Salience processing and insular cortical function and dysfunction

Abstract

The brain is constantly bombarded by stimuli, and the relative salience of these inputs determines which are more likely to capture attention. A brain system known as the 'salience network', with key nodes in the insular cortices, has a central role in the detection of behaviourally relevant stimuli and the coordination of neural resources. Emerging evidence suggests that atypical engagement of specific subdivisions of the insula within the salience network is a feature of many neuropsychiatric disorders.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Salience network communication with subcortical structures.
Figure 2: Salience-network-induced coordination between the default-mode network and the central executive network.
Figure 3: Co-activation profiles of insula subdivisions.

References

  1. 1

    Yantis, S. & Hillstrom, A. P. Stimulus-driven attentional capture: evidence from equiluminant visual objects. J. Exp. Psychol. Hum. Percept. Perform. 20, 95–107 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. 2

    Puglisi-Allegra, S. & Ventura, R. Prefrontal/accumbal catecholamine system processes emotionally driven attribution of motivational salience. Rev. Neurosci. 23, 509–526 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. 3

    Goldberg, M. E., Bisley, J. W., Powell, K. D. & Gottlieb, J. Saccades, salience and attention: the role of the lateral intraparietal area in visual behavior. Prog. Brain Res. 155, 157–175 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Critchley, H. D. & Harrison, N. A. Visceral influences on brain and behavior. Neuron 77, 624–638 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. 5

    Corbetta, M., Patel, G. & Shulman, G. L. The reorienting system of the human brain: from environment to theory of mind. Neuron 58, 306–324 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Klin, A., Jones, W., Schultz, R. & Volkmar, F. The enactive mind, or from actions to cognition: lessons from autism. Phil. Trans. R. Soc. Lond. B 358, 345–360 (2003).

    Article  Google Scholar 

  7. 7

    Kapur, S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry 160, 13–23 (2003).

    Article  PubMed  Google Scholar 

  8. 8

    Seeley, W. W., Zhou, J. & Kim, E. J. Frontotemporal dementia: what can the behavioral variant teach us about human brain organization? Neuroscientist 18, 373–385 (2012).

    Article  PubMed  Google Scholar 

  9. 9

    Kelly, C. et al. A convergent functional architecture of the insula emerges across imaging modalities. Neuroimage 61, 1129–1142 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Cauda, F. et al. Meta-analytic clustering of the insular cortex: characterizing the meta-analytic connectivity of the insula when involved in active tasks. Neuroimage 62, 343–355 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Kurth, F., Zilles, K., Fox, P. T., Laird, A. R. & Eickhoff, S. B. A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct. Funct. 214, 519–534 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Deen, B., Pitskel, N. B. & Pelphrey, K. A. Three systems of insular functional connectivity identified with cluster analysis. Cereb. Cortex 21, 1498–1506 (2011).

    Article  PubMed  Google Scholar 

  13. 13

    Chang, L. J., Yarkoni, T., Khaw, M. W. & Sanfey, A. G. Decoding the role of the insula in human cognition: functional parcellation and large-scale reverse inference. Cereb. Cortex 23, 739–749 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Ryali, S., Chen, T., Supekar, K. & Menon, V. A parcellation scheme based on von Mises–Fisher distributions and Markov random fields for segmenting brain regions using resting-state fMRI. Neuroimage 65, 83–96 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Uddin, L. Q., Kinnison, J., Pessoa, L. & Anderson, M. L. Beyond the tripartite cognition–emotion–interoception model of the human insular cortex. J. Cogn. Neurosci. 26, 16–27 (2014).

    Article  PubMed  Google Scholar 

  16. 16

    Craig, A. D. How do you feel? Interoception: the sense of the physiological condition of the body. Nature Rev. Neurosci. 3, 655–666 (2002).

    Article  CAS  Google Scholar 

  17. 17

    Singer, T., Critchley, H. D. & Preuschoff, K. A common role of insula in feelings, empathy and uncertainty. Trends Cogn. Sci. 13, 334–340 (2009).

    Article  PubMed  Google Scholar 

  18. 18

    Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Robinson, D. L. & Petersen, S. E. The pulvinar and visual salience. Trends Neurosci. 15, 127–132 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Fecteau, J. H. & Munoz, D. P. Salience, relevance, and firing: a priority map for target selection. Trends Cogn. Sci. 10, 382–390 (2006).

    Article  PubMed  Google Scholar 

  21. 21

    Treue, S. Visual attention: the where, what, how and why of saliency. Curr. Opin. Neurobiol. 13, 428–432 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Gottlieb, J., Balan, P., Oristaglio, J. & Suzuki, M. Parietal control of attentional guidance: the significance of sensory, motivational and motor factors. Neurobiol. Learn. Mem. 91, 121–128 (2009).

    Article  PubMed  Google Scholar 

  23. 23

    Corbetta, M., Kincade, J. M. & Shulman, G. L. Neural systems for visual orienting and their relationships to spatial working memory. J. Cogn. Neurosci. 14, 508–523 (2002).

    Article  PubMed  Google Scholar 

  24. 24

    Downar, J., Crawley, A. P., Mikulis, D. J. & Davis, K. D. A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. J. Neurophysiol. 87, 615–620 (2002).

    Article  PubMed  Google Scholar 

  25. 25

    Downar, J., Mikulis, D. J. & Davis, K. D. Neural correlates of the prolonged salience of painful stimulation. Neuroimage 20, 1540–1551 (2003).

    Article  PubMed  Google Scholar 

  26. 26

    Uddin, L. Q., Supekar, K. S., Ryali, S. & Menon, V. Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. J. Neurosci. 31, 18578–18589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Uddin, L. Q. et al. Salience network-based classification and prediction of symptom severity in children with autism. JAMA Psychiatry 70, 869–879 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Kucyi, A., Hodaie, M. & Davis, K. D. Lateralization in intrinsic functional connectivity of the temporoparietal junction with salience- and attention-related brain networks. J. Neurophysiol. 108, 3382–3392 (2012).

    Article  PubMed  Google Scholar 

  29. 29

    Cole, M. W. et al. Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neurosci. 16, 1348–1355 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Power, J. D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Menon, V. & Uddin, L. Q. Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 214, 655–667 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Sridharan, D., Levitin, D. J. & Menon, V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl Acad. Sci. USA 105, 12569–12574 (2008).

    Article  PubMed  Google Scholar 

  33. 33

    Honey, C. J., Kotter, R., Breakspear, M. & Sporns, O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl Acad. Sci. USA 104, 10240–10245 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Supekar, K. & Menon, V. Developmental maturation of dynamic causal control signals in higher-order cognition: a neurocognitive network model. PLoS Comput. Biol. 8, e1002374 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Chen, A. C. et al. Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proc. Natl Acad. Sci. USA 110, 19944–19949 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. 36

    Goulden, N. et al. The salience network is responsible for switching between the default mode network and the central executive network: replication from DCM. Neuroimage 99, 180–190 (2014).

    Article  PubMed  Google Scholar 

  37. 37

    Bonnelle, V. et al. Salience network integrity predicts default mode network function after traumatic brain injury. Proc. Natl Acad. Sci. USA 109, 4690–4695 (2012).

    Article  PubMed  Google Scholar 

  38. 38

    Mesulam, M. M. & Mufson, E. J. Insula of the old world monkey. III: Efferent cortical output and comments on function. J. Comp. Neurol. 212, 38–52 (1982).

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Augustine, J. R. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res. Brain Res. Rev. 22, 229–244 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Mufson, E. J. & Mesulam, M. M. Insula of the old world monkey. II: Afferent cortical input and comments on the claustrum. J. Comp. Neurol. 212, 23–37 (1982).

    Article  CAS  PubMed  Google Scholar 

  41. 41

    Zaki, J., Davis, J. I. & Ochsner, K. N. Overlapping activity in anterior insula during interoception and emotional experience. Neuroimage 62, 493–499 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Critchley, H. D., Wiens, S., Rotshtein, P., Ohman, A. & Dolan, R. J. Neural systems supporting interoceptive awareness. Nature Neurosci. 7, 189–195 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Wicker, B. et al. Both of us disgusted in My insula: the common neural basis of seeing and feeling disgust. Neuron 40, 655–664 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    Craig, A. D., Chen, K., Bandy, D. & Reiman, E. M. Thermosensory activation of insular cortex. Nature Neurosci. 3, 184–190 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Davis, K. D., Kwan, C. L., Crawley, A. P. & Mikulis, D. J. Functional MRI study of thalamic and cortical activations evoked by cutaneous heat, cold, and tactile stimuli. J. Neurophysiol. 80, 1533–1546 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. 46

    Davis, K. D., Pope, G. E., Crawley, A. P. & Mikulis, D. J. Perceptual illusion of “paradoxical heat” engages the insular cortex. J. Neurophysiol. 92, 1248–1251 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Simons, L. E., Elman, I. & Borsook, D. Psychological processing in chronic pain: a neural systems approach. Neurosci. Biobehav. Rev. 39, 61–78 (2014).

    Article  PubMed  Google Scholar 

  48. 48

    Eisenberger, N. I. The pain of social disconnection: examining the shared neural underpinnings of physical and social pain. Nature Rev. Neurosci. 13, 421–434 (2012).

    Article  CAS  Google Scholar 

  49. 49

    Wager, T. D. et al. An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368, 1388–1397 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Legrain, V., Iannetti, G. D., Plaghki, L. & Mouraux, A. The pain matrix reloaded: a salience detection system for the body. Prog. Neurobiol. 93, 111–124 (2011).

    Article  PubMed  Google Scholar 

  51. 51

    Iannetti, G. D., Salomons, T. V., Moayedi, M., Mouraux, A. & Davis, K. D. Beyond metaphor: contrasting mechanisms of social and physical pain. Trends Cogn. Sci. 17, 371–378 (2013).

    Article  PubMed  Google Scholar 

  52. 52

    Critchley, H. D., Mathias, C. J. & Dolan, R. J. Neuroanatomical basis for first- and second-order representations of bodily states. Nature Neurosci. 4, 207–212 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Porges, S. Body Perception Questionnaire. Laboratory of Developmental Assessment, Univ. of Maryland [online], (1993).

  54. 54

    Critchley, H. D., Melmed, R. N., Featherstone, E., Mathias, C. J. & Dolan, R. J. Volitional control of autonomic arousal: a functional magnetic resonance study. Neuroimage 16, 909–919 (2002).

    Article  PubMed  Google Scholar 

  55. 55

    Critchley, H. D. The human cortex responds to an interoceptive challenge. Proc. Natl Acad. Sci. USA 101, 6333–6334 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. 56

    Gray, M. A. & Critchley, H. D. Interoceptive basis to craving. Neuron 54, 183–186 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Harrison, N. A., Gray, M. A., Gianaros, P. J. & Critchley, H. D. The embodiment of emotional feelings in the brain. J. Neurosci. 30, 12878–12884 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Crottaz-Herbette, S. & Menon, V. Where and when the anterior cingulate cortex modulates attentional response: combined fMRI and ERP evidence. J. Cogn. Neurosci. 18, 766–780 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Downar, J., Crawley, A. P., Mikulis, D. J. & Davis, K. D. A multimodal cortical network for the detection of changes in the sensory environment. Nature Neurosci. 3, 277–283 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Linden, D. E. et al. The functional neuroanatomy of target detection: an fMRI study of visual and auditory oddball tasks. Cereb. Cortex 9, 815–823 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Kim, H. Involvement of the dorsal and ventral attention networks in oddball stimulus processing: a meta-analysis. Hum. Brain Mapp. 35, 2265–2284 (2014).

    Article  PubMed  Google Scholar 

  62. 62

    Bud Craig, A. D. How do you feel — now? The anterior insula and human awareness. Nature Rev. Neurosci. 10, 59–70 (2009).

    Article  CAS  Google Scholar 

  63. 63

    Passingham, R. E., Stephan, K. E. & Kotter, R. The anatomical basis of functional localization in the cortex. Nature Rev. Neurosci. 3, 606–616 (2002).

    Article  CAS  Google Scholar 

  64. 64

    Cauda, F. et al. Functional connectivity of the insula in the resting brain. Neuroimage 55, 8–23 (2011).

    Article  PubMed  Google Scholar 

  65. 65

    Taylor, K. S., Seminowicz, D. A. & Davis, K. D. Two systems of resting state connectivity between the insula and cingulate cortex. Hum. Brain Mapp. 30, 2731–2745 (2009).

    Article  PubMed  Google Scholar 

  66. 66

    Laird, A. R., Lancaster, J. L. & Fox, P. T. BrainMap: the social evolution of a human brain mapping database. Neuroinformatics 3, 65–78 (2005).

    Article  PubMed  Google Scholar 

  67. 67

    Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nature Methods 8, 665–670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Anderson, M. L., Kinnison, J. & Pessoa, L. Describing functional diversity of brain regions and brain networks. Neuroimage 73, 50–58 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  69. 69

    Toro, R., Fox, P. T. & Paus, T. Functional coactivation map of the human brain. Cereb. Cortex 18, 2553–2559 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  70. 70

    Ryali, S., Chen, T., Supekar, K. & Menon, V. A parcellation scheme based on von Mises-Fisher distributions and Markov random fields for segmenting brain regions using resting-state fMRI. Neuroimage 65, 83–96 (2013).

    Article  PubMed  Google Scholar 

  71. 71

    Uddin, L. Q. et al. Brain state differentiation and behavioral inflexibility in autism. Cereb. Cortex http://dx.doi.org/10.1093/cercor/bhu161 (2014).

  72. 72

    Di Martino, A. et al. Functional brain correlates of social and nonsocial processes in autism spectrum disorders: an activation likelihood estimation meta-analysis. Biol. Psychiatry 65, 63–74 (2009).

    Article  PubMed  Google Scholar 

  73. 73

    Li, H., Chan, R. C., McAlonan, G. M. & Gong, Q. Y. Facial emotion processing in schizophrenia: a meta-analysis of functional neuroimaging data. Schizophr. Bull. 36, 1029–1039 (2010).

    Article  PubMed  Google Scholar 

  74. 74

    Schroeter, M. L., Raczka, K., Neumann, J. & von Cramon, D. Y. Neural networks in frontotemporal dementia — a meta-analysis. Neurobiol. Aging 29, 418–426 (2008).

    Article  PubMed  Google Scholar 

  75. 75

    Di Martino, A. et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19, 659–667 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. 76

    Moran, L. V. et al. Disruption of anterior insula modulation of large-scale brain networks in schizophrenia. Biol. Psychiatry 74, 467–474 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. 77

    Zhou, J. et al. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. Brain 133, 1352–1367 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78

    Day, G. S. et al. Salience network resting-state activity: prediction of frontotemporal dementia progression. JAMA Neurol. 70, 1249–1253 (2013).

    PubMed  Google Scholar 

  79. 79

    Lord, C. et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J. Autism Dev. Disord. 30, 205–223 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Chevallier, C., Kohls, G., Troiani, V., Brodkin, E. S. & Schultz, R. T. The social motivation theory of autism. Trends Cogn. Sci. 16, 231–239 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81

    Carver, L. J. & Dawson, G. Development and neural bases of face recognition in autism. Mol. Psychiatry 7 (Suppl. 2), S18–S20 (2002).

    Article  PubMed  Google Scholar 

  82. 82

    Happe, F. & Ronald, A. The 'fractionable autism triad': a review of evidence from behavioural, genetic, cognitive and neural research. Neuropsychol. Rev. 18, 287–304 (2008).

    Article  PubMed  Google Scholar 

  83. 83

    Baron-Cohen, S. Autism: the empathizing-systemizing (E-S.) theory. Ann. NY Acad. Sci. 1156, 68–80 (2009).

    Article  PubMed  Google Scholar 

  84. 84

    Uddin, L. Q. The self in autism: an emerging view from neuroimaging. Neurocase 17, 201–208 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  85. 85

    Hill, E. L. Executive dysfunction in autism. Trends Cogn. Sci. 8, 26–32 (2004).

    Article  PubMed  Google Scholar 

  86. 86

    Uddin, L. Q. & Menon, V. The anterior insula in autism: under-connected and under-examined. Neurosci. Biobehav. Rev. 33, 1198–1203 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  87. 87

    von dem Hagen, E. A., Stoyanova, R. S., Baron-Cohen, S. & Calder, A. J. Reduced functional connectivity within and between 'social' resting state networks in autism spectrum conditions. Soc. Cogn. Affect Neurosci. 8, 694–670 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  88. 88

    Ebisch, S. J. et al. Altered intrinsic functional connectivity of anterior and posterior insula regions in high-functioning participants with autism spectrum disorder. Hum. Brain Mapp. 32, 1013–1028 (2010).

    Article  PubMed  Google Scholar 

  89. 89

    Dickstein, D. P. et al. Developmental meta-analysis of the functional neural correlates of autism spectrum disorders. J. Am. Acad. Child Adolesc. Psychiatry 52, 279–289 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  90. 90

    Uddin, L. Q., Supekar, K. & Menon, V. Reconceptualizing functional brain connectivity in autism from a developmental perspective. Front. Hum. Neurosci. 7, 458 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91

    Nielsen, J. A. et al. Multisite functional connectivity MRI classification of autism: ABIDE results. Front. Hum. Neurosci. 7, 599 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    Anderson, J. S. et al. Functional connectivity magnetic resonance imaging classification of autism. Brain 134, 3742–3754 (2011).

    Article  PubMed  Google Scholar 

  93. 93

    Baron-Cohen, S. et al. The amygdala theory of autism. Neurosci. Biobehav. Rev. 24, 355–364 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. 94

    Mundy, P. Annotation: the neural basis of social impairments in autism: the role of the dorsal medial-frontal cortex and anterior cingulate system. J. Child Psychol. Psychiatry 44, 793–809 (2003).

    Article  PubMed  Google Scholar 

  95. 95

    Markram, K. & Markram, H. The intense world theory — a unifying theory of the neurobiology of autism. Front. Hum. Neurosci. 4, 224 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  96. 96

    Markram, H., Rinaldi, T. & Markram, K. The intense world syndrome — an alternative hypothesis for autism. Front. Neurosci. 1, 77–96 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  97. 97

    Fitzsimmons, J., Kubicki, M. & Shenton, M. E. Review of functional and anatomical brain connectivity findings in schizophrenia. Curr. Opin. Psychiatry 26, 172–187 (2013).

    Article  PubMed  Google Scholar 

  98. 98

    van den Heuvel, M. P. & Fornito, A. Brain networks in schizophrenia. Neuropsychol. Rev. 24, 32–48 (2014).

    Article  PubMed  Google Scholar 

  99. 99

    Andreasen, N. C. Schizophrenia: the fundamental questions. Brain Res. Brain Res. Rev. 31, 106–112 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. 100

    Weinberger, D. R. & Berman, K. F. Prefrontal function in schizophrenia: confounds and controversies. Phil. Trans. R. Soc. Lond. B 351, 1495–1503 (1996).

    Article  CAS  Google Scholar 

  101. 101

    Kasai, K. et al. Differences and similarities in insular and temporal pole MRI gray matter volume abnormalities in first-episode schizophrenia and affective psychosis. Arch. Gen. Psychiatry 60, 1069–1077 (2003).

    Article  PubMed  Google Scholar 

  102. 102

    Glahn, D. C. et al. Meta-analysis of gray matter anomalies in schizophrenia: application of anatomic likelihood estimation and network analysis. Biol. Psychiatry 64, 774–781 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  103. 103

    Fornito, A., Yucel, M., Patti, J., Wood, S. J. & Pantelis, C. Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies. Schizophr. Res. 108, 104–113 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. 104

    Shepherd, A. M., Matheson, S. L., Laurens, K. R., Carr, V. J. & Green, M. J. Systematic meta-analysis of insula volume in schizophrenia. Biol. Psychiatry 72, 775–784 (2012).

    Article  PubMed  Google Scholar 

  105. 105

    van der Meer, L. et al. Neural correlates of emotion regulation in patients with schizophrenia and non-affected siblings. PLoS ONE 9, e99667 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Wylie, K. P. & Tregellas, J. R. The role of the insula in schizophrenia. Schizophr. Res. 123, 93–104 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  107. 107

    Wang, X. et al. Disrupted resting-state functional connectivity in minimally treated chronic schizophrenia. Schizophr. Res. 156, 150–156 (2014).

    Article  PubMed  Google Scholar 

  108. 108

    Palaniyappan, L., White, T. P. & Liddle, P. F. The concept of salience network dysfunction in schizophrenia: from neuroimaging observations to therapeutic opportunities. Curr. Top. Med. Chem. 12, 2324–2338 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. 109

    Palaniyappan, L., Simmonite, M., White, T. P., Liddle, E. B. & Liddle, P. F. Neural primacy of the salience processing system in schizophrenia. Neuron 79, 814–828 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Manoliu, A. et al. Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia. Schizophr. Bull. 40, 428–437 (2014).

    Article  PubMed  Google Scholar 

  111. 111

    Karbasforoushan, H. & Woodward, N. D. Resting-state networks in schizophrenia. Curr. Top. Med. Chem. 12, 2404–2414 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. 112

    Whitfield-Gabrieli, S. & Ford, J. M. Default mode network activity and connectivity in psychopathology. Annu. Rev. Clin. Psychol. 8, 49–76 (2012).

    Article  PubMed  Google Scholar 

  113. 113

    Seeley, W. W. Anterior insula degeneration in frontotemporal dementia. Brain Struct. Funct. 214, 465–475 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  114. 114

    Hu, W. T. et al. Clinical features of pathologic subtypes of behavioral — variant frontotemporal dementia. Arch. Neurol. 64, 1611–1616 (2007).

    Article  PubMed  Google Scholar 

  115. 115

    Miller, B. L., Chang, L., Mena, I., Boone, K. & Lesser, I. M. Progressive right frontotemporal degeneration: clinical, neuropsychological and SPECT characteristics. Dementia 4, 204–213 (1993).

    CAS  PubMed  Google Scholar 

  116. 116

    Seeley, W. W. et al. Distinctive neurons of the anterior cingulate and frontoinsular cortex: a historical perspective. Cereb. Cortex 22, 245–250 (2012).

    Article  PubMed  Google Scholar 

  117. 117

    Nimchinsky, E. A. et al. A neuronal morphologic type unique to humans and great apes. Proc. Natl Acad. Sci. USA 96, 5268–5273 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. 118

    Kim, E. J. et al. Selective frontoinsular von Economo neuron and fork cell loss in early behavioral variant frontotemporal dementia. Cereb. Cortex 22, 251–259 (2012).

    Article  PubMed  Google Scholar 

  119. 119

    Seeley, W. W. et al. Early frontotemporal dementia targets neurons unique to apes and humans. Ann. Neurol. 60, 660–667 (2006).

    Article  PubMed  Google Scholar 

  120. 120

    Santillo, A. F., Nilsson, C. & Englund, E. von Economo neurones are selectively targeted in frontotemporal dementia. Neuropathol. Appl. Neurobiol. 39, 572–579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Allman, J. M. et al. The von Economo neurons in the frontoinsular and anterior cingulate cortex. Ann. NY Acad. Sci. 1225, 59–71 (2011).

    Article  PubMed  Google Scholar 

  122. 122

    Etkin, A., Prater, K. E., Schatzberg, A. F., Menon, V. & Greicius, M. D. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Arch. Gen. Psychiatry 66, 1361–1372 (2009).

    Article  PubMed  Google Scholar 

  123. 123

    Hamilton, J. P. et al. Functional neuroimaging of major depressive disorder: a meta-analysis and new integration of base line activation and neural response data. Am. J. Psychiatry 169, 693–703 (2012).

    Article  PubMed  Google Scholar 

  124. 124

    Taurines, R. et al. ADHD and autism: differential diagnosis or overlapping traits? A selective review. Atten. Defic. Hyperact. Disord. 4, 115–139 (2012).

    Article  PubMed  Google Scholar 

  125. 125

    Di Martino, A. et al. Shared and distinct intrinsic functional network centrality in autism and attention-deficit/hyperactivity disorder. Biol. Psychiatry 74, 623–632 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  126. 126

    Allman, J. M., Watson, K. K., Tetreault, N. A. & Hakeem, A. Y. Intuition and autism: a possible role for Von Economo neurons. Trends Cogn. Sci. 9, 367–373 (2005).

    Article  PubMed  Google Scholar 

  127. 127

    Butti, C., Sherwood, C. C., Hakeem, A. Y., Allman, J. M. & Hof, P. R. Total number and volume of Von Economo neurons in the cerebral cortex of cetaceans. J. Comp. Neurol. 515, 243–259 (2009).

    Article  PubMed  Google Scholar 

  128. 128

    Allman, J., Hakeem, A. & Watson, K. Two phylogenetic specializations in the human brain. Neuroscientist 8, 335–346 (2002).

    Article  PubMed  Google Scholar 

  129. 129

    Kennedy, D. P., Semendeferi, K. & Courchesne, E. No reduction of spindle neuron number in frontoinsular cortex in autism. Brain Cogn. 64, 124–129 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a US National Institute of Mental Health (NIMH) Career Development Award (K01MH092288) and a Slifka/Ritvo Innovation in Autism Research Award from the International Society for Autism Research. The content is solely the responsibility of the author and does not necessarily represent the official views of the NIMH or the US National Institutes of Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lucina Q. Uddin.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Uddin, L. Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 16, 55–61 (2015). https://doi.org/10.1038/nrn3857

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing