic manipulation delay disease progression in SOD1 mice. FASEB J. 20, 1003–1005 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Steindel, F. et al. Neuron-type specific cannabinoid-mediated G protein signalling in mouse hippocampus. J. Neurochem. 124, 795–807 (2013). This study shows that CB1 receptor coupling efficacy in glutamatergic neurons is greater than in GABAergic neurons, providing evidence for an additional level of complexity in the differential signalling measured for this GPCR depending on the cell type.

    Article  CAS  PubMed  Google Scholar 

  147. van der Stelt, M. et al. Endocannabinoids and β-amyloid-induced neurotoxicity in vivo: effect of pharmacological elevation of endocannabinoid levels. Cell. Mol. Life Sci. 63, 1410–1424 (2006). The first study showing different time-dependent changes in anandamide and 2-AG levels, and a dual beneficial and exacerbating action on disease signs by endocannabinoids, in a model of amyloid-β-induced toxicity.

    Article  CAS  PubMed  Google Scholar 

  148. Mulder, J. et al. Molecular reorganization of endocannabinoid signalling in Alzheimer's disease. Brain. 134, 1041–1060 (2011). This study, along with Ref. 147 identifies increased 2-AG levels as a possible maladaptive mechanism contributing to some signs in amyloid-β-induced toxicity.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Bari, M. et al. In vitro and in vivo models of Huntington's disease show alterations in the endocannabinoid system. FEBS J. 280, 3376–3388 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Johnston, T. H. et al. Fatty acid amide hydrolase (FAAH) inhibition reduces L-3,4-dihydroxyphenylalanine-induced hyperactivity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned non-human primate model of Parkinson's disease. J. Pharmacol. Exp. Ther. 336, 423–430 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Bouchard, J. et al. Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington's disease. J. Neurosci. 32, 18259–18268 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fernandez-Ruiz, J. et al. Prospects for cannabinoid therapies in basal ganglia disorders. Br. J. Pharmacol. 163, 1365–1378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kim, K., Moore, D. H., Makriyannis, A. & Abood, M. E. AM1241, a cannabinoid CB2 receptor selective compound, delays disease progression in a mouse model of amyotrophic lateral sclerosis. Eur. J. Pharmacol. 542, 100–105 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. González, S. et al. Effects of rimonabant, a selective cannabinoid CB1 receptor antagonist, in a rat model of Parkinson's disease. Brain Res. 1073–1074, 209–219 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research in the laboratory of A.Z. was funded by the Deutsche Forschungsgemeinschaft (FOR926, SFB645) and is a member of Excellence Cluster Immunosensation. N.S. is funded by the US National Institutes of Health (NIH; DA014486 and DA026430). V.D. acknowledges Progetto Operativo Nazionale (PON01_02512) and FIRB-MERIT grant number RBNE08HWLZ_006, for funding, and is a recipient of unrestricted grants from GW Pharmaceuticals, UK, and Allergan, USA. The authors wish to thank L. De Petrocellis and E. Drews for their help during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Di Marzo.

Ethics declarations

Competing interests

VD acts as a consultant for GW Pharmaceuticals, UK, VD receives unrestricted grants from GW Pharmaceuticals, UK, and Allergan, USA

Supplementary information

Supplementary information S1 (table)

The “endocannabinoidome”. Endocannabinoids, endocannabinoid-related mediators and their metabolic enzymes and receptors. (PDF 469 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Marzo, V., Stella, N. & Zimmer, A. Endocannabinoid signalling and the deteriorating brain. Nat Rev Neurosci 16, 30–42 (2015). https://doi.org/10.1038/nrn3876

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing