Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Science and Society
  • Published:

The warrior in the machine: neuroscience goes to war

A Corrigendum to this article was published on 21 January 2015

Abstract

Ever since Stone Age men discovered that knapping flint produced sharp stone edges that could be used in combat as well as for cooking and hunting, technological advances of all kinds have been adapted and adopted by the military.The opportunities provided by modern neuroscience are proving no exception, but their application in a military context is accompanied by complex practical and ethical considerations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 'dose–response' problem.
Figure 2: Adoption and use by the military of discoveries and innovations in neuroscience.

References

  1. Brain Waves 1: Neuroscience, society and policy. The Royal Society[online], (2011).

  2. Brain Waves 2: Neuroscience: implications for education and lifelong learning. The Royal Society[online], (2011).

  3. Brain Waves 3. Neuroscience, conflict and security. The Royal Society[online], (2012).

  4. Brain Waves 4: Neuroscience and the law. The Royal Society[online], (2011).

  5. Novel neurotechnologies: intervening in the brain. Nuffield Council on Bioethics[online], (2013).

  6. Committee on Military and Intelligence Methodology for Emergent Neurophysiological and Cognitive/Neural Research in the Next Two Decades; National Research Council. Emerging Cognitive Neuroscience and Related Technologies [online], (The National Academies Press, 2008).

  7. Committee on Trends in Science and Technology Relevant to the Biological Weapons Convention: An International Workshop; National Research Council; in cooperation with Chinese Academy of Sciences, IAP — The Global Network of Science Academies; International Union of Biochemistry and Molecular Biology; International Union of Microbiological Sciences. Life Sciences and Related Fields: Trends Relevant to the Biological Weapons Convention [online], (The National Academies Press, 2011).

  8. Committee on Opportunities in Neuroscience for Future Army Applications; National Research Council. Opportunities in Neuroscience for Future Army Applications [online], (The National Academies Press, 2009).

  9. Moreno, J. D. Mind Wars: Brain Research and National Defense (Dana Press, 2006).

    Google Scholar 

  10. Tennison, M. N. & Moreno, J. D. Neuroscience, ethics, and national security: the state of the art. PLoS Biol. 10, e1001289 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang, J. & Kosal, M. The security impact of the neurosciences. Bulletin of the Atomic Scientists [online], (2008).

    Google Scholar 

  12. Farah, M. J. Neuroethics: the ethical, legal, and societal impact of neuroscience. Annu. Rev. Psychol. 63, 571–591 (2012).

    PubMed  Google Scholar 

  13. Wheelis, M. & Dando, M. Neurobiology: a case study of the imminent militarization of biology. Int. Rev. Red Cross 87, 553–571 (2005).

    Google Scholar 

  14. Dando, M. Advances in neuroscience and the biological and toxin weapons convention. Biotechnol. Res. Int. 2011, 973851 (2011).

    PubMed  Google Scholar 

  15. The Chemical Weapons Convention and convergent trends in science and technology. The Royal Society[online], (2013).

  16. Bray, R. M. et al. Department of Defense survey of health related behaviors among active duty military personnel. A component of the Defense Lifestyle Assessment Program (DLAP) Tricare[online], (2009).

  17. Ryle, G. The Concept of Mind (Penguin Books, 2000).

    Google Scholar 

  18. Ehrenreich, B. Blood Rites: Origins and History of the Passions of War (Holt McDougall, 1998).

    Google Scholar 

  19. World armies still use psychoptropic drugs to make fearless machines of their soldiers. Pravda.ru[online], (2008).

  20. Al-Husani, M. & Goode, E. Prescription drug abuse rises among Iraqi troops, New York Times (New York) [online], (20 Dec 2008).

    Google Scholar 

  21. Libya: Gaddafi forces accused of multiple war crimes. Telegraph (Lond.) [online] (30 Aug 2011).

  22. Smith, D. Rebels accuse Gaddafi of using human shields as showdown in Sirte looms. Guardian (Lond.) [online], (31 Aug 2011).

    Google Scholar 

  23. Oxford, E. Sleeping pill being used as courage drug by criminals: minister urged to tighten controls. Independent (Lond.) [online], (13 Jan 1994).

    Google Scholar 

  24. Robins, L. N. The Vietnam Drug User Returns; Final Report, September 1973. Hath Trust Digital Library[online], (1974).

  25. Giam, G. C. Effects of sleep deprivation with reference to military operations. Ann. Acad. Med. 26, 88–93 (1997).

    CAS  Google Scholar 

  26. Brown, C. A., Berry, R. & Schmidt, A. Sleep and military members: emerging issues and nonpharmacological intervention. Sleep Disord. 160374, 1–6 (2013).

    Google Scholar 

  27. Caldwell, J. A. & Caldwell, J. L. Fatigue in military aviation: an overview of US military-approved pharmacological countermeasures. Aviat. Space Environ. Med. 76, C39–C51 (2005).

    PubMed  Google Scholar 

  28. The Academy of Medical Sciences. Brain science, addiction and drugs. The Academy of Medical Sciences [online], (2008).

  29. Rose, S. P. 'Smart drugs': do they work? Are they ethical? Will they be legal? Nature Rev. Neurosci. 3, 975–979 (2002).

    CAS  Google Scholar 

  30. Fredholm, B. B., Battig, K., Holmen, J., Nehlig, A. & Zvartau, E. E. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 51, 83–133 (1999).

    CAS  PubMed  Google Scholar 

  31. Committee on Military Nutrition Research, Food and Nutrition Board. National Research Council. Committee on Military Nutrition Research: Activity Report 1992–1994. (National Academy Press, 1994).

  32. Committee on Military Nutrition Research, Food and Nutrition Board. National Research Council. Caffeine for the Sustainment of Mental Task Performance: Formulations for Military Operations. (National Academy Press, 2001).

  33. Newman, R. A., Kamimori, G. H., Wesensten, N. J., Picchioni, D. & Balkin, T. J. Caffeine gum minimizes sleep inertia. Perceptual Motor Skills 116, 280–293 (2013).

    PubMed  Google Scholar 

  34. Lieberman, H. R., Tharion, W. J., Shukitt-Hale, B., Speckman, K. L. & Tulley, R. Effects of caffeine, sleep loss, and stress on cognitive performance and mood during U.S. Navy SEAL training. Sea-Air-Land. Psychopharmacology 164, 250–261 (2002).

    CAS  PubMed  Google Scholar 

  35. Gillingham, R. L., Keefe, A. A. & Tikuisis, P. Acute caffeine intake before and after fatiguing exercise improves target shooting engagement time. Aviat. Space Environ. Med. 75, 865–871 (2004).

    PubMed  Google Scholar 

  36. Batejat, D. et al. Prior sleep with zolpidem enhances the effect of caffeine or modafinil during 18 hours continuous work. Aviat. Space Environ. Med. 77, 515–525 (2006).

    CAS  PubMed  Google Scholar 

  37. Weiss, B. & Laties, V. G. Enhancement of human performance by caffeine and the amphetamines. Pharmacol. Rev. 14, 1–36 (1962).

    CAS  PubMed  Google Scholar 

  38. Strohl, M. P. Bradley's benzedrine studies on children with behavioral disorders. Yale J. Biol. Med. 84, 27–33 (2011).

    PubMed  PubMed Central  Google Scholar 

  39. Rasmussen, N. Medical science & the military: the Allies' use of amphetamine during World War II. J. Interdiscip. Hist. 42, 205–233 (2011).

    PubMed  Google Scholar 

  40. Cocks, G. Psychotherapy in the Third Reich. 1st edn, Vol. 326 (Oxford Univ. Press, 1985).

    Google Scholar 

  41. Defalque, R. J. & Wright, A. J. Methamphetamine for Hitler's Germany: 1937 to 1945. Bull. Anesth. Hist. 29, 21–24, 32 (2011).

    PubMed  Google Scholar 

  42. Goodman, S. Thrills, spills and pills: Bond, Benzedrine and the pharmacology of peace. Med. Humanit. 36, 27–30 (2010).

    PubMed  Google Scholar 

  43. Cornum, R., Caldwell, J. A. & Cornum, K. Stimulant use in extended flight operations. Airpower J. 11, 53–58 (1997).

    Google Scholar 

  44. Sahakian, B. & Morein-Zamir, S. Professor's little helper. Nature 450, 1157–1159 (2007).

    CAS  PubMed  Google Scholar 

  45. Maher, B. Poll results: look who's doping. Nature 452, 674–675 (2008).

    CAS  PubMed  Google Scholar 

  46. Desantis, A., Noar, S. M. & Webb, E. M. Nonmedical ADHD stimulant use in fraternities. J. Stud. Alcohol Drugs 70, 952–954 (2009).

    PubMed  Google Scholar 

  47. Minzenberg, M. J. & Carter, C. S. Modafinil: a review of neurochemical actions and effects on cognition. Neuropsychopharmacol. 33, 1477–1502 (2008).

    CAS  Google Scholar 

  48. Repantis, D., Schlattmann, P., Laisney, O. & Heuser, I. Modafinil and methylphenidate for neuroenhancement in healthy individuals: a systematic review. Pharmacol. Res. 62, 187–206 (2010).

    CAS  PubMed  Google Scholar 

  49. Whitmore, J. et al. United States Air Force Research Laboratory: the efficacy of modafinil as an operational fatigue countermeasure over several days of reduced sleep during a simulated escape and evasion scenario. Defense Technical Information Center[online], (2004).

  50. Whitmore, J. et al. United States Air Force Research Laboratory: adouble-blind placebo-controlled investigation of the efficacy of modafinil for maintaining alertness and performance in sustained military ground operations. Defense Technical Information Center[online], (2006).

  51. Caldwell, J. A. et al. USAARL Report No. 99–17. The effects of Modafinil on aviator performance during 40 hours of continuous wakefulness: a UH-60 Helicopter Simulator Study. Defense Technical Information Center[online], (1999).

  52. Albuquerque, E. X., Santos, M. D., Alkondon, M., Pereira, E. F. & Maelicke, A. Modulation of nicotinic receptor activity in the central nervous system: a novel approach to the treatment of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 15 (Suppl. 1), 19–25 (2001).

    Google Scholar 

  53. Sahakian, B., Jones, G., Levy, R., Gray, J. & Warburton, D. The effects of nicotine on attention, information processing, and short-term memory in patients with dementia of the Alzheimer type. Br. J. Psychiatry 154, 797–800 (1989).

    CAS  PubMed  Google Scholar 

  54. Rogers, S. L. Perspectives in the management of Alzheimer's disease: clinical profile of donepezil. Dement. Geriatr. Cogn. Disord. 9 (Suppl. 3), 29–42 (1998).

    CAS  PubMed  Google Scholar 

  55. Mumenthaler, M. S. et al. Psychoactive drugs and pilot performance: a comparison of nicotine, donepezil, and alcohol effects. Neuropsychopharmacol. 28, 1366–1373 (2003).

    CAS  Google Scholar 

  56. Mumenthaler, M. S. et al. Nicotine deprivation and pilot performance during simulated flight. Aviat. Space Environ. Med. 81, 660–664 (2010).

    PubMed  Google Scholar 

  57. Yesavage, J. A. et al. Donepezil and flight simulator performance: effects on retention of complex skills. Neurology 59, 123–125 (2002).

    CAS  PubMed  Google Scholar 

  58. Yeghiayan, S. K., Georgelis, J. H., Maher, T. J. & Lieberman, H. R. Beneficial effects of a protein free, high carbohydrate meal on rat coping behavior and neurotransmitter levels during heat stress. Nutr. Neurosci. 7, 335–340 (2004).

    CAS  PubMed  Google Scholar 

  59. Lewis, M. D. & Bailes, J. Neuroprotection for the warrior: dietary supplementation with omega-3 fatty acids. Milit. Med. 176, 1120–1127 (2011).

    Google Scholar 

  60. Aldington, D. Pain management in victims of conflict. Curr. Opin. Support. Palliat. Care 6, 172–176 (2012).

    PubMed  Google Scholar 

  61. Wilker, S., Elbert, T. & Kolassa, I. T. The downside of strong emotional memories: how human memory-related genes influence the risk for posttraumatic stress disorder — a selective review. Neurobiol. Learn. Mem. 112, 75–86 (2013).

    PubMed  Google Scholar 

  62. Maren, S. Seeking a spotless mind: extinction, deconsolidation, and erasure of fear memory. Neuron 70, 830–845 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bouton, M. E. & Bolles, R. C. Role of conditioned contextual stimuli in reinstatement of extinguished fear. Journal of experimental psychology. Animal Behav. Processes 5, 368–378 (1979).

    CAS  Google Scholar 

  64. Woud, M. L., Holmes, E. A., Postma, P., Dalgleish, T. & Mackintosh, B. Ameliorating intrusive memories of distressing experiences using computerized reappraisal training. Emotion 12, 778–784 (2012).

    PubMed  Google Scholar 

  65. Pearson, D. G., Deeprose, C., Wallace-Hadrill, S. M., Burnett Heyes, S. & Holmes, E. A. Assessing mental imagery in clinical psychology: a review of imagery measures and a guiding framework. Clin. Psychol. Rev. 33, 1–23 (2013).

    PubMed  PubMed Central  Google Scholar 

  66. Nader, K., Schafe, G. E. & Le Doux, J. E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406, 722–726 (2000).

    CAS  PubMed  Google Scholar 

  67. Nader, K. & Hardt, O. A single standard for memory: the case for reconsolidation. Nature Rev. Neurosci. 10, 224–234 (2009).

    CAS  Google Scholar 

  68. Parsons, R. G., Gafford, G. M., Baruch, D. E., Riedner, B. A. & Helmstetter, F. J. Long-term stability of fear memory depends on the synthesis of protein but not mRNA in the amygdala. Eur. J. Neurosci. 23, 1853–1859 (2006).

    PubMed  PubMed Central  Google Scholar 

  69. Ledgerwood, L., Richardson, R. & Cranney, J. D-cycloserine facilitates extinction of learned fear: effects on reacquisition and generalized extinction. Biol. Psychiatry 57, 841–847 (2005).

    CAS  PubMed  Google Scholar 

  70. Cahill, L., Prins, B., Weber, M. & McGaugh, J. L. β-adrenergic activation and memory for emotional events. Nature 371, 702–704 (1994).

    CAS  PubMed  Google Scholar 

  71. Pitman, R. K. et al. Pilot study of secondary prevention of posttraumatic stress disorder with propranolol. Biol. Psychiatry 51, 189–192 (2002).

    CAS  PubMed  Google Scholar 

  72. Vaiva, G. et al. Immediate treatment with propranolol decreases posttraumatic stress disorder two months after trauma. Biol. Psychiatry 54, 947–949 (2003).

    CAS  PubMed  Google Scholar 

  73. Stein, M. B., Kerridge, C., Dimsdale, J. E. & Hoyt, D. B. Pharmacotherapy to prevent PTSD: results from a randomized controlled proof-of-concept trial in physically injured patients. J. Trauma. Stress 20, 923–932 (2007).

    PubMed  Google Scholar 

  74. Davidson, J. R. Pharmacologic treatment of acute and chronic stress following trauma: 2006. J. Clin. Psychiatry 67 (Suppl. 2), 34–39 (2006).

    CAS  PubMed  Google Scholar 

  75. Oehen, P., Traber, R., Widmer, V. & Schnyder, U. A randomized, controlled pilot study of MDMA (±3,4-methylenedioxymethamphetamine)-assisted psychotherapy for treatment of resistant, chronic post-traumatic stress disorder (PTSD). J. Psychopharmacol. 27, 40–52 (2013).

    CAS  PubMed  Google Scholar 

  76. Blain, P. G. in Clinical Neurotoxicology: Syndromes, Substances, Environments. (ed. Dobbs, M.R) 660–673 (Saunders Elsevier, 2009).

    Google Scholar 

  77. Wax, P. M., Becker, C. E. & Curry, S. C. Unexpected “gas” casualties in Moscow: a medical toxicology perspective. Ann. Emergency Med. 41, 700–705 (2003).

    Google Scholar 

  78. Riches, J. R., Read, R. W., Black, R. M., Cooper, N. J. & Timperley, C. M. Analysis of clothing and urine from Moscow theatre siege casualties reveals carfentanil and remifentanil use. J. Anal. Toxicol. 36, 647–656 (2012).

    CAS  PubMed  Google Scholar 

  79. Lakoski, J. M., Bosseau Murray, W. & Kenny, J. The advantages and limitations of calmatives for use as a non-lethal technique. The Pennsylvania State University[online], (2000).

  80. Saari, T. I., Uusi-Oukari, M., Ahonen, J. & Olkkola, K. T. Enhancement of GABAergic activity: neuropharmacological effects of benzodiazepines and therapeutic use in anesthesiology. Pharmacol. Rev. 63, 243–267 (2011).

    CAS  PubMed  Google Scholar 

  81. Kilpatrick, G. J. et al. CNS 7056: a novel ultra-short-acting Benzodiazepine. Anesthesiology 107, 60–66 (2007).

    CAS  PubMed  Google Scholar 

  82. Berridge, C. W. Noradrenergic modulation of arousal. Brain Res. Rev. 58, 1–17 (2008).

    CAS  PubMed  Google Scholar 

  83. Nelson, L. E. et al. The α2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology 98, 428–436 (2003).

    CAS  PubMed  Google Scholar 

  84. Brown, E. N., Purdon, P. L. & Van Dort, C. J. General anesthesia and altered states of arousal: a systems neuroscience analysis. Annu. Rev. Neurosci. 34, 601–628 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, Y. et al. Profiles of psychiatric symptoms among amphetamine type stimulant and ketamine using inpatients in Wuhan, China. J. Psychiatr. Res. 53, 99–102 (2014).

    PubMed  PubMed Central  Google Scholar 

  86. Feder, A. et al. Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder: a randomized clinical trial. JAMA Psychiatry 71, 681–688 (2014).

    CAS  PubMed  Google Scholar 

  87. Daddona, P. E. Recent advances in peptide, protein and macromolecule drug delivery. Curr. Opin. Drug Discov. Devel. 2, 168–171 (1999).

    CAS  PubMed  Google Scholar 

  88. Nathanson, V. The use of drugs as weapons: the concerns and responsibilities of heathcare professionals. British Medical Association (2007).

    Google Scholar 

  89. Davison, N. 'Non-lethal' Weapons (Palgrave Macmillan, 2009).

    Google Scholar 

  90. Pilkington, E. Judge approves use of 'truth serum' on accused Aurora shooter James Holmes. Guardian (Lond) [online], (12 Mar 2013).

    Google Scholar 

  91. Indian supreme court says 'truth drug' test is illegal. BBC News[online], (5 May 2010).

  92. BBC Four. Pain, Pus and Poison: The Search for Modern Medicines (2013).

  93. Dolen, G., Darvishzadeh, A., Huang, K. W. & Malenka, R. C. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501, 179–184 (2013).

    PubMed  PubMed Central  Google Scholar 

  94. Zak, P. J., Kurzban, R. & Matzner, W. T. Oxytocin is associated with human trustworthiness. Hormones Behav. 48, 522–527 (2005).

    CAS  Google Scholar 

  95. Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U. & Fehr, E. Oxytocin increases trust in humans. Nature 435, 673–676 (2005).

    CAS  PubMed  Google Scholar 

  96. Ellingsen, D. M. et al. In touch with your emotions: oxytocin and touch change social impressions while others' facial expressions can alter touch. Psychoneuroendocrinology 39, 11–20 (2014).

    CAS  PubMed  Google Scholar 

  97. Tyls, F., Palenicek, T. & Horacek, J. Psilocybin — summary of knowledge and new perspectives. Eur. Neuropsychopharmacol. 24, 342–356 (2014).

    CAS  PubMed  Google Scholar 

  98. MacLean, K. A., Johnson, M. W. & Griffiths, R. R. Mystical experiences occasioned by the hallucinogen psilocybin lead to increases in the personality domain of openness. J. Psychopharmacol. 25, 1453–1461 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ministry of Defence. Global Strategic Trends — Out to 2040 4th edn [online], (Ministry of Defence, 2010).

  100. BMA medical ethics committee. Boosting Your Brainpower: Ethical Aspects of Cognitive Enhancements (British Medical Association, 2007).

  101. Human enhancement and the future of work. [online], (The Royal Society, 2012).

  102. Cohen Kadosh, R. Using transcranial electrical stimulation to enhance cognitive functions in the typical and atypical brain. Translat. Neurosci. 4, 20–33 (2013).

    Google Scholar 

  103. Luber, B. & Lisanby, S. H. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). NeuroImage 85, Pt. 3, 961–970 (2014).

    PubMed  Google Scholar 

  104. Maslen, H., Douglas, T. R. C. K. & Savalescu, J. Mind Machines: the regulation of cognitive enhancement devices. Oxford Martin School[online], (2014).

  105. Air Force Research Lab Wright-Patterson AFB OH Human Performance Wing (711th) Human Effectiveness Directorate/Biosciences And Performance Division[online], (2009).

  106. Equipment, Support, and Technology for UK Defence and Security: A Consultation Paper[online], (Crown, 2010).

  107. Advances in Bioscience for Airmen Performance, Solicitation number BAA-09–02-R. Federal Business Opportunities[online], (2009).

  108. Brunelin, J., Levasseur-Moreau, J. & Fecteau, S. Is it ethical and safe to use non-invasive brain stimulation as a cognitive and motor enhancer device for military services? A reply to Sehm and Ragert. Front. Hum. Neurosci. 7, 874 (2013).

    PubMed  PubMed Central  Google Scholar 

  109. Levasseur-Moreau, J., Brunelin, J. & Fecteau, S. Non-invasive brain stimulation can induce paradoxical facilitation. Are these neuroenhancements transferable and meaningful to security services? Front. Hum. Neurosci. 7, 449 (2013).

    PubMed  PubMed Central  Google Scholar 

  110. Sehm, B. & Ragert, P. Why non-invasive brain stimulation should not be used in military and security services. Front. Hum. Neurosci. 7, 553 (2013).

    PubMed  PubMed Central  Google Scholar 

  111. Neuroscience: brain buzz. Nature 472, 156–159 (2011).

    CAS  PubMed  Google Scholar 

  112. Kincses, T. Z., Antal, A., Nitsche, M. A., Bartfai, O. & Paulus, W. Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human. Neuropsychologia 42, 113–117 (2004).

    PubMed  Google Scholar 

  113. Clark, V. P. et al. TDCS guided using fMRI significantly accelerates learning to identify concealed objects. NeuroImage 59, 117–128 (2012).

    PubMed  Google Scholar 

  114. Bassett, D. S. et al. Dynamic reconfiguration of human brain networks during learning. Proc. Natl Acad. Sci. USA 108, 7641–7646 (2011).

    CAS  PubMed  Google Scholar 

  115. Wu, G. & Gonzalez, R. Common consequence conditions in decision-making under risk. J. Risk Uncertainty 16, 115–139 (1998).

    Google Scholar 

  116. Manes, F. et al. Decision-making processes following damage to the prefrontal cortex. Brain 125, 624–639 (2002).

    PubMed  Google Scholar 

  117. Clark, L., Manes, F., Antoun, N., Sahakian, B. J. & Robbins, T. W. The contributions of lesion laterality and lesion volume to decision-making impairment following frontal lobe damage. Neuropsychologia 41, 1474–1483 (2003).

    PubMed  Google Scholar 

  118. Rushworth, M. F. & Behrens, T. E. Choice, uncertainty and value in prefrontal and cingulate cortex. Nature Neurosci. 11, 389–397 (2008).

    CAS  PubMed  Google Scholar 

  119. Tobler, P. N., Christopoulos, G. I., O'Doherty, J. P., Dolan, R. J. & Schultz, W. Risk-dependent reward value signal in human prefrontal cortex. Proc. Natl Acad. Sci. USA 106, 7185–7190 (2009).

    CAS  PubMed  Google Scholar 

  120. Deeny, S., Hillman, C., Janelle, C. & Hatfield, B. D. Cortico-cortical communication and superior performance in skilled marksmen: An EEG coherence analysis. J. Sport Exercise Psychol. 25, 188–204 (2003).

    Google Scholar 

  121. Hatfield, B. D., Haufler, A. J., Hung, T. M. & Spalding, T. W. Electroencephalographic studies of skilled psychomotor performance. J. Clin. Neurophysiol. 21, 144–156 (2004).

    PubMed  Google Scholar 

  122. deCharms, R. C. et al. Control over brain activation and pain learned by using real-time functional MRI. Proc. Natl Acad. Sci. USA 102, 18626–18631 (2005).

    CAS  PubMed  Google Scholar 

  123. Jensen, M. P., Day, M. A. & Miro, J. Neuromodulatory treatments for chronic pain: efficacy and mechanisms. Nature Rev. Neurol. 10, 167–178 (2014).

    Google Scholar 

  124. Cowings, P. S., Kellar, M. A., Folen, R. A., Toscano, W. B. & Burge, J. D. Autogenic feedback training exercise and pilot performance: enhanced functioning under search-and-rescue flying conditions. Int. J. Avi. Psychol. 11, 303–315 (2001).

    CAS  Google Scholar 

  125. Landers, D. M. et al. The influence of electrocortical biofeedback on performance in pre-elite archers. Med. Sci. Sports Exercise 23, 123–129 (1991).

    CAS  Google Scholar 

  126. Kerick, S. E., Douglass, L. W. & Hatfield, B. D. Cerebral cortical adaptations associated with visuomotor practice. Med. Sci. Sports Exercise 36, 118–129 (2004).

    Google Scholar 

  127. Arns, M., Kleinnijenhuis, M., Fallahpour, K. & Breteler, R. Golf performance enhancement and real-life neurofeedback training using personalized event-locked EEG profiles. J. Neurother. 11, 11–18 (2009).

    Google Scholar 

  128. Gentili, R. J. Non-invasive functional brain biomarkers for cognitive-motor performance assessment: towards new brain monitoring applications. Hum. Computer Interaction 20, 159–168 (2011).

    Google Scholar 

  129. Gentili, R. J., Bradberry, T. J., Oh, H., Hatfield, B. D. & Contreras-Vidal, J. L. Cerebral cortical dynamics during visuomotor transformation: adaptation to a cognitive-motor executive challenge. Psychophysiology 48, 813–824 (2011).

    PubMed  Google Scholar 

  130. Miller, M. et al. EEG assessment of incremental changes in cognitive workload during an ecologically valid visuomotor task. Abstract number: 601.8/KKK7. 2010 Neuroscience Meeting Planner (2009).

    Google Scholar 

  131. Smith, M. E., Gevins, A., Brown, H., Karnik, A. & Du, R. Monitoring task loading with multivariate EEG measures during complex forms of human-computer interaction. Hum. Factors 43, 366–380 (2001).

    CAS  PubMed  Google Scholar 

  132. Nishimoto, S. et al. Reconstructing visual experiences from brain activity evoked by natural movies. Curr. Biol. 21, 1641–1646 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Haxby, J. V. Multivariate pattern analysis of fMRI: the early beginnings. NeuroImage 62, 852–855 (2012).

    PubMed  PubMed Central  Google Scholar 

  134. Hatsopoulos, N. G. & Donoghue, J. P. The science of neural interface systems. Annu. Rev. Neurosci. 32, 249–266 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Simeral, J. D., Kim, S. P., Black, M. J., Donoghue, J. P. & Hochberg, L. R. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array. J. Neural Eng. 8, 025027 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. White, S. Brave new world: neurowarfare and the limits of international humanitarian law. Cornell Inter. Law J. 41, 177–210 (2003).

    Google Scholar 

  137. Silence of the neuroengineers. Nature 423, 787 (2003).

  138. Hoag, H. Remote control. Nature 423, 796–798 (2003).

    CAS  PubMed  Google Scholar 

  139. Rizzuto, D. S., Breznen, B. & Greger, B. Military-funded research is not unethical. Nature 424, 369 (2003).

    CAS  PubMed  Google Scholar 

  140. Wolpert, L. Is science dangerous? Nature 398, 281–282 (1999).

    CAS  PubMed  Google Scholar 

  141. US Department of Justice. The United States Department of Justice Amerithrax Investigative Summary. US Department of Justice[online], (2010).

  142. Rose, S. A. Faustian bargain? EMBO Rep. 12, 1086 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Dando, M. & Rappert, B. (eds) Codes of Conduct for the Life Sciences: Some Insights from UK Academia. Briefing Paper no. 16. University of Bradford[online], (2005).

  144. USADA Media Relations. Statement From USADA CEO Travis T. Tygart Regarding The U.S. Postal Service Pro Cycling Team Doping Conspiracy. US Anti-Doping Agency[online], (2012).

  145. Sparling, P. B. The Lance Armstrong saga: a wake-up call for drug reform in sports. Curr. Sports Med. Rep. 12, 53–54 (2013).

    PubMed  Google Scholar 

  146. Chatterjee, A. Cosmetic neurology: the controversy over enhancing movement, mentation, and mood. Neurology 63, 968–974 (2004).

    PubMed  Google Scholar 

  147. Baranski, J. V. & Pigeau, R. A. Self-monitoring cognitive performance during sleep deprivation: effects of modafinil, d-amphetamine and placebo. J. Sleep Res. 6, 84–91 (1997).

    CAS  PubMed  Google Scholar 

  148. Johnson, K. Army seeking death penalty in massacre of 16 Afghans. New York Times (New York) [online], (19 Dec 2012).

    Google Scholar 

  149. Buchanan, M. Drugs involved in friendly fire deaths. BBC News[online], (20 Dec 2002).

  150. Henry, M., Fishman, J. R. & Youngner, S. J. Propranolol and the prevention of post-traumatic stress disorder: is it wrong to erase the “sting” of bad memories? Am. J. Bioeth. 7, 12–20 (2007).

    PubMed  Google Scholar 

  151. Foote, S. B. in Managing the Medical Arms Race: Innovation and Public Policy in the Medical Device Industry (Univ. of California, 1992).

    Google Scholar 

  152. Gable, R. S. Comparison of acute lethal toxicity of commonly abused psychoactive substances. Addiction 99, 686–696 (2004).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rod Flower.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tracey, I., Flower, R. The warrior in the machine: neuroscience goes to war. Nat Rev Neurosci 15, 825–834 (2014). https://doi.org/10.1038/nrn3835

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3835

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing