Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of orexin in motivated behaviours

A Corrigendum to this article was published on 20 October 2014

Key Points

  • Orexins are lateral hypothalamic neuropeptides that have a highly important role in the regulation of wakefulness.

  • To support feeding behaviour, orexin neurons are excited by food-related cues and/or low energy balance through neuronal connections with the limbic system and through factors that indicate energy balance.

  • Orexins simultaneously increase food intake and energy expenditure, but the net effect of increasing orexinergic tone is a decrease in body weight.

  • Emotive information from the limbic system excites orexin neurons to increase sympathetic outflow to regulate the cardiovascular function.

  • Orexins play an important part in the formation of cued fear memory through activation of noradrenergic neurons in the locus coeruleus.

  • Cues and contexts associated with rewards, including food, sex and drugs, influence the activity of orexin neurons to evoke behaviours in response to these stimuli.

  • Orexins are essential in reward seeking: they do not influence the primary reinforcing or priming effects of rewards, but they support motivated behaviour.

  • Orexin receptor type 2 (OX2R) has been thought to have a major role in maintaining wakefulness, but orexin receptor type 1 (OX1R) is likely to be involved in a broad range of functions, including emotion, reward and autonomic regulation.

  • Orexin-producing neurons reside in the lateral hypothalamic area and link forebrain structures — such as the amygdala, bed nucleus of the stria terminalis and nucleus accumbens — that are implicated in the processing of emotion and motivation with brain-stem regions that regulate wakefulness and reward.

Abstract

Wakefulness and vigilance levels are required for maintaining purposeful activities and motivated behaviours, which are often triggered by sensory information conveying external cues. An increasing body of work has suggested that orexins (also known as hypocretins) — a pair of neuropeptides that are crucial for maintaining wakefulness — are also involved in the regulation of motivated behaviours, including feeding, emotional behaviour and reward seeking, and that these functions are mediated by two subtypes of orexin receptors. Autonomic and endocrine responses, which accompany these motivated behaviours, are also influenced by the orexin system. Orexin-producing neurons act as a hub that links information about the internal and external environments of an animal to vigilance levels and internal bodily functions to support various motivated behaviours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Input and output of orexin neurons.
Figure 2: Orexin neurons in the regulation of feeding.
Figure 3: Orexin neurons in the regulation of autonomic function.
Figure 4: Orexin neurons in the consolidation of cue-dependent fear memory.
Figure 5: Orexin neurons influence the reward-processing system.

Similar content being viewed by others

References

  1. Sakurai, T. & Mieda, M. Connectomics of orexin-producing neurons: interface of systems of emotion, energy homeostasis and arousal. Trends Pharmacol. Sci. 32, 451–462 (2011).

    CAS  PubMed  Google Scholar 

  2. Etori, K., Saito, Y. C., Tsujino, N. & Sakurai, T. Effects of a newly developed potent orexin-2 receptor-selective antagonist, compound 1 m, on sleep/wakefulness states in mice. Front. Neurosci. 8, 8 (2014).

    PubMed  PubMed Central  Google Scholar 

  3. Harris, G. C., Wimmer, M. & Aston-Jones, G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437, 556–559 (2005). This work demonstrated, for the first time, roles for orexin neurons and VTA orexin receptors in reward-based learning and memory.

    CAS  PubMed  Google Scholar 

  4. Haynes, A. C. et al. A selective orexin-1 receptor antagonist reduces food consumption in male and female rats. Regul. Pept. 96, 45–51 (2000).

    CAS  PubMed  Google Scholar 

  5. Aston-Jones, G. et al. Lateral hypothalamic orexin/hypocretin neurons: a role in reward-seeking and addiction. Brain Res. 1314, 74–90 (2010).

    CAS  PubMed  Google Scholar 

  6. Harris, G. C. & Aston-Jones, G. Arousal and reward: a dichotomy in orexin function. Trends Neurosci. 29, 571–577 (2006).

    CAS  PubMed  Google Scholar 

  7. Aston-Jones, G., Smith, R. J., Moorman, D. E. & Richardson, K. A. Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology 56 (Suppl. 1), 112–121 (2009).

    CAS  PubMed  Google Scholar 

  8. Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585 (1998). This study details the discovery of orexins and their two target receptors, the determination of their exact structures and the demonstration that the peptides stimulate short-term food intake.

    CAS  PubMed  Google Scholar 

  9. Anand, B. K. & Brobeck, J. R. Localization of a “feeding center” in the hypothalamus of the rat. Proc. Soc. Exp. Biol. Med. 77, 323–324 (1951).

    CAS  PubMed  Google Scholar 

  10. Sakurai, T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nature Rev. Neurosci. 8, 171–181 (2007).

    CAS  Google Scholar 

  11. Yamada, H., Okumura, T., Motomura, W., Kobayashi, Y. & Kohgo, Y. Inhibition of food intake by central injection of anti-orexin antibody in fasted rats. Biochem. Biophys. Res. Commun. 267, 527–531 (2000).

    CAS  PubMed  Google Scholar 

  12. Sharf, R. et al. Orexin signaling via the orexin 1 receptor mediates operant responding for food reinforcement. Biol. Psychiatry 67, 753–760 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hara, J., Yanagisawa, M. & Sakurai, T. Difference in obesity phenotype between orexin-knockout mice and orexin neuron-deficient mice with same genetic background and environmental conditions. Neurosci. Lett. 380, 239–242 (2005).

    CAS  PubMed  Google Scholar 

  14. Willie, J. T., Chemelli, R. M., Sinton, C. M. & Yanagisawa, M. To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu. Rev. Neurosci. 24, 429–458 (2001).

    CAS  PubMed  Google Scholar 

  15. Funato, H. et al. Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity. Cell. Metab. 9, 64–76 (2009). This work showed that overexpression of orexin or stimulation of OX2R confers resistance to high-fat diet-induced obesity.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yamanaka, A. et al. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38, 701–713 (2003). This study showed that the activity of orexin neurons could be influenced by circulating factors that are indicative of energy balance, including glucose, ghrelin and leptin. It also demonstrated that orexin neurons are necessary to evoke the appropriate behaviour when animals face starvation.

    CAS  PubMed  Google Scholar 

  17. Mieda, M. & Sakurai, T. Overview of orexin/hypocretin system. Prog. Brain Res. 198, 5–14 (2012).

    CAS  PubMed  Google Scholar 

  18. Burdakov, D., Gerasimenko, O. & Verkhratsky, A. Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ. J. Neurosci. 25, 2429–2433 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Venner, A. et al. Orexin neurons as conditional glucosensors: paradoxical regulation of sugar sensing by intracellular fuels. J. Physiol. 589, 5701–5708 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chang, G. Q., Karatayev, O., Davydova, Z. & Leibowitz, S. F. Circulating triglycerides impact on orexigenic peptides and neuronal activity in hypothalamus. Endocrinology 145, 3904–3912 (2004).

    CAS  PubMed  Google Scholar 

  21. Karnani, M. M. et al. Activation of central orexin/hypocretin neurons by dietary amino acids. Neuron 72, 616–629 (2011).

    CAS  PubMed  Google Scholar 

  22. Elias, C. F. et al. Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J. Comp. Neurol. 402, 442–459 (1998).

    CAS  PubMed  Google Scholar 

  23. van den Pol, A. N., Acuna-Goycolea, C., Clark, K. R. & Ghosh, P. K. Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection. Neuron 42, 635–652 (2004).

    CAS  PubMed  Google Scholar 

  24. Shiraishi, T., Oomura, Y., Sasaki, K. & Wayner, M. J. Effects of leptin and orexin-A on food intake and feeding related hypothalamic neurons. Physiol. Behav. 71, 251–261 (2000).

    CAS  PubMed  Google Scholar 

  25. Yamanaka, A. et al. Orexin-induced food intake involves neuropeptide Y pathway. Brain Res. 859, 404–409 (2000).

    CAS  PubMed  Google Scholar 

  26. Niimi, M., Sato, M. & Taminato, T. Neuropeptide Y in central control of feeding and interactions with orexin and leptin. Endocrine 14, 269–273 (2001).

    CAS  PubMed  Google Scholar 

  27. Dube, M. G., Kalra, S. P. & Kalra, P. S. Food intake elicited by central administration of orexins/hypocretins: identification of hypothalamic sites of action. Brain Res. 842, 473–477 (1999).

    CAS  PubMed  Google Scholar 

  28. Thorpe, A. J., Mullett, M. A., Wang, C. & Kotz, C. M. Peptides that regulate food intake: regional, metabolic, and circadian specificity of lateral hypothalamic orexin A feeding stimulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R1409–R1417 (2003).

    CAS  PubMed  Google Scholar 

  29. Sweet, D. C., Levine, A. S., Billington, C. J. & Kotz, C. M. Feeding response to central orexins. Brain Res. 821, 535–538 (1999).

    CAS  PubMed  Google Scholar 

  30. Baird, J. P. et al. Orexin-A hyperphagia: hindbrain participation in consummatory feeding responses. Endocrinology 150, 1202–1216 (2009).

    CAS  PubMed  Google Scholar 

  31. Thorpe, A. J. & Kotz, C. M. Orexin A in the nucleus accumbens stimulates feeding and locomotor activity. Brain Res. 1050, 156–162 (2005).

    CAS  PubMed  Google Scholar 

  32. Borgland, S. L. et al. Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers. J. Neurosci. 29, 11215–11225 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Borgland, S. L., Ungless, M. A. & Bonci, A. Convergent actions of orexin/hypocretin and CRF on dopamine neurons: emerging players in addiction. Brain Res. 1314, 139–144 (2010).

    CAS  PubMed  Google Scholar 

  34. Thorpe, A. J., Teske, J. A. & Kotz, C. M. Orexin A-induced feeding is augmented by caloric challenge. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R367–R372 (2005).

    CAS  PubMed  Google Scholar 

  35. Choi, D. L., Davis, J. F., Fitzgerald, M. E. & Benoit, S. C. The role of orexin-A in food motivation, reward-based feeding behavior and food-induced neuronal activation in rats. Neuroscience 167, 11–20 (2010).

    CAS  PubMed  Google Scholar 

  36. Zheng, H., Patterson, L. M. & Berthoud, H. R. Orexin signaling in the ventral tegmental area is required for high-fat appetite induced by opioid stimulation of the nucleus accumbens. J. Neurosci. 27, 11075–11082 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Nair, S. G., Golden, S. A. & Shaham, Y. Differential effects of the hypocretin 1 receptor antagonist SB 334867 on high-fat food self-administration and reinstatement of food seeking in rats. Br. J. Pharmacol. 154, 406–416 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Petrovich, G. D., Hobin, M. P. & Reppucci, C. J. Selective Fos induction in hypothalamic orexin/hypocretin, but not melanin-concentrating hormone neurons, by a learned food-cue that stimulates feeding in sated rats. Neuroscience 224, 70–80 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Berthoud, H. R. Mind versus metabolism in the control of food intake and energy balance. Physiol. Behav. 81, 781–793 (2004).

    CAS  PubMed  Google Scholar 

  40. Reid, M. S. et al. Neuropharmacological characterization of basal forebrain cholinergic stimulated cataplexy in narcoleptic canines. Exp. Neurol. 151, 89–104 (1998).

    CAS  PubMed  Google Scholar 

  41. Schuld, A., Hebebrand, J., Geller, F. & Pollmacher, T. Increased body-mass index in patients with narcolepsy. Lancet 355, 1274–1275 (2000).

    CAS  PubMed  Google Scholar 

  42. Hara, J. et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30, 345–354 (2001).

    CAS  PubMed  Google Scholar 

  43. Krahn, L. E., Moore, W. R. & Altchuler, S. I. Narcolepsy and obesity: remission of severe cataplexy with sibutramine. Sleep Med. 2, 63–65 (2001).

    CAS  PubMed  Google Scholar 

  44. Perez-Leighton, C. E., Boland, K., Billington, C. J. & Kotz, C. M. High and low activity rats: elevated intrinsic physical activity drives resistance to diet-induced obesity in non-bred rats. Obesity 21, 353–360 (2013).

    CAS  PubMed  Google Scholar 

  45. Nakamura, T. et al. Orexin-induced hyperlocomotion and stereotypy are mediated by the dopaminergic system. Brain Res. 873, 181–187 (2000).

    CAS  PubMed  Google Scholar 

  46. Shiuchi, T. et al. Hypothalamic orexin stimulates feeding-associated glucose utilization in skeletal muscle via sympathetic nervous system. Cell. Metab. 10, 466–480 (2009).

    CAS  PubMed  Google Scholar 

  47. Madden, C. J., Tupone, D. & Morrison, S. F. Orexin modulates brown adipose tissue thermogenesis. Biomol. Concepts 3, 381–386 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hilton, S. M. The defence-arousal system and its relevance for circulatory and respiratory control. J. Exp. Biol. 100, 159–174 (1982).

    CAS  PubMed  Google Scholar 

  49. Sakurai, T. et al. Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron 46, 297–308 (2005).

    CAS  PubMed  Google Scholar 

  50. Yoshida, K., McCormack, S., Espana, R. A., Crocker, A. & Scammell, T. E. Afferents to the orexin neurons of the rat brain. J. Comp. Neurol. 494, 845–861 (2006). References 49 and 50 used anterograde and retrograde tracers to reveal neurons that send projections to orexin neurons. These studies showed that inputs from the limbic system are likely to have an important role in activating orexin neurons in response to cues that predict fear or reward.

    PubMed  PubMed Central  Google Scholar 

  51. Peyron, C. et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18, 9996–10015 (1998).

    CAS  PubMed  Google Scholar 

  52. Nambu, T. et al. Distribution of orexin neurons in the adult rat brain. Brain Res. 827, 243–260 (1999).

    CAS  PubMed  Google Scholar 

  53. Kayaba, Y. et al. Attenuated defense response and low basal blood pressure in orexin knockout mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R581–R593 (2003).

    PubMed  Google Scholar 

  54. Zhang, W., Zhang, N., Sakurai, T. & Kuwaki, T. Orexin neurons in the hypothalamus mediate cardiorespiratory responses induced by disinhibition of the amygdala and bed nucleus of the stria terminalis. Brain Res. 1262, 25–37 (2009). This work showed functional interaction between the extended amygdala and orexin neurons, suggesting that orexin neurons are activated by signals from the extended amygdala.

    CAS  PubMed  Google Scholar 

  55. Zhang, W. et al. Orexin neurons are indispensable for stress-induced thermogenesis in mice. J. Physiol. 588, 4117–4129 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, W., Sakurai, T., Fukuda, Y. & Kuwaki, T. Orexin neuron-mediated skeletal muscle vasodilation and shift of baroreflex during defense response in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1654–R1663 (2006).

    CAS  PubMed  Google Scholar 

  57. Dergacheva, O., Philbin, K., Bateman, R. & Mendelowitz, D. Hypocretin-1 (orexin A) prevents the effects of hypoxia/hypercapnia and enhances the GABAergic pathway from the lateral paragigantocellular nucleus to cardiac vagal neurons in the nucleus ambiguus. Neuroscience 175, 18–23 (2011).

    CAS  PubMed  Google Scholar 

  58. Dias, M. B., Li, A. & Nattie, E. E. Antagonism of orexin receptor-1 in the retrotrapezoid nucleus inhibits the ventilatory response to hypercapnia predominantly in wakefulness. J. Physiol. 587, 2059–2067 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sansa, G., Iranzo, A. & Santamaria, J. Obstructive sleep apnea in narcolepsy. Sleep Med. 11, 93–95 (2010).

    PubMed  Google Scholar 

  60. Samson, W. K., Gosnell, B., Chang, J. K., Resch, Z. T. & Murphy, T. C. Cardiovascular regulatory actions of the hypocretins in brain. Brain Res. 831, 248–253 (1999).

    CAS  PubMed  Google Scholar 

  61. Shirasaka, T., Nakazato, M., Matsukura, S., Takasaki, M. & Kannan, H. Sympathetic and cardiovascular actions of orexins in conscious rats. Am. J. Physiol. 277, R1780–R1785 (1999).

    CAS  PubMed  Google Scholar 

  62. Hirota, K. et al. Effects of central hypocretin-1 administration on hemodynamic responses in young-adult and middle-aged rats. Brain Res. 981, 143–150 (2003).

    CAS  PubMed  Google Scholar 

  63. Samson, W. K., Bagley, S. L., Ferguson, A. V. & White, M. M. Hypocretin/orexin type 1 receptor in brain: role in cardiovascular control and the neuroendocrine response to immobilization stress. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R382–R387 (2007).

    CAS  PubMed  Google Scholar 

  64. Huang, S. C., Dai, Y. W., Lee, Y. H., Chiou, L. C. & Hwang, L. L. Orexins depolarize rostral ventrolateral medulla neurons and increase arterial pressure and heart rate in rats mainly via orexin 2 receptors. J. Pharmacol. Exp. Ther. 334, 522–529 (2010).

    CAS  PubMed  Google Scholar 

  65. Shahid, I. Z., Rahman, A. A. & Pilowsky, P. M. Orexin A in rat rostral ventrolateral medulla is pressor, sympatho-excitatory, increases barosensitivity and attenuates the somato-sympathetic reflex. Br. J. Pharmacol. 165, 2292–2303 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. de Oliveira, C. V., Rosas-Arellano, M. P., Solano-Flores, L. P. & Ciriello, J. Cardiovascular effects of hypocretin-1 in nucleus of the solitary tract. Am. J. Physiol. Heart Circ. Physiol. 284, H1369–H1377 (2003).

    CAS  PubMed  Google Scholar 

  67. Shih, C. D. & Chuang, Y. C. Nitric oxide and GABA mediate bi-directional cardiovascular effects of orexin in the nucleus tractus solitarii of rats. Neuroscience 149, 625–635 (2007).

    CAS  PubMed  Google Scholar 

  68. Ciriello, J., Caverson, M. M., McMurray, J. C. & Bruckschwaiger, E. B. Co-localization of hypocretin-1 and leucine-enkephalin in hypothalamic neurons projecting to the nucleus of the solitary tract and their effect on arterial pressure. Neuroscience 250, 599–613 (2013).

    CAS  PubMed  Google Scholar 

  69. Iigaya, K. et al. Blockade of orexin receptors with Almorexant reduces cardiorespiratory responses evoked from the hypothalamus but not baro- or chemoreceptor reflex responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R1011–R1022 (2012).

    CAS  PubMed  Google Scholar 

  70. Nisimaru, N. et al. Orexin-neuromodulated cerebellar circuit controls redistribution of arterial blood flows for defense behavior in rabbits. Proc. Natl Acad. Sci. USA 110, 14124–14131 (2013).

    CAS  PubMed  Google Scholar 

  71. Furlong, T. M., Vianna, D. M., Liu, L. & Carrive, P. Hypocretin/orexin contributes to the expression of some but not all forms of stress and arousal. Eur. J. Neurosci. 30, 1603–1614 (2009).

    PubMed  Google Scholar 

  72. Steiner, M. A. et al. Discovery and characterization of ACT-335827, an orally available, brain penetrant orexin receptor type 1 selective antagonist. ChemMedChem. 8, 898–903 (2013).

    CAS  PubMed  Google Scholar 

  73. Williams, R. H., Jensen, L. T., Verkhratsky, A., Fugger, L. & Burdakov, D. Control of hypothalamic orexin neurons by acid and CO2. Proc. Natl Acad. Sci. USA 104, 10685–10690 (2007).

    CAS  PubMed  Google Scholar 

  74. Johnson, P. L. et al. Orexin 1 receptors are a novel target to modulate panic responses and the panic brain network. Physiol. Behav. 107, 733–742 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hess, W. R. & Akert, K. Experimental data on role of hypothalamus in mechanism of emotional behavior. AMA Arch. Neurol. Psychiatry 73, 127–129 (1955).

    CAS  PubMed  Google Scholar 

  76. Johnson, P. L. et al. A key role for orexin in panic anxiety. Nature Med. 16, 111–115 (2010).

    CAS  PubMed  Google Scholar 

  77. Strawn, J. R. & Geracioti, T. D. Jr. Noradrenergic dysfunction and the psychopharmacology of posttraumatic stress disorder. Depress. Anxiety 25, 260–271 (2008).

    CAS  PubMed  Google Scholar 

  78. Winsky-Sommerer, R. et al. Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J. Neurosci. 24, 11439–11448 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Tucci, V. et al. Emotional information processing in patients with narcolepsy: a psychophysiologic investigation. Sleep 26, 558–564 (2003).

    PubMed  Google Scholar 

  80. Ponz, A. et al. Reduced amygdala activity during aversive conditioning in human narcolepsy. Ann. Neurol. 67, 394–398 (2010).

    PubMed  Google Scholar 

  81. Blouin, A. M. et al. Human hypocretin and melanin-concentrating hormone levels are linked to emotion and social interaction. Nature Commun. 4, 1547 (2013).

    Google Scholar 

  82. Shiromani, P. J., Armstrong, D. M., Berkowitz, A., Jeste, D. V. & Gillin, J. C. Distribution of choline acetyltransferase immunoreactive somata in the feline brainstem: implications for REM sleep generation. Sleep 11, 1–16 (1988).

    CAS  PubMed  Google Scholar 

  83. Takakusaki, K. et al. Orexinergic projections to the midbrain mediate alternation of emotional behavioral states from locomotion to cataplexy. J. Physiol. 568, 1003–1020 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ishida, Y. et al. Conditioned-fear stress increases Fos expression in monoaminergic and GABAergic neurons of the locus coeruleus and dorsal raphe nuclei. Synapse 45, 46–51 (2002).

    CAS  PubMed  Google Scholar 

  85. Vaiva, G. et al. Immediate treatment with propranolol decreases posttraumatic stress disorder two months after trauma. Biol. Psychiatry 54, 947–949 (2003).

    CAS  PubMed  Google Scholar 

  86. Galvez, R., Mesches, M. H. & McGaugh, J. L. Norepinephrine release in the amygdala in response to footshock stimulation. Neurobiol. Learn. Mem. 66, 253–257 (1996).

    CAS  PubMed  Google Scholar 

  87. Mieda, M. et al. Differential roles of orexin receptor-1 and -2 in the regulation of non-REM and REM sleep. J. Neurosci. 31, 6518–6526 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Marcus, J. N. et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol. 435, 6–25 (2001).

    CAS  PubMed  Google Scholar 

  89. Soya, S. et al. Orexin receptor-1 in the locus coeruleus plays an important role in cue-dependent fear memory consolidation. J. Neurosci. 33, 14549–14557 (2013). This work showed that the orexin system modulates the formation and expression of fear memory via OX1R in multiple pathways. In particular, OX1R in LC NA neurons plays an important part in cue-dependent fear-memory formation and/or retrieval.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Steiner, M. A., Lecourt, H. & Jenck, F. The brain orexin system and almorexant in fear-conditioned startle reactions in the rat. Psychopharmacology. 223, 465–475 (2012).

    CAS  PubMed  Google Scholar 

  91. Sears, R. M. et al. Orexin/hypocretin system modulates amygdala-dependent threat learning through the locus coeruleus. Proc. Natl Acad. Sci. USA 110, 20260–20265 (2013).

    CAS  PubMed  Google Scholar 

  92. Gozzi, A. et al. Functional magnetic resonance imaging reveals different neural substrates for the effects of orexin-1 and orexin-2 receptor antagonists. PLoS ONE 6, e16406 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Khatami, R., Birkmann, S. & Bassetti, C. L. Amygdala dysfunction in narcolepsy–cataplexy. J. Sleep Res. 16, 226–229 (2007).

    PubMed  Google Scholar 

  94. Boutrel, B. et al. Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc. Natl Acad. Sci. USA 102, 19168–19173 (2005). This study suggested a previously unidentified role for orexins in driving drug seeking through the activation of stress pathways in the brain.

    CAS  PubMed  Google Scholar 

  95. Balcita-Pedicino, J. J. & Sesack, S. R. Orexin axons in the rat ventral tegmental area synapse infrequently onto dopamine and γ-aminobutyric acid neurons. J. Comp. Neurol. 503, 668–684 (2007).

    PubMed  Google Scholar 

  96. Liu, Z. et al. Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron 81, 1360–1374 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Di Sebastiano, A. R., Wilson-Perez, H. E., Lehman, M. N. & Coolen, L. M. Lesions of orexin neurons block conditioned place preference for sexual behavior in male rats. Horm. Behav. 59, 1–8 (2011).

    CAS  PubMed  Google Scholar 

  98. Cason, A. M. et al. Role of orexin/hypocretin in reward-seeking and addiction: implications for obesity. Physiol. Behav. 100, 419–428 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Espana, R. A., Melchior, J. R., Roberts, D. C. & Jones, S. R. Hypocretin 1/orexin A in the ventral tegmental area enhances dopamine responses to cocaine and promotes cocaine self-administration. Psychopharmacology 214, 415–426 (2011).

    CAS  PubMed  Google Scholar 

  100. Mahler, S. V., Smith, R. J., Moorman, D. E., Sartor, G. C. & Aston-Jones, G. Multiple roles for orexin/hypocretin in addiction. Prog. Brain Res. 198, 79–121 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Martin-Fardon, R. & Boutrel, B. Orexin/hypocretin (Orx/Hcrt) transmission and drug-seeking behavior: is the paraventricular nucleus of the thalamus (PVT) part of the drug seeking circuitry? Front. Behav. Neurosci. 6, 75 (2012).

    PubMed  PubMed Central  Google Scholar 

  102. Borgland, S. L., Taha, S. A., Sarti, F., Fields, H. L. & Bonci, A. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron 49, 589–601 (2006).

    CAS  PubMed  Google Scholar 

  103. Quarta, D., Valerio, E., Hutcheson, D. M., Hedou, G. & Heidbreder, C. The orexin-1 receptor antagonist SB-334867 reduces amphetamine-evoked dopamine outflow in the shell of the nucleus accumbens and decreases the expression of amphetamine sensitization. Neurochem. Int. 56, 11–15 (2010).

    CAS  PubMed  Google Scholar 

  104. Winrow, C. J. et al. Orexin receptor antagonism prevents transcriptional and behavioral plasticity resulting from stimulant exposure. Neuropharmacology 58, 185–194 (2010).

    CAS  PubMed  Google Scholar 

  105. Hutcheson, D. M. et al. Orexin-1 receptor antagonist SB-334867 reduces the acquisition and expression of cocaine-conditioned reinforcement and the expression of amphetamine-conditioned reward. Behav. Pharmacol. 22, 173–1811 (2011).

    CAS  PubMed  Google Scholar 

  106. Sartor, G. C. & Aston-Jones, G. S. A septal-hypothalamic pathway drives orexin neurons, which is necessary for conditioned cocaine preference. J. Neurosci. 32, 4623–4631 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Espana, R. A. et al. The hypocretin-orexin system regulates cocaine self-administration via actions on the mesolimbic dopamine system. Eur. J. Neurosci. 31, 336–348 (2010).

    PubMed  Google Scholar 

  108. Smith, R. J., See, R. E. & Aston-Jones, G. Orexin/hypocretin signaling at the orexin 1 receptor regulates cue-elicited cocaine-seeking. Eur. J. Neurosci. 30, 493–503 (2009).

    PubMed  PubMed Central  Google Scholar 

  109. Smith, R. J., Tahsili-Fahadan, P. & Aston-Jones, G. Orexin/hypocretin is necessary for context-driven cocaine-seeking. Neuropharmacology 58, 179–184 (2010).

    CAS  PubMed  Google Scholar 

  110. James, M. H. et al. Orexin-1 receptor signalling within the ventral tegmental area, but not the paraventricular thalamus, is critical to regulating cue-induced reinstatement of cocaine-seeking. Int. J. Neuropsychopharmacol. 14, 684–690 (2011).

    CAS  PubMed  Google Scholar 

  111. Pasumarthi, R. K., Reznikov, L. R. & Fadel, J. Activation of orexin neurons by acute nicotine. Eur. J. Pharmacol. 535, 172–176 (2006).

    CAS  PubMed  Google Scholar 

  112. Plaza-Zabala, A. et al. A role for hypocretin/orexin receptor-1 in cue-induced reinstatement of nicotine-seeking behavior. Neuropsychopharmacology 38, 1724–1736 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Hollander, J. A., Lu, Q., Cameron, M. D., Kamenecka, T. M. & Kenny, P. J. Insular hypocretin transmission regulates nicotine reward. Proc. Natl Acad. Sci. USA 105, 19480–19485 (2008).

    CAS  PubMed  Google Scholar 

  114. LeSage, M. G., Perry, J. L., Kotz, C. M., Shelley, D. & Corrigall, W. A. Nicotine self-administration in the rat: effects of hypocretin antagonists and changes in hypocretin mRNA. Psychopharmacology 209, 203–212 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Georgescu, D. et al. Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J. Neurosci. 23, 3106–3111 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Sharf, R., Guarnieri, D. J., Taylor, J. R. & DiLeone, R. J. Orexin mediates morphine place preference, but not morphine-induced hyperactivity or sensitization. Brain Res. 1317, 24–32 (2010).

    CAS  PubMed  Google Scholar 

  117. Narita, M. et al. Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J. Neurosci. 26, 398–405 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Richardson, K. A. & Aston-Jones, G. Lateral hypothalamic orexin/hypocretin neurons that project to ventral tegmental area are differentially activated with morphine preference. J. Neurosci. 32, 3809–3817 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Smith, R. J. & Aston-Jones, G. Orexin / hypocretin 1 receptor antagonist reduces heroin self-administration and cue-induced heroin seeking. Eur. J. Neurosci. 35, 798–804 (2012).

    PubMed  PubMed Central  Google Scholar 

  120. Moorman, D. E. & Aston-Jones, G. Orexin-1 receptor antagonism decreases ethanol consumption and preference selectively in high-ethanol-preferring Sprague–Dawley rats. Alcohol 43, 379–386 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Shoblock, J. R. et al. Selective blockade of the orexin-2 receptor attenuates ethanol self-administration, place preference, and reinstatement. Psychopharmacology 215, 191–203 (2011).

    CAS  PubMed  Google Scholar 

  122. Jupp, B., Krstew, E., Dezsi, G. & Lawrence, A. J. Discrete cue-conditioned alcohol-seeking after protracted abstinence: pattern of neural activation and involvement of orexin(1) receptors. Br. J. Pharmacol. 162, 880–889 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Lawrence, A. J., Cowen, M. S., Yang, H. J., Chen, F. & Oldfield, B. The orexin system regulates alcohol-seeking in rats. Br. J. Pharmacol. 148, 752–759 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Dayas, C. V., McGranahan, T. M., Martin-Fardon, R. & Weiss, F. Stimuli linked to ethanol availability activate hypothalamic CART and orexin neurons in a reinstatement model of relapse. Biol. Psychiatry 63, 152–157 (2008).

    CAS  PubMed  Google Scholar 

  125. Al-Barazanji, K. A., Wilson, S., Baker, J., Jessop, D. S. & Harbuz, M. S. Central orexin-A activates hypothalamic–pituitary–adrenal axis and stimulates hypothalamic corticotropin releasing factor and arginine vasopressin neurones in conscious rats. J. Neuroendocrinol. 13, 421–424 (2001).

    CAS  PubMed  Google Scholar 

  126. Sakamoto, F., Yamada, S. & Ueta, Y. Centrally administered orexin-A activates corticotropin-releasing factor-containing neurons in the hypothalamic paraventricular nucleus and central amygdaloid nucleus of rats: possible involvement of central orexins on stress-activated central CRF neurons. Regul. Pept. 118, 183–191 (2004).

    CAS  PubMed  Google Scholar 

  127. Winsky-Sommerer, R., Boutrel, B. & de Lecea, L. Stress and arousal: the corticotrophin-releasing factor/hypocretin circuitry. Mol. Neurobiol. 32, 285–294 (2005).

    CAS  PubMed  Google Scholar 

  128. Chang, H. et al. Inhibitory effects of an orexin-2 receptor antagonist on orexin A- and stress-induced ACTH responses in conscious rats. Neurosci. Res. 57, 462–466 (2007).

    CAS  PubMed  Google Scholar 

  129. Chou, T. C. et al. Orexin (hypocretin) neurons contain dynorphin. J. Neurosci. 21, RC168 (2001).

    CAS  PubMed  Google Scholar 

  130. Koob, G. F. A role for brain stress systems in addiction. Neuron 59, 11–34 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Land, B. B. et al. The dysphoric component of stress is encoded by activation of the dynorphin κ-opioid system. J. Neurosci. 28, 407–414 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. de Lecea, L. et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl Acad. Sci. USA 95, 322–327 (1998). This paper relates the independent discovery of the transcript that encodes hypocretins (orexins), the prediction of two peptides encoded by the transcript and the detection of the peptides in dense-core vesicles at synapses.

    CAS  PubMed  Google Scholar 

  133. Date, Y. et al. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc. Natl Acad. Sci. USA 96, 748–753 (1999).

    CAS  PubMed  Google Scholar 

  134. Kukkonen, J. P. & Leonard, C. S. Orexin/hypocretin receptor signalling cascades. Br. J. Pharmacol. 171, 314–331 (2014).

    CAS  PubMed  Google Scholar 

  135. Leonard, C. S. & Kukkonen, J. P. Orexin/hypocretin receptor signalling: a functional perspective. Br. J. Pharmacol. 171, 294–313 (2014).

    CAS  PubMed  Google Scholar 

  136. Chemelli, R. M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451 (1999).

    CAS  PubMed  Google Scholar 

  137. Lin, L. et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376 (1999).

    CAS  PubMed  Google Scholar 

  138. Mochizuki, T. et al. Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. Proc. Natl Acad. Sci. USA 108, 4471–4476 (2011).

    CAS  PubMed  Google Scholar 

  139. Brisbare-Roch, C. et al. Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nature Med. 13, 150–155 (2007). This work showed for the first time that a dual orexin receptor antagonist, which blocks both OX1R and OX2R, is effective as a sleep-inducing substance.

    CAS  PubMed  Google Scholar 

  140. Cox, C. D. et al. Discovery of the dual orexin receptor antagonist [(7R)-4-(5-chloro-1,3-benzoxazol-2-yl)-7-methyl-1,4-diazepan-1-yl][5-methy l-2-(2H-1,2,3-triazol-2-yl)phenyl]methanone (MK-4305) for the treatment of insomnia. J. Med. Chem. 53, 5320–5332 (2010).

    CAS  PubMed  Google Scholar 

  141. Renzulli, C. et al. Disposition and metabolism of [14C]SB-649868, an orexin 1 and 2 receptor antagonist, in humans. Drug Metab. Dispos. 39, 215–227 (2011).

    CAS  PubMed  Google Scholar 

  142. Langmead, C. J. et al. Characterisation of the binding of [3H]-SB-674042, a novel nonpeptide antagonist, to the human orexin-1 receptor. Br. J. Pharmacol. 141, 340–346 (2004).

    CAS  PubMed  Google Scholar 

  143. Porter, R. A. et al. 1,3-Biarylureas as selective non-peptide antagonists of the orexin-1 receptor. Bioorg. Med. Chem. Lett. 11, 1907–1910 (2001).

    CAS  PubMed  Google Scholar 

  144. McAtee, L. C. et al. Novel substituted 4-phenyl-[1,3]dioxanes: potent and selective orexin receptor 2 (OX(2)R) antagonists. Bioorg. Med. Chem. Lett. 14, 4225–4229 (2004).

    CAS  PubMed  Google Scholar 

  145. Fujimoto, T. et al. Discovery of potent, selective, orally active benzoxazepine-based orexin-2 receptor antagonists. Bioorg. Med. Chem. Lett. 21, 6414–6416 (2011).

    CAS  PubMed  Google Scholar 

  146. Malherbe, P. et al. Mapping the binding pocket of dual antagonist almorexant to human orexin 1 and orexin 2 receptors: comparison with the selective OX1 antagonist SB-674042 and the selective OX2 antagonist N-ethyl-2-[(6-methoxy-pyridin-3-yl)-(toluene-2-sulfonyl)-amino]-N-pyridin-3-ylmet hyl-acetamide (EMPA). Mol. Pharmacol. 78, 81–93 (2010).

    CAS  PubMed  Google Scholar 

  147. Hirose, M. et al. N-acyl 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline: the first orexin-2 receptor selective non-peptidic antagonist. Bioorg. Med. Chem. Lett. 13, 4497–4499 (2003).

    CAS  PubMed  Google Scholar 

  148. Watabe-Uchida, M., Zhu, L., Ogawa, S. K., Vamanrao, A. & Uchida, N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74, 858–873 (2012).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Sakurai.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

Cataplexy

A sudden weakening of muscle tone that often accompanies narcolepsy.

Narcolepsy

A sleep disorder caused by a specific loss of hypothalamic orexin neurons.

Hypercapnia

Abnormally increased levels of CO2 in the blood.

Obstructive sleep apnoea syndrome

A condition characterized by repetitive pauses in breathing during sleep (known as apnoeas) caused by obstruction in the upper airway.

Resident–intruder paradigm

An experimental design in which a new ('intruder') mouse is placed in the home cage of another ('resident') mouse. The effect of the stress is then assessed in the resident mouse.

Defence response

The visceral and hormonal changes that accompany fear reactions. They are adaptations that prepare an animal to cope with an emergency, and specifically to perform the extreme muscular exertion of flight or attack.

Pressor response

An increase in arterial blood pressure in response to an internal or external trigger.

Tachycardia

An abnormally high heart rate.

Bradycardia

An abnormally low heart rate.

Depressor response

A decrease in arterial blood pressure in response to an internal or external trigger.

Head-up tilt

A test to find the autonomic response in humans. The test involves lying quietly on a bed and being tilted at different angles (30 to 60 degrees) for a period of time while blood pressure, heart rates and blood-oxygen level are monitored.

Valsalva manoeuvre

Attempted exhalation against a closed airway: subjects are usually instructed to blow out as if blowing up a balloon while keeping their mouth closed and pinching their nose shut.

Cold pressor test

A test to assess the effect of cold-water immersion (of all or part of the body) on blood pressure.

Atonia

Loss of muscle tone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakurai, T. The role of orexin in motivated behaviours. Nat Rev Neurosci 15, 719–731 (2014). https://doi.org/10.1038/nrn3837

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3837

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing