Early phytocannabinoid chemistry to endocannabinoids and beyond

Subjects

Abstract

Isolation and structure elucidation of most of the major cannabinoid constituents — including Δ9-tetrahydrocannabinol (Δ9-THC), which is the principal psychoactive molecule in Cannabis sativa — was achieved in the 1960s and 1970s. It was followed by the identification of two cannabinoid receptors in the 1980s and the early 1990s and by the identification of the endocannabinoids shortly thereafter. There have since been considerable advances in our understanding of the endocannabinoid system and its function in the brain, which reveal potential therapeutic targets for a wide range of brain disorders.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Cannabinoid and endocannabinoid research — a timeline.
Figure 2: A major metabolic pathway of Δ9-THC and the structures of some plant and synthetic cannabinoids.
Figure 3: Structures of the main endocannabinoids, anandamide and 2-AG, which bind to CB1 and CB2 endocannabinoid receptors.

References

  1. 1

    Mechoulam, R. in Cannabinoids as Therapeutic Agents, (ed. Mechoulam, R.), 1–19 (CRC Press Inc., 1986).

    Google Scholar 

  2. 2

    O'Shaugnessy, W. B. in The Bengal Dispensatory and Pharmacopoeia, 579 (Bishop's College Press, 1841).

    Google Scholar 

  3. 3

    Adams, R. Marihuana. Harvey Lectures 37, 168–197 (1941–1942).

    Google Scholar 

  4. 4

    Todd, A. R. Hashish. Experientia 2, 55–60 (1946).

    CAS  PubMed  Google Scholar 

  5. 5

    Loewe, S. Cannabiswirkstoffe und Pharmacologie der Cannabinole. Arch. Exp. Pathol. Pharmacol. 211, 175–193 (1950).

    CAS  Google Scholar 

  6. 6

    Gaoni, Y. & Mechoulam, R. Isolation, structure and partial synthesis of an active constituent of hashish. J. Amer. Chem. Soc. 86, 1646–1647 (1964).

    CAS  Google Scholar 

  7. 7

    Mechoulam, R., McCallum, N. K. & Burstein, S. Recent advances in the chemistry and biochemistry of cannabis. Chem. Rev. 76, 75–112 (1976).

    CAS  Google Scholar 

  8. 8

    Agurell, S. et al. Pharmacokinetics and metabolism of Δ-1-tetrahydrocannabinol and other cannabinoids with emphasis on man. Pharmacol. Rev. 38, 21–43 (1986).

    CAS  PubMed  Google Scholar 

  9. 9

    Pertwee, R. G. The ring test: a quantitative method for assessing the 'cataleptic' effect of cannabis in mice. Br. J. Pharmacol. 46, 753–763 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Pertwee, R. G. Cannabinoid pharmacology: the first 66 years. Br. J. Pharmacol. 147, S163–S171 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Pertwee, R. G. The central neuropharmacology of psychotropic cannabinoids. Pharmacol. Ther. 36, 189–261 (1988).

    CAS  PubMed  Google Scholar 

  12. 12

    Pertwee, R. G. Emerging strategies for exploiting cannabinoid receptor agonists as medicines. Br. J. Pharmacol. 156, 397–411 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Mechoulam, R. et al. Stereochemical requirements for cannabinoid activity. J. Med. Chem. 23, 1068–1072 (1980).

    CAS  PubMed  Google Scholar 

  14. 14

    Mechoulam, R. et al. Enantiomeric cannabinoids: stereospecificity of psychotropic activity. Experientia 44, 762–764 (1988).

    CAS  PubMed  Google Scholar 

  15. 15

    Dewey, W. L. Cannabinoid pharmacology. Pharmacol. Rev. 38, 151–178 (1986).

    CAS  PubMed  Google Scholar 

  16. 16

    Hollister, L. E. Health aspects of cannabis. Pharmacol. Rev. 38, 1–20 (1986).

    CAS  PubMed  Google Scholar 

  17. 17

    Klee, W. A., Sharma, S. K. & Nirenberg, M. Opiate receptors as regulators of adenylate cyclase. Life Sci. 16, 1869–1874 (1975).

    CAS  PubMed  Google Scholar 

  18. 18

    Nathanson, N. M., Klein, W. L. & Nirenberg, M. Regulation of adenylate cyclase activity mediated by muscarinic acetylcholine receptors. Proc. Natl Acad. Sci. USA 75, 1788–1791 (1978).

    CAS  PubMed  Google Scholar 

  19. 19

    Sabol, S. L. & Nirenberg, M. Regulation of adenylate cyclase of neuroblastoma x glioma hybrid cells by α-adrenergic receptors. I. Inhibition of adenylate cyclase mediated by α receptors. J. Biol. Chem. 254, 1913–1920 (1979).

    CAS  PubMed  Google Scholar 

  20. 20

    Howlett, A. C. & Fleming, R. M. Cannabinoid inhibition of adenylate cyclase. Pharmacology of the response in neuroblastoma cell membranes. Mol. Pharmacol. 26, 532–538 (1984).

    CAS  PubMed  Google Scholar 

  21. 21

    Howlett, A. C. Inhibition of neuroblastoma adenylate cyclase by cannabinoid and nantradol compounds. Life Sci. 35, 1803–1810 (1984).

    CAS  PubMed  Google Scholar 

  22. 22

    Howlett, A. C. Cannabinoid inhibition of adenylate cyclase. Biochemistry of the response in neuroblastoma cell membranes. Mol. Pharmacol. 27, 429–436 (1985).

    CAS  PubMed  Google Scholar 

  23. 23

    Howlett, A. C., Qualy, J. M. & Khachatrian, L. L. Involvement of Gi in the inhibition of adenylate cyclase by cannabimimetic drugs. Mol. Pharmacol. 29, 307–313 (1986).

    CAS  PubMed  Google Scholar 

  24. 24

    Howlett, A. C., Champion, T. M., Wilken, G. H. & Mechoulam, R. Stereochemical effects of 11-OH-Δ 8-tetrahydrocannabinol-dimethylheptyl to inhibit adenylate cyclase and bind to the cannabinoid receptor. Neuropharmacology 29, 161–165 (1990).

    CAS  PubMed  Google Scholar 

  25. 25

    Melvin, L. S. et al. Structure–activity relationships for cannabinoid receptor-binding and analgesic activity: studies of bicyclic cannabinoid analogs. Mol. Pharmacol. 44, 1008–1015 (1993).

    CAS  PubMed  Google Scholar 

  26. 26

    Melvin, L. S., Milne, G. M., Johnson, M. R., Wilken, G. H. & Howlett, A. C. Structure–activity relationships defining the ACD-tricyclic cannabinoids: cannabinoid receptor binding and analgesic activity. Drug Des. Discov. 13, 155–166 (1995).

    CAS  PubMed  Google Scholar 

  27. 27

    Devane, W. A., Dysarz F. A. 3rd, Johnson M. R., Melvin L. S. & Howlett A. C. Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol. 34, 605–613 (1988).

    CAS  PubMed  Google Scholar 

  28. 28

    Gerard, C., Mollereau, C., Vassart, G. & Parmentier, M. Nucleotide sequence of a human cannabinoid receptor cDNA. Nucleic Acids Res. 18, 7142 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C. & Bonner, T. I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561–564 (1990).

    CAS  PubMed  Google Scholar 

  30. 30

    Devane, W. A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949 (1992).

    CAS  PubMed  Google Scholar 

  31. 31

    Munro, S., Thomas, K. L. & Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 61–65 (1993).

    CAS  PubMed  Google Scholar 

  32. 32

    Mechoulam, R. et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50, 83–90 (1995).

    CAS  PubMed  Google Scholar 

  33. 33

    Pertwee, R. G. et al. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2 . Pharmacol. Rev. 62, 588–631 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Pamplona, F. A. et al. Anti-inflammatory lipoxin A4 is an endogenous allosteric enhancer of CB1 cannabinoid receptor. Proc. Natl Acad. Sci. USA 109, 21134–21139 (2012).

    CAS  PubMed  Google Scholar 

  35. 35

    Bauer, M. et al. Identification and quantification of a new family of peptide endocannabinoids (pepcans) showing negative allosteric modulation at CB1 receptors. J. Biol. Chem. 287, 36944–36967 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Heimann, A. S. et al. Hemopressin is an inverse agonist of CB1 cannabinoid receptors. Proc. Natl Acad. Sci. USA 104, 20588–20593 (2007).

    CAS  PubMed  Google Scholar 

  37. 37

    Huffman, J. W. et al. Synthesis and pharmacology of a very potent cannabinoid lacking a phenolic hydroxyl with high affinity for the CB2 receptor. J. Med. Chem. 39, 3875–3877 (1996).

    CAS  PubMed  Google Scholar 

  38. 38

    Hanuš, L. et al. HU-308: A specific agonist for CB2, a peripheral cannabinoid receptor. Proc. Natl Acad. Sci. USA 96, 14228–14233 (1999).

    PubMed  Google Scholar 

  39. 39

    Anand, P., Whiteside, G., Fowler, C. J. & Hohmann, A. G. Targeting CB2 receptors and the endocannabinoid system for the treatment of pain. Brain Res. Rev. 60, 255–266 (2009).

    CAS  PubMed  Google Scholar 

  40. 40

    Fernandez-Ruiz, J., Pazos, M. R., Garcia-Arencibia, M., Sagredo, O. & Ramos, J. A. Role of CB2 receptors in neuroprotective effects of cannabinoids. Mol. Cell. Endocrinol. 286, S91–S96 (2008).

    CAS  PubMed  Google Scholar 

  41. 41

    Marriott, K. S. & Huffman, J. W. Recent advances in the development of selective ligands for the cannabinoid CB2 receptor. Curr. Top. Med. Chem. 8, 187–204 (2008).

    CAS  PubMed  Google Scholar 

  42. 42

    Pacher, P. & Mechoulam, R. Is lipid signaling through cannabinoid 2 receptors part of a protective system? Progr. Lipid Res. 50, 193–211 (2011).

    CAS  Google Scholar 

  43. 43

    Horváth, B. et al. A new cannabinoid 2 receptor agonist HU-910 attenuates oxidative stress, inflammation, and cell death associated with hepatic ischemia/reperfusion injury. Br. J. Pharmacol. 165, 2462–2478 (2012).

    PubMed  PubMed Central  Google Scholar 

  44. 44

    Di Marzo, V., De Petrocellis, L. & Bisogno, T. in Cannabinoids. Handbook of Expermimental Pharmacology (ed. Pertwee, R. G.) 168, 147–185 (Springer, 2005).

    Google Scholar 

  45. 45

    Wilson, R. I. & Nicoll R. A. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410, 588–592 (2001).

    CAS  PubMed  Google Scholar 

  46. 46

    Vaughan, C. W. & Christie, M. J. in Cannabinoids. Handbook of Expermimental Pharmacology (ed. Pertwee, R. G.) 168, 367–383 (Springer, 2005).

    Google Scholar 

  47. 47

    Ohno-Shosaku, T., Tanimura, A., Hashimotodani, Y. & Kano, M. Endocannabinoids and retrograde modulation of synaptic transmission. Neuroscientist 18, 119–132 (2012).

    CAS  PubMed  Google Scholar 

  48. 48

    Alger, B. E. Endocannabinoids at the synapse a decade after the dies mirabilis: what we still do not know. J. Physiol. 590, 2203–2212 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Gregg, L. C. et al. Activation of type 5 metabotropic glutamate receptors and diacylglycerol lipase-α initiates 2-arachidonoylglycerol formation and endocannabinoid-mediated analgesia. J. Neurosci. 32, 9457–9468 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Rinaldi-Carmona, M. et al. SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett. 350, 240–244 (1994).

    CAS  PubMed  Google Scholar 

  51. 51

    Rinaldi-Carmona, M. et al. Characterization and distribution of binding sites for [3H]-SR 141716A, a selective brain (CB1) cannabinoid receptor antagonist, in rodent brain. Life Sci. 58, 1239–1247 (1996).

    CAS  PubMed  Google Scholar 

  52. 52

    Mathews, W. B. et al. Biodistribution of [18F] SR144385 and [18F] SR147963: selective radioligands for positron emission tomographic studies of brain cannabinoid receptors. Nucl. Med. Biol. 27, 757–762 (2000).

    CAS  PubMed  Google Scholar 

  53. 53

    Bouaboula, M. et al. Stimulation of cannabinoid receptor CB1 induces krox-24 expression in human astrocytoma cells. J. Biol. Chem. 270, 13973–13980 (1995).

    CAS  PubMed  Google Scholar 

  54. 54

    Bouaboula, M. et al. Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1. Biochem. J. 312, 637–641 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Bouaboula, M. et al. A selective inverse agonist for central cannabinoid receptor inhibits mitogen-activated protein kinase activation stimulated by insulin or insulin-like growth factor 1. Evidence for a new model of receptor/ligand interactions. J. Biol. Chem. 272, 22330–22339 (1997).

    CAS  PubMed  Google Scholar 

  56. 56

    Compton, D. R., Aceto, M. D., Lowe, J. & Martin, B. R. In vivo characterization of a specific cannabinoid receptor antagonist (SR141716A): inhibition of Δ 9-tetrahydrocannabinol-induced responses and apparent agonist activity. J. Pharmacol. Exp. Ther. 277, 586–594 (1996).

    CAS  PubMed  Google Scholar 

  57. 57

    Gueudet, C., Santucci, V., Rinaldi-Carmona, M., Soubrie, P. & Le Fur, G. The CB1 cannabinoid receptor antagonist SR141716A affects A9 dopamine neuronal activity in the rat. Neuroreport 6, 1421–1425 (1995).

    CAS  PubMed  Google Scholar 

  58. 58

    Perio, A. et al. Central mediation of the cannabinoid cue: activity of a selective CB1 antagonist, SR141716A. Behav. Pharmacol. 7, 65–71 (1996).

    CAS  PubMed  Google Scholar 

  59. 59

    Aceto, M. D., Scates, S. M., Lowe, J. A. & Martin, B. R. Cannabinoid precipitated withdrawal by the selective cannabinoid receptor antagonist, SR141716A. Eur. J. Pharmacol. 282, R1–R2 (1995).

    CAS  PubMed  Google Scholar 

  60. 60

    Tsou, K., Patrick, S. L. & Walker, J. M. Physical withdrawal in rats tolerant to Δ 9-tetrahydrocannabinol precipitated by a cannabinoid receptor antagonist. Eur. J. Pharmacol. 280, R13–R15 (1995).

    CAS  PubMed  Google Scholar 

  61. 61

    Felder, C. C. et al. LY320135, a novel cannabinoid CB1 receptor antagonist, unmasks coupling of the CB1 receptor to stimulation of cAMP accumulation. J. Pharmacol. Exp. Ther. 284, 291–297 (1998).

    CAS  PubMed  Google Scholar 

  62. 62

    Meschler, J. P., Kraichely, D. M., Wilken, G. H. & Howlett, A. C. Inverse agonist properties of N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide HCl (SR141716A) and 1-(2-chlorophenyl)-4-cyano-5-(4-methoxyphenyl)-1H-pyrazole-3-carboxyl ic acid phenylamide (CP-272871) for the CB1 cannabinoid receptor. Biochem. Pharmacol. 60, 1315–1323 (2000).

    CAS  PubMed  Google Scholar 

  63. 63

    Cosenza, M. et al. Locomotor activity and occupancy of brain cannabinoid CB1 receptors by the antagonist/inverse agonist AM281. Synapse 38, 477–482 (2000).

    CAS  PubMed  Google Scholar 

  64. 64

    Lan, R. et al. Design and synthesis of the CB1 selective cannabinoid antagonist AM281: a potential human SPECT ligand. AAPS Pharm. Sci. 1, E4 (1999).

    CAS  Google Scholar 

  65. 65

    Pertwee, R. et al. AM630, a competitive cannabinoid receptor antagonist. Life Sci. 56, 1949–1955 (1995).

    CAS  PubMed  Google Scholar 

  66. 66

    Rinaldi-Carmona, M. et al. SR144528, the first potent and selective antagonist of the CB2 cannabinoid receptor. J. Pharmacol. Exp. Ther. 284, 644–650 (1998).

    CAS  PubMed  Google Scholar 

  67. 67

    Cascio, M. G. et al. In vitro and in vivo pharmacological characterization of two novel selective cannabinoid CB2 receptor inverse agonists. Pharmacol. Res. 61, 349–354 (2010).

    CAS  PubMed  Google Scholar 

  68. 68

    Miller, A. M. & Stella, N. CB2 receptor-mediated migration of immune cells: it can go either way. Br. J. Pharmacol. 153, 299–308 (2008).

    CAS  PubMed  Google Scholar 

  69. 69

    Fernandez-Ruiz, J. et al. Cannabinoid CB2 receptor: a new target for controlling neural cell survival? Trends Pharmacol. Sci. 28, 39–45 (2007).

    CAS  PubMed  Google Scholar 

  70. 70

    Wright, K. L., Duncan, M. & Sharkey, K. A. Cannabinoid CB2 receptors in the gastrointestinal tract: a regulatory system in states of inflammation. Br. J. Pharmacol. 153, 263–270 (2008).

    CAS  PubMed  Google Scholar 

  71. 71

    Lunn, C. A. et al. Biology and therapeutic potential of cannabinoid CB2 receptor inverse agonists. Br. J. Pharmacol. 153, 226–239 (2008).

    CAS  PubMed  Google Scholar 

  72. 72

    Scheen, A. J. et al. Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomised controlled study. Lancet 368, 1660–1672 (2006).

    CAS  PubMed  Google Scholar 

  73. 73

    Nissen, S. E. et al. Effect of rimonabant on progression of atherosclerosis in patients with abdominal obesity and coronary artery disease: the STRADIVARIUS randomized controlled trial. JAMA 299, 1547–1560 (2008).

    CAS  PubMed  Google Scholar 

  74. 74

    Van Gaal, L. F., Rissanen, A. M., Scheen, A. J., Ziegler, O. & Rossner, S. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365, 1389–1397 (2005).

    CAS  PubMed  Google Scholar 

  75. 75

    Moreira, F. A., Grieb, M. & Lutz, B. Central side-effects of therapies based on CB1 cannabinoid receptor agonists and antagonists: focus on anxiety and depression. Best Pract. Res. Clin. Endocrinol. Metab. 23, 133–144 (2009).

    CAS  PubMed  Google Scholar 

  76. 76

    Nathan, P. J., O'Neill, B. V., Napolitano, A. & Bullmore, E. T. Neuropsychiatric adverse effects of centrally acting antiobesity drugs. CNS Neurosci. Ther. 17, 490–505 (2011).

    CAS  PubMed  Google Scholar 

  77. 77

    Di Marzo, V. & Despres, J. P. CB1 antagonists for obesity — what lessons have we learned from rimonabant? Nature Rev. Endocrinol. 5, 633–638 (2009).

    CAS  Google Scholar 

  78. 78

    Kirilly, E., Gonda, X. & Bagdy, G. CB1 receptor antagonists: new discoveries leading to new perspectives. Acta Physiol. 205, 41–60 (2012).

    CAS  Google Scholar 

  79. 79

    Tam, J. et al. Peripheral cannabinoid-1 receptor inverse agonism reduces obesity by reversing leptin resistance. Cell. Metab. 16, 167–179 (2012).

    CAS  PubMed  Google Scholar 

  80. 80

    Lazary, J., Juhasz, G., Hunyady, L. & Bagdy, G. Personalized medicine can pave the way for the safe use of CB1 receptor antagonists. Trends Pharmacol. Sci. 32, 270–280 (2011).

    CAS  PubMed  Google Scholar 

  81. 81

    Blankman, J. L. & Cravatt, B. F. Chemical probes of endocannabinoid metabolism. Pharmacol. Rev. 65, 849–871 (2013).

    PubMed  PubMed Central  Google Scholar 

  82. 82

    Pertwee, R. G. Elevating endocannabinoid levels: pharmacological strategies and potential therapeutic applications. Proc. Nutr. Soc. 73, 96–105 (2014).

    CAS  PubMed  Google Scholar 

  83. 83

    Pertwee, R. G. The therapeutic potential of drugs that target cannabinoid receptors or modulate the tissue levels or actions of endocannabinoids. AAPS J. 7, E625–E654 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Pacher, P. & Kunos, G. Modulating the endocannabinoid system in human health and disease — successes and failures. FEBS J. 280, 1918–1943 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Pertwee, R. G. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. Br. J. Pharmacol. 153, 199–215 (2008).

    CAS  PubMed  Google Scholar 

  86. 86

    Pertwee, R. G. Receptors and channels targeted by synthetic cannabinoid receptor agonists and antagonists. Curr. Med. Chem. 17, 1360–1381 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Pertwee, R. G. & Cascio, M. G. in Handbook of Cannabis (ed. Pertwee, R. G.) 115–136 (Oxford University Press, 2014).

    Google Scholar 

  88. 88

    Pertwee, R. G. Pharmacology of cannabinoid receptor ligands. Curr. Med. Chem. 6, 635–664 (1999).

    CAS  PubMed  Google Scholar 

  89. 89

    McHugh, D., Page, J., Dunn, E. & Bradshaw, H. B. Δ9-Tetrahydrocannabinol and N-arachidonyl glycine are full agonists at GPR18 receptors and induce migration in human endometrial HEC-1B cells. Br. J. Pharmacol. 165, 2414–2424 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    De Petrocellis, L. et al. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br. J. Pharmacol. 163, 1479–1494 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Di Marzo, V. A brief history of cannabinoid and endocannabinoid pharmacology as inspired by the work of British scientists. Trends Pharmacol. Sci. 27, 134–140 (2006).

    CAS  PubMed  Google Scholar 

  92. 92

    Howlett, A. C., Blume, L. C. & Dalton, G. D. CB1 cannabinoid receptors and their associated proteins. Curr. Med. Chem. 17, 1382–1393 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Smith, T. H., Sim-Selley, L. J. & Selley, D. E. Cannabinoid CB1 receptor-interacting proteins: novel targets for central nervous system drug discovery? Br. J. Pharmacol. 160, 454–466 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Tan, B. et al. Targeted lipidomics: discovery of new fatty acyl amides. AAPS J. 8, E461–E465 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Tan, B. et al. Identification of endogenous acyl amino acids based on a targeted lipidomics approach. J. Lipid Res. 51, 112–119 (2010).

    PubMed  PubMed Central  Google Scholar 

  96. 96

    Milman, G. et al. N-Arachidonoyl l-serine, a novel endocannabinoid-like brain constituent with vasodilatory properties. Proc. Natl Acad. Sci. USA 103, 2428–2433 (2006).

    CAS  PubMed  Google Scholar 

  97. 97

    Cohen-Yeshurun, A. et al. N-Arachidonoyl-l-serine is neuroprotective after traumatic brain injury by reducing apoptosis. J. Cereb. Blood Flow Metab. 31, 1768–1777 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Cohen-Yeshurun, A. et al. N-arachidonoyl-l-serine (AraS) possesses pro-neurogenic properties in vitro and in vivo following traumatic brain injury. J. Cereb. Blood Flow Metab. 33, 1242–1250 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Pucci, M. et al. Epigenetic control of skin differentiation genes by phytocannabinoids. Br. J. Pharmacol. 170, 581–591 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Pasquariello, N., Oddi, S., Malaponti, M. & Maccarrone, M. Regulation of gene transcription and keratinocyte differentiation by anandamide. Vitam. Horm. 81, 441–467 (2009).

    CAS  PubMed  Google Scholar 

  101. 101

    Leweke, F. M. et al. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl. Psychiatry 2, e94 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Porter, B. E. & Jacobson, C. Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatment-resistant epilepsy. Epilepsy Behav. 29, 574–577 (2013).

    PubMed  PubMed Central  Google Scholar 

  103. 103

    Cunha, J. M. et al. Chronic administration of cannabidiol to healthy volunteers and epileptic patients. Pharmacol. 21, 175–185 (1980).

    CAS  Google Scholar 

  104. 104

    Wood, T. B., Spivey, W. T. N. & Easterfield, T. H. Cannabinol. Part I. J. Chem. Soc. 75, 20–36 (1899).

    CAS  Google Scholar 

  105. 105

    Cahn, R. S. Cannabis indica resin, Part, III The constitution of Cannabinol. J. Chem. Soc. 1342–1353 (1932).

  106. 106

    Mechoulam, R. & Shvo, Y. The structure of cannabidiol. Tetrahedron 19, 2073–2078 (1963).

    CAS  PubMed  Google Scholar 

  107. 107

    Sugiura, T. et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215, 89–97 (1995).

    CAS  PubMed  Google Scholar 

  108. 108

    Cravatt, B. F. et al. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384, 83–87 (1996).

    CAS  PubMed  Google Scholar 

  109. 109

    Zygmunt, P. M. et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400, 452–457 (1999).

    CAS  PubMed  Google Scholar 

  110. 110

    Smart, D. et al. The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br. J. Pharmacol. 129, 227–230 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Piomelli, D. A fatty gut feeling. Trends Endocrinol. Metab. 24, 332–341 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Bandiera, T., Ponzano, S. & Piomelli, D. Advances in the discovery of N-acylethanolamine acid amidase inhibitors. Pharmacol. Res. 86C, 11–17 (2014).

    Google Scholar 

  113. 113

    Schlosburg, J. E. et al. Prolonged monoacylglycerol lipase blockade causes equivalent cannabinoid receptor type 1 receptor-mediated adaptations in fatty acid amide hydrolase wild-type and knockout mice. J. Pharmacol. Exp. Ther. 350, 196–204 (2014).

    PubMed  PubMed Central  Google Scholar 

  114. 114

    Galve-Roperh, I. et al. Cannabinoid receptor signaling in progenitor/stem cell proliferation and differentiation. Prog. Lipid Res. 52, 633–650 (2013).

    CAS  PubMed  Google Scholar 

  115. 115

    Katona, I. & Freund, T. F. Multiple functions of endocannabinoid signaling in the brain. Annu. Rev. Neurosci. 35, 529–558 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Piomelli, D. & Sasso, O. Peripheral gating of pain signals by endogenous lipid mediators. Nature Neurosci. 17, 164–174 (2014).

    CAS  PubMed  Google Scholar 

  117. 117

    Syed, Y. Y., McKeage, K. & Scott, L. J. Δ-9-tetrahydrocannabinol/cannabidiol (Sativex): a review of its use in patients with moderate to severe spasticity due to multiple sclerosis. Drugs 74, 563–578 (2014).

    CAS  PubMed  Google Scholar 

  118. 118

    Roitman, P., Mechoulam, R., Cooper-Kazaz, R. & Shalev, A. Preliminary, open-label, pilot study of add-on oral δ(9)-tetrahydrocannabinol in chronic post-traumatic stress disorder. Clin. Drug Investig. 34, 587–591 (2014).

    CAS  PubMed  Google Scholar 

  119. 119

    Bisogno, T. et al. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J. Cell Biol. 163, 463–468 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the laboratory of R.M. was supported by the Kessler Family Foundation, Boston, USA, and by a grant from US National Institute on Drug Abuse (NIDA), DA-9789. The research of R.P. was supported by NIDA grants DA-3934, DA-9789 and DA-3672 and GW Pharmaceuticals and the research of A.H. was supported by NIDA grant DA-3690.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raphael Mechoulam.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Affinity

The potency with which a compound binds to a particular receptor; the higher the affinity of the compound, the lower the concentration at which it achieves a given level of receptor occupancy.

Agonists

Compounds that can activate pharmacological receptors; a full agonist is more potent than a partial agonist and so usually produces a greater maximum functional response.

Allosteric modulators

Drugs that can act on an allosteric site of a receptor to increase or to reduce the ability of an agonist or an inverse agonist to induce a functional response when it targets a different (orthosteric) site on the same receptor.

Antagonist

A compound that can bind to, but cannot activate, a receptor by targeting its orthosteric site and that can therefore prevent both drug-induced agonism and drug-induced inverse agonism at this receptor.

Antinociception

Another term for pain relief.

Apoptosis

A process of programmed cell death that usually has advantageous consequences.

Catalepsy

A condition that is characterized by immobility and muscular rigidity.

Endocannabinoid

An endogenous compound that can directly activate or block cannabinoid CB1 and/or CB2 or that can act as a positive or negative allosteric modulator to increase or to reduce responses of CB1 and/or CB2 to direct agonists or inverse agonists.

G protein-coupled receptor

(GPCR). A seven-transmembrane domain receptor that induces G-protein-mediated activation of intracellular signal transduction pathways when occupied by an agonist.

Hashish

A cannabis-derived preparation that consists mostly of dried cannabis resin.

Hypokinesia

A condition that is characterized by decreased bodily movement.

Inverse agonist

A compound that binds to a receptor in a manner that induces a pharmacological response opposite to the response that is induced by an agonist for the same receptor.

Relative intrinsic activity

The relative ability of drug–receptor complexes to produce maximum functional responses; a high-efficacy agonist needs to occupy fewer receptors to produce a maximal response than a low-efficacy agonist (also known as a partial agonist).

Retrograde synaptic messengers

Compounds that are released by a postsynaptic dendrite or cell body, but that act presynaptically — for example, to influence the release of a transmitter.

Structure–activity relationship

(SAR). The relationship between the pharmacological activity of compounds and their chemical structures.

Transient receptor potential cation channel subfamily V member 1

(TRPV1). A member of a superfamily of transmembrane cation channels; it was previously known as vanilloid receptor 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mechoulam, R., Hanuš, L., Pertwee, R. et al. Early phytocannabinoid chemistry to endocannabinoids and beyond. Nat Rev Neurosci 15, 757–764 (2014). https://doi.org/10.1038/nrn3811

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing