Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations

Key Points

  • Cortical spreading depression (CSD) is a slowly propagating wave of rapid, near-complete depolarization of brain cells that lasts for about 1 minute and silences brain electrical activity for several minutes; it can be induced in normally metabolizing tissue by depolarizing stimuli that increase extracellular K+ concentration ([K+]e) above a critical value. Longer-lasting spreading depolarizations arise in metabolically compromised brain tissue.

  • CSD initiation depends on the activation of ion channels located in dendrites of pyramidal cells and on the generation of a net self-sustaining inward current that initiates a positive-feedback cycle leading to a regenerative increase in [K+]e and regenerative depolarization. NMDA receptors (NMDARs) and voltage-gated Ca2+ channel (in particular Cav2.1)-dependent release of glutamate have a key role in the positive-feedback cycle that ignites CSD; depending on the method of induction, [Ca2+]e-independent glutamate release may contribute.

  • CSD propagation is probably mediated by interstitial diffusion of K+ released during the depolarization (accompanied by [K+]e-dependent glutamate release), initiating the positive-feedback cycle that ignites CSD in contiguous grey matter.

  • The mechanisms initiating CSD and spreading depolarizations are different. Besides NMDARs, other ion channels and processes (probably including persistent voltage-gated Na+ channels and mitochondrial depolarization) seem to be crucial for the initiation of spreading depolarizations.

  • Propagating depolarizing events in brain have been linked to neurovascular disorders such as migraine and stroke. In migraine, CSD has been linked to migraine aura, trigeminal activation and headache as well as the actions of preventative drugs.

  • It has been increasingly recognized that spreading depolarizations compromise energy metabolism and blood flow, contributing to poor tissue outcome when they erupt in the injured brain. Hence, there is an increasing demand for treatment strategies that selectively block initiation, propagation or enhance recovery to mitigate the impact of chaos and commotion that surrounds CSD and spreading depolarizations.

Abstract

Punctuated episodes of spreading depolarizations erupt in the brain, encumbering tissue structure and function, and raising fascinating unanswered questions concerning their initiation and propagation. Linked to migraine aura and headache, cortical spreading depression contributes to the morbidity in the world's migraine with aura population. Even more ominously, erupting spreading depolarizations accelerate tissue damage during brain injury. The once-held view that spreading depolarizations may not exist in the human brain has changed, largely because of the discovery of migraine genes that confer cortical spreading depression susceptibility, the application of sophisticated imaging tools and efforts to interrogate their impact in the acutely injured human brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CSD: electrophysiological features and associated ionic changes.
Figure 2: CSD initiation.
Figure 3: Anoxic depolarization initiation.
Figure 4: Trigeminovascular activation by CSD.

Similar content being viewed by others

References

  1. Leao, A. A. P. Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 7, 359–390 (1944). A classic paper containing the first description of a propagating suppression of cortical activity, which was observed in the rabbit cortex, evoked by electrical stimulation and called CSD.

    Google Scholar 

  2. Somjen, G. G. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol. Rev. 81, 1065–1096 (2001).

    CAS  PubMed  Google Scholar 

  3. Dreier, J. P. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nature Med. 17, 439–447 (2011).

    CAS  PubMed  Google Scholar 

  4. Nedergaard, M. & Hansen, A. J. Spreading depression is not associated with neuronal injury in the normal brain. Brain Res. 449, 395–398 (1988).

    CAS  PubMed  Google Scholar 

  5. Lauritzen, M. Pathophysiology of the migraine aura. The spreading depression theory. Brain 117, 199–210 (1994).

    PubMed  Google Scholar 

  6. Pietrobon, D. & Moskowitz, M. A. Pathophysiology of migraine. Annu. Rev. Physiol. 75, 365–391 (2013).

    CAS  PubMed  Google Scholar 

  7. Moskowitz, M. A. The neurobiology of vascular head pain. Ann. Neurol. 16, 157–168 (1984).

    CAS  PubMed  Google Scholar 

  8. Lauritzen, M. et al. Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J. Cereb. Blood Flow Metab. 31, 17–35 (2011).

    PubMed  Google Scholar 

  9. Leao, A. A. Further observations on the spreading depression of activity in the cerebral cortex. J. Neurophysiol. 10, 409–414 (1947).

    CAS  PubMed  Google Scholar 

  10. Herreras, O. & Somjen, G. G. Propagation of spreading depression among dendrites and somata of the same cell population. Brain Res. 610, 276–282 (1993).

    CAS  PubMed  Google Scholar 

  11. Canals, S. et al. Longitudinal depolarization gradients along the somatodendritic axis of CA1 pyramidal cells: a novel feature of spreading depression. J. Neurophysiol. 94, 943–951 (2005). In this study, simultaneous intracellular recordings from somata and dendrites in hippocampal pyramidal cells (combined with extracellular recordings from the same regions) revealed longitudinal gradients of depolarization within individual neurons during some phases of CSD. The results support the initiation of CSD in apical dendrites, as first reported in reference 10.

    CAS  PubMed  Google Scholar 

  12. Makarova, J., Gomez-Galan, M. & Herreras, O. Variations in tissue resistivity and in the extension of activated neuron domains shape the voltage signal during spreading depression in the CA1 in vivo. Eur. J. Neurosci. 27, 444–456 (2008).

    PubMed  Google Scholar 

  13. Ochs, S. & Hunt, K. Apical dendrites and propagation of spreading depression in cerebral cortex. J. Neurophysiol. 23, 432–444 (1960).

    CAS  PubMed  Google Scholar 

  14. Vilagi, I., Klapka, N. & Luhmann, H. J. Optical recording of spreading depression in rat neocortical slices. Brain Res. 898, 288–296 (2001).

    CAS  PubMed  Google Scholar 

  15. Peters, O., Schipke, C. G., Hashimoto, Y. & Kettenmann, H. Different mechanisms promote astrocyte Ca2+ waves and spreading depression in the mouse neocortex. J. Neurosci. 23, 9888–9896 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chuquet, J., Hollender, L. & Nimchinsky, E. A. High-resolution in vivo imaging of the neurovascular unit during spreading depression. J. Neurosci. 27, 4036–4044 (2007). This study provides in vivo evidence that the CSD-associated neuronal Ca2+ wave precedes the astrocytic Ca2+ wave and is unaffected by suppression of the intracellular Ca2+ concentration increase in astrocytes, indicating that neurons lead the CSD propagation (see reference 15 for previous similar evidence in vitro).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Aiba, I. & Shuttleworth, C. W. Sustained NMDA receptor activation by spreading depolarizations can initiate excitotoxic injury in metabolically compromised neurons. J. Physiol. 590, 5877–5893 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou, N., Gordon, G. R., Feighan, D. & MacVicar, B. A. Transient swelling, acidification, and mitochondrial depolarization occurs in neurons but not astrocytes during spreading depression. Cereb. Cortex 20, 2614–2624 (2010).

    PubMed  Google Scholar 

  19. Takano, T. et al. Cortical spreading depression causes and coincides with tissue hypoxia. Nature Neurosci. 10, 754–762 (2007).

    CAS  PubMed  Google Scholar 

  20. Shinohara, M., Dollinger, B., Brown, G., Rapoport, S. & Sokoloff, L. Cerebral glucose utilization: local changes during and after recovery from spreading cortical depression. Science 203, 188–190 (1979).

    CAS  PubMed  Google Scholar 

  21. Busija, D. W., Bari, F., Domoki, F., Horiguchi, T. & Shimizu, K. Mechanisms involved in the cerebrovascular dilator effects of cortical spreading depression. Prog. Neurobiol. 86, 379–395 (2008).

    CAS  PubMed  Google Scholar 

  22. Piilgaard, H. & Lauritzen, M. Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex. J. Cereb. Blood Flow Metab. 29, 1517–1527 (2009). Polygraph recordings from the rodent cortex showing the consequences of CSD on sustained increases in oxygen utilization and uncoupling of the neurovascular response.

    CAS  PubMed  Google Scholar 

  23. Chang, J. C. et al. Biphasic direct current shift, haemoglobin desaturation and neurovascular uncoupling in cortical spreading depression. Brain 133, 996–1012 (2010).

    PubMed  PubMed Central  Google Scholar 

  24. Fabricius, M., Akgoren, N. & Lauritzen, M. Arginine-nitric oxide pathway and cerebrovascular regulation in cortical spreading depression. Am. J. Physiol. 269, H23–H29 (1995).

    CAS  PubMed  Google Scholar 

  25. Wahl, M., Lauritzen, M. & Schilling, L. Change of cerebrovascular reactivity after cortical spreading depression in cats and rats. Brain Res. 411, 72–80 (1987).

    CAS  PubMed  Google Scholar 

  26. Seitz, I., Dirnagl, U. & Lindauer, U. Impaired vascular reactivity of isolated rat middle cerebral artery after cortical spreading depression in vivo. J. Cereb. Blood Flow Metab. 24, 526–530 (2004).

    PubMed  Google Scholar 

  27. Fordsmann, J. C. et al. Increased 20-HETE synthesis explains reduced cerebral blood flow but not impaired neurovascular coupling after cortical spreading depression in rat cerebral cortex. J. Neurosci. 33, 2562–2570 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Reid, K. H., Marrannes, R., De Prins, E. & Wauquier, A. Potassium translocation and spreading depression induced by electrical stimulation of the brain. Exp. Neurol. 97, 345–364 (1987).

    CAS  PubMed  Google Scholar 

  29. Reid, K. H., Marrannes, R. & Wauquier, A. Spreading depression and central nervous system pharmacology. J. Pharmacol. Methods 19, 1–21 (1988).

    CAS  PubMed  Google Scholar 

  30. Kager, H., Wadman, W. J. & Somjen, G. G. Conditions for the triggering of spreading depression studied with computer simulations. J. Neurophysiol. 88, 2700–2712 (2002). A computational model defining the minimal biophysical machinery capable of generating CSD and spreading depolarizations and supporting the idea that a regenerative increase in [K+]e is an essential component of the positive-feedback cycle that ignites CSD (see reference 31 for the original proposal for the key role of an increase in [K+]e in CSD ignition and propagation).

    CAS  PubMed  Google Scholar 

  31. Grafstein, B. Mechanism of spreading cortical depression. J. Neurophysiol. 19, 154–171 (1956).

    CAS  PubMed  Google Scholar 

  32. Frohlich, F., Bazhenov, M., Iragui-Madoz, V. & Sejnowski, T. J. Potassium dynamics in the epileptic cortex: new insights on an old topic. Neuroscientist 14, 422–433 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lauritzen, M. & Hansen, A. J. The effect of glutamate receptor blockade on anoxic depolarization and cortical spreading depression. J. Cereb. Blood Flow Metab. 12, 223–229 (1992).

    CAS  PubMed  Google Scholar 

  34. Kruger, H., Heinemann, U. & Luhmann, H. J. Effects of ionotropic glutamate receptor blockade and 5-HT1A receptor activation on spreading depression in rat neocortical slices. Neuroreport 10, 2651–2656 (1999).

    CAS  PubMed  Google Scholar 

  35. Hernandez-Caceres, J., Macias-Gonzalez, R., Brozek, G. & Bures, J. Systemic ketamine blocks cortical spreading depression but does not delay the onset of terminal anoxic depolarization in rats. Brain Res. 437, 360–364 (1987).

    CAS  PubMed  Google Scholar 

  36. Marrannes, R., Willems, R., De Prins, E. & Wauquier, A. Evidence for a role of the N-methyl-D-aspartate (NMDA) receptor in cortical spreading depression in the rat. Brain Res. 457, 226–240 (1988). One of the first studies to show that NMDARs have a key role in CSD initiation, are necessary for CSD propagation and contribute to the sustained depolarization phase of CSD that is induced by a local depolarizing stimulus in the normally metabolizing cerebral cortex.

    CAS  PubMed  Google Scholar 

  37. McLachlan, R. S. Suppression of spreading depression of Leao in neocortex by an N-methyl-D-aspartate receptor antagonist. Can. J. Neurol. Sci. 19, 487–491 (1992).

    CAS  PubMed  Google Scholar 

  38. Menniti, F. S. et al. CP-101,606, an NR2B subunit selective NMDA receptor antagonist, inhibits NMDA and injury induced c-fos expression and cortical spreading depression in rodents. Neuropharmacology 39, 1147–1155 (2000).

    CAS  PubMed  Google Scholar 

  39. Footitt, D. R. & Newberry, N. R. Cortical spreading depression induces an LTP-like effect in rat neocortex in vitro. Brain Res. 781, 339–342 (1998).

    CAS  PubMed  Google Scholar 

  40. Petzold, G. C. et al. Increased extracellular K+ concentration reduces the efficacy of N-methyl-D-aspartate receptor antagonists to block spreading depression-like depolarizations and spreading ischemia. Stroke 36, 1270–1277 (2005).

    CAS  PubMed  Google Scholar 

  41. Tottene, A., Urbani, A. & Pietrobon, D. Role of different voltage-gated Ca2+ channels in cortical spreading depression: specific requirement of P/Q-type Ca2+ channels. Channels 5, 110–114 (2011).

    CAS  PubMed  Google Scholar 

  42. Obrenovitch, T. P. & Zilkha, E. Inhibition of cortical spreading depression by L-701,324, a novel antagonist at the glycine site of the N-methyl-D-aspartate receptor complex. Br. J. Pharmacol. 117, 931–937 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Aiba, I., Carlson, A. P., Sheline, C. T. & Shuttleworth, C. W. Synaptic release and extracellular actions of Zn2+ limit propagation of spreading depression and related events in vitro and in vivo. J. Neurophysiol. 107, 1032–1041 (2012).

    CAS  PubMed  Google Scholar 

  44. Larrosa, B., Pastor, J., Lopez-Aguado, L. & Herreras, O. A role for glutamate and glia in the fast network oscillations preceding spreading depression. Neuroscience 141, 1057–1068 (2006).

    CAS  PubMed  Google Scholar 

  45. van Harreveld, A. Compounds in brain extracts causing spreading depression of cerebral cortical activity and contraction of crustacean muscle. J. Neurochem. 3, 300–315 (1959).

    CAS  PubMed  Google Scholar 

  46. Dietz, R. M., Weiss, J. H. & Shuttleworth, C. W. Zn2+ influx is critical for some forms of spreading depression in brain slices. J. Neurosci. 28, 8014–8024 (2008). This is the first study to show that Zn2+ influx and associated mitochondrial depolarization can play a crucial part in the generation of spreading depolarizations but are not involved in the initiation of CSD.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jing, J., Aitken, P. G. & Somjen, G. G. Role of calcium channels in spreading depression in rat hippocampal slices. Brain Res. 604, 251–259 (1993).

    CAS  PubMed  Google Scholar 

  48. Pietrobon, D. CaV2.1 channelopathies. Pflugers Arch. 460, 375–393 (2010).

    CAS  PubMed  Google Scholar 

  49. Ayata, C., Shimizu-Sasamata, M., Lo, E. H., Noebels, J. L. & Moskowitz. M. Impaired neurotransmitter release and elevated threshold for cortical spreading depression in mice with mutations in the α1A subunit of P/Q type calcium channels. Neuroscience 95, 639–645 (2000).

    CAS  PubMed  Google Scholar 

  50. van den Maagdenberg, A. M. et al. A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 41, 701–710 (2004). This is the first study to describe the generation of a knockin mouse model carrying a human mutation that causes FHM; it shows that the migraine mutation produces a gain of function in neuronal Cav2.1 channels and facilitates initiation and propagation of CSD induced by electrical stimulation in vivo . Together with references 49 and 41, this study supports a key role for Cav2.1 channels in CSD initiation and propagation.

    CAS  PubMed  Google Scholar 

  51. Tottene, A. et al. Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in Cav2.1 knockin migraine mice. Neuron 61, 762–773 (2009). An analysis of cortical excitatory and inhibitory synaptic transmission in a FHM1-knockin mouse model, which shows increased excitatory neurotransmission owing to increased action potential-evoked glutamate release at pyramidal cell synapses, but unaltered inhibitory neurotransmission at fast-spiking interneuron synapses. Rescue experiments provide evidence of a causative link between increased Cav2.1-dependent glutamate release and facilitation of both initiation and propagation of CSD induced by brief, high [K+] pulses.

    CAS  PubMed  Google Scholar 

  52. van den Maagdenberg, A. M. et al. High cortical spreading depression susceptibility and migraine-associated symptoms in Cav2.1 S218L mice. Ann. Neurol. 67, 85–98 (2010).

    CAS  PubMed  Google Scholar 

  53. McGrail, K. M., Phillips, J. M. & Sweadner, K. J. Immunofluorescent localization of three Na, K-ATPase isozymes in the rat central nervous system: both neurons and glia can express more than one Na, K-ATPase. J. Neurosci. 11, 381–391 (1991).

    CAS  PubMed  Google Scholar 

  54. Cholet, N., Pellerin, L., Magistretti, P. J. & Hamel, E. Similar perisynaptic glial localization for the Na+,K+-ATPase α 2 subunit and the glutamate transporters GLAST and GLT-1 in the rat somatosensory cortex. Cereb. Cortex 12, 515–525 (2002).

    CAS  PubMed  Google Scholar 

  55. D'Ambrosio, R., Gordon, D. S. & Winn, H. R. Differential role of KIR channel and Na+/K+-pump in the regulation of extracellular K+ in rat hippocampus. J. Neurophysiol. 87, 87–102 (2002).

    CAS  PubMed  Google Scholar 

  56. Ransom, C. B., Ransom, B. R. & Sontheimer, H. Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps. J. Physiol. 522 Pt. 3, 427–442 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Pellerin, L. & Magistretti, P. J. Glutamate uptake stimulates Na+,K+-ATPase activity in astrocytes via activation of a distinct subunit highly sensitive to ouabain. J. Neurochem. 69, 2132–2137 (1997).

    CAS  PubMed  Google Scholar 

  58. Rose, E. M. et al. Glutamate transporter coupling to Na, K-ATPase. J. Neurosci. 29, 8143–8155 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Leo, L. et al. Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2. PLoS Genet. 7, e1002129 (2011). A study describing the generation of a knockin mouse model of FHM2 carrying a loss-of-function mutation in the gene encoding the the α2 (Na+ + K+)ATPase (which is expressed almost exclusively in astrocytes in the adult brain), showing facilitation of both induction and propagation of CSD (as in the FHM1 mouse model).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Theis, M. et al. Accelerated hippocampal spreading depression and enhanced locomotory activity in mice with astrocyte-directed inactivation of connexin43. J. Neurosci. 23, 766–776 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kofuji, P. & Newman, E. A. Potassium buffering in the central nervous system. Neuroscience 129, 1045–1056 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Moskowitz, M. A., Bolay, H. & Dalkara, T. Deciphering migraine mechanisms: clues from familial hemiplegic migraine genotypes. Ann. Neurol. 55, 276–280 (2004).

    CAS  PubMed  Google Scholar 

  63. Pietrobon, D. Familial hemiplegic migraine. Neurotherapeutics 4, 274–284 (2007).

    CAS  PubMed  Google Scholar 

  64. Herreras, O. & Somjen, G. G. Analysis of potential shifts associated with recurrent spreading depression and prolonged unstable SD induced by microdyalisis of elevated K+ in hippocampus of anesthetized rats. Brain Res. 610, 283–294 (1993).

    CAS  PubMed  Google Scholar 

  65. Peeters, M. et al. Effects of pan-and subtype-selective N-methyl-D-aspartate receptor antagonists on cortical spreading depression in the rat: therapeutic potential for migraine. J. Pharmacol. Exp. Ther. 321, 564–572 (2007).

    CAS  PubMed  Google Scholar 

  66. Anderson, T. R. & Andrew, R. D. Spreading depression: imaging and blockade in the rat neocortical brain slice. J. Neurophysiol. 88, 2713–2725 (2002).

    CAS  PubMed  Google Scholar 

  67. Gniel, H. M. & Martin, R. L. Changes in membrane potential and the intracellular calcium concentration during CSD and OGD in layer V and layer II/III mouse cortical neurons. J. Neurophysiol. 104, 3203–3212 (2010).

    CAS  PubMed  Google Scholar 

  68. Tozzi, A. et al. Critical role of calcitonin gene-related peptide receptors in cortical spreading depression. Proc. Natl Acad. Sci. USA 109, 18985–18990 (2012).

    CAS  PubMed  Google Scholar 

  69. Zhou, N. et al. Regenerative glutamate release by presynaptic NMDA receptors contributes to spreading depression. J. Cereb. Blood Flow Metab. 33, 1582–1594 (2013). Pharmacological evidence that [Ca2+]e -independent mechanisms of glutamate release (involving presynaptic NMDARs and Ca2+ efflux from mitochondria) contribute to the initiation and propagation of CSD induced by diffuse and relatively prolonged high [K+] applications.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Petzold, G. C. et al. Nitric oxide modulates spreading depolarization threshold in the human and rodent cortex. Stroke 39, 1292–1299 (2008).

    CAS  PubMed  Google Scholar 

  71. Richter, F., Ebersberger, A. & Schaible, H. G. Blockade of voltage-gated calcium channels in rat inhibits repetitive cortical spreading depression. Neurosci. Lett. 334, 123–126 (2002).

    CAS  PubMed  Google Scholar 

  72. Sugaya, E., Takato, M. & Noda, Y. Neuronal and glial activity during spreading depression in cerebral cortex of cat. J. Neurophysiol. 38, 822–841 (1975).

    CAS  PubMed  Google Scholar 

  73. Herreras, O., Largo, C., Ibarz, J. M., Somjen, G. G. & Martin del Rio, R. Role of neuronal synchronizing mechanisms in the propagation of spreading depression in the in vivo hippocampus. J. Neurosci. 14, 7087–7098 (1994).

    CAS  PubMed  Google Scholar 

  74. Karatas, H. et al. Spreading depression triggers headache by activating neuronal Panx1 channels. Science 339, 1092–1095 (2013). A study detailing a novel mechanism that links CSD and an intracortical signaling mechanism that involves PANX1 channel to release of pro-inflammatory substances that may activate the meningeal trigeminovascular system to cause pain.

    CAS  PubMed  Google Scholar 

  75. Tamura, K., Alessandri, B., Heimann, A. & Kempski, O. The effect of a gap-junction blocker, carbenoxolone, on ischemic brain injury and cortical spreading depression. Neuroscience 194, 262–271 (2011).

    CAS  PubMed  Google Scholar 

  76. Obrenovitch, T. P., Zilkha, E. & Urenjak, J. Intracerebral microdialysis: electrophysiological evidence of a critical pitfall. J. Neurochem. 64, 1884–1887 (1995).

    CAS  PubMed  Google Scholar 

  77. Obrenovitch, T. P. & Zilkha, E. High extracellular potassium, and not extracellular glutamate, is required for the propagation of spreading depression. J. Neurophysiol. 73, 2107–2114 (1995).

    CAS  PubMed  Google Scholar 

  78. Okubo, Y. & Iino, M. Visualization of glutamate as a volume transmitter. J. Physiol. 589, 481–488 (2011).

    CAS  PubMed  Google Scholar 

  79. Meeks, J. P. & Mennerick, S. Astrocyte membrane responses and potassium accumulation during neuronal activity. Hippocampus 17, 1100–1108 (2007).

    CAS  PubMed  Google Scholar 

  80. Kraig, R. P. & Nicholson, C. Extracellular ionic variations during spreading depression. Neuroscience 3, 1045–1059 (1978).

    CAS  PubMed  Google Scholar 

  81. Hansen, A. J. & Zeuthen, T. Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta Physiol. Scand. 113, 437–445 (1981).

    CAS  PubMed  Google Scholar 

  82. Haglund, M. M. & Schwartzkroin, P. A. Role of Na-K pump potassium regulation and IPSPs in seizures and spreading depression in immature rabbit hippocampal slices. J. Neurophysiol. 63, 225–239 (1990).

    CAS  PubMed  Google Scholar 

  83. Carter, R. E., Aiba, I., Dietz, R. M., Sheline, C. T. & Shuttleworth, C. W. Spreading depression and related events are significant sources of neuronal Zn2+ release and accumulation. J. Cereb. Blood Flow Metab. 31, 1073–1084 (2011).

    CAS  PubMed  Google Scholar 

  84. Eikermann-Haerter, K. et al. Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1. J. Clin. Invest. 119, 99–109 (2009).

    CAS  PubMed  Google Scholar 

  85. Eikermann-Haerter, K. et al. Enhanced subcortical spreading depression in familial hemiplegic migraine type 1 mutant mice. J. Neurosci. 31, 5755–5763 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Largo, C., Ibarz, J. M. & Herreras, O. Effects of the gliotoxin fluorocitrate on spreading depression and glial membrane potential in rat brain in situ. J. Neurophysiol. 78, 295–307 (1997).

    CAS  PubMed  Google Scholar 

  87. Seidel, J. L. & Shuttleworth, C. W. Contribution of astrocyte glycogen stores to progression of spreading depression and related events in hippocampal slices. Neuroscience 192, 295–303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Halassa, M. M. & Haydon, P. G. Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu. Rev. Physiol. 72, 335–355 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Allen, N. J., Karadottir, R. & Attwell, D. A preferential role for glycolysis in preventing the anoxic depolarization of rat hippocampal area CA1 pyramidal cells. J. Neurosci. 25, 848–859 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Czeh, G., Aitken, P. G. & Somjen, G. G. Membrane currents in CA1 pyramidal cells during spreading depression (SD) and SD-like hypoxic depolarization. Brain Res. 632, 195–208 (1993).

    CAS  PubMed  Google Scholar 

  91. Muller, M. & Somjen, G. G. Na+ and K+ concentrations, extra- and intracellular voltages, and the effect of TTX in hypoxic rat hippocampal slices. J. Neurophysiol. 83, 735–745 (2000).

    CAS  PubMed  Google Scholar 

  92. Allen, N. J., Rossi, D. J. & Attwell, D. Sequential release of GABA by exocytosis and reversed uptake leads to neuronal swelling in simulated ischemia of hippocampal slices. J. Neurosci. 24, 3837–3849 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Martin, R. L., Lloyd, H. G. & Cowan, A. I. The early events of oxygen and glucose deprivation: setting the scene for neuronal death? Trends Neurosci. 17, 251–257 (1994).

    CAS  PubMed  Google Scholar 

  94. Tanaka, E., Yamamoto, S., Kudo, Y., Mihara, S. & Higashi, H. Mechanisms underlying the rapid depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neurons in vitro. J. Neurophysiol. 78, 891–902 (1997).

    CAS  PubMed  Google Scholar 

  95. Medvedeva, Y. V., Lin, B., Shuttleworth, C. W. & Weiss, J. H. Intracellular Zn2+ accumulation contributes to synaptic failure, mitochondrial depolarization, and cell death in an acute slice oxygen-glucose deprivation model of ischemia. J. Neurosci. 29, 1105–1114 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bahar, S., Fayuk, D., Somjen, G. G., Aitken, P. G. & Turner, D. A. Mitochondrial and intrinsic optical signals imaged during hypoxia and spreading depression in rat hippocampal slices. J. Neurophysiol. 84, 311–324 (2000).

    CAS  PubMed  Google Scholar 

  97. Gerich, F. J., Hepp, S., Probst, I. & Muller, M. Mitochondrial inhibition prior to oxygen-withdrawal facilitates the occurrence of hypoxia-induced spreading depression in rat hippocampal slices. J. Neurophysiol. 96, 492–504 (2006).

    PubMed  Google Scholar 

  98. Hershkowitz, N., Katchman, A. N. & Veregge, S. Site of synaptic depression during hypoxia: a patch-clamp analysis. J. Neurophysiol. 69, 432–441 (1993).

    CAS  PubMed  Google Scholar 

  99. Fleidervish, I. A., Gebhardt, C., Astman, N., Gutnick, M. J. & Heinemann, U. Enhanced spontaneous transmitter release is the earliest consequence of neocortical hypoxia that can explain the disruption of normal circuit function. J. Neurosci. 21, 4600–4608 (2001).

    CAS  PubMed  Google Scholar 

  100. Allen, N. J. & Attwell, D. The effect of simulated ischaemia on spontaneous GABA release in area CA1 of the juvenile rat hippocampus. J. Physiol. 561, 485–498 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Rosen, A. S. & Morris, M. E. Anoxic depression of excitatory and inhibitory postsynaptic potentials in rat neocortical slices. J. Neurophysiol. 69, 109–117 (1993).

    CAS  PubMed  Google Scholar 

  102. Nellgard, B. & Wieloch, T. NMDA-receptor blockers but not NBQX, an AMPA-receptor antagonist, inhibit spreading depression in the rat brain. Acta Physiol. Scand. 146, 497–503 (1992).

    CAS  PubMed  Google Scholar 

  103. Zhang, E. T., Hansen, A. J., Wieloch, T. & Lauritzen, M. Influence of MK-801 on brain extracellular calcium and potassium activities in severe hypoglycemia. J. Cereb. Blood Flow Metab. 10, 136–139 (1990).

    CAS  PubMed  Google Scholar 

  104. Murphy, T. H., Li, P., Betts, K. & Liu, R. Two-photon imaging of stroke onset in vivo reveals that NMDA-receptor independent ischemic depolarization is the major cause of rapid reversible damage to dendrites and spines. J. Neurosci. 28, 1756–1772 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Jarvis, C. R., Anderson, T. R. & Andrew, R. D. Anoxic depolarization mediates acute damage independent of glutamate in neocortical brain slices. Cereb. Cortex 11, 249–259 (2001).

    CAS  PubMed  Google Scholar 

  106. Rossi, D. J., Oshima, T. & Attwell, D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403, 316–321 (2000).

    CAS  PubMed  Google Scholar 

  107. Yamamoto, S. et al. Factors that reverse the persistent depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neurons in vitro. J. Neurophysiol. 78, 903–911 (1997).

    CAS  PubMed  Google Scholar 

  108. Gebhardt, C., Korner, R. & Heinemann, U. Delayed anoxic depolarizations in hippocampal neurons of mice lacking the excitatory amino acid carrier 1. J. Cereb. Blood Flow Metab. 22, 569–575 (2002).

    CAS  PubMed  Google Scholar 

  109. Hamann, M., Rossi, D. J., Marie, H. & Attwell, D. Knocking out the glial glutamate transporter GLT-1 reduces glutamate uptake but does not affect hippocampal glutamate dynamics in early simulated ischaemia. Eur. J. Neurosci. 15, 308–314 (2002).

    PubMed  Google Scholar 

  110. Furuta, A., Rothstein, J. D. & Martin, L. J. Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J. Neurosci. 17, 8363–8375 (1997).

    CAS  PubMed  Google Scholar 

  111. Lipski, J. et al. Neuroprotective potential of ceftriaxone in in vitro models of stroke. Neuroscience 146, 617–629 (2007).

    CAS  PubMed  Google Scholar 

  112. Aitken, P. G., Jing, J., Young, J. & Somjen, G. G. Ion channel involvement in hypoxia-induced spreading depression in hippocampal slices. Brain Res. 541, 7–11 (1991).

    CAS  PubMed  Google Scholar 

  113. Weber, M. L. & Taylor, C. P. Damage from oxygen and glucose deprivation in hippocampal slices is prevented by tetrodotoxin, lidocaine and phenytoin without blockade of action potentials. Brain Res. 664, 167–177 (1994).

    CAS  PubMed  Google Scholar 

  114. Fung, M. L., Croning, M. D. & Haddad, G. G. Sodium homeostasis in rat hippocampal slices during oxygen and glucose deprivation: role of voltage-sensitive sodium channels. Neurosci. Lett. 275, 41–44 (1999).

    CAS  PubMed  Google Scholar 

  115. Muller, M. & Somjen, G. G. Na+ dependence and the role of glutamate receptors and Na+ channels in ion fluxes during hypoxia of rat hippocampal slices. J. Neurophysiol. 84, 1869–1880 (2000).

    CAS  PubMed  Google Scholar 

  116. Douglas, H. A., Callaway, J. K., Sword, J., Kirov, S. A. & Andrew, R. D. Potent inhibition of anoxic depolarization by the sodium channel blocker dibucaine. J. Neurophysiol. 105, 1482–1494 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Xie, Y., Dengler, K., Zacharias, E., Wilffert, B. & Tegtmeier, F. Effects of the sodium channel blocker tetrodotoxin (TTX) on cellular ion homeostasis in rat brain subjected to complete ischemia. Brain Res. 652, 216–224 (1994).

    CAS  PubMed  Google Scholar 

  118. Hammarstrom, A. K. & Gage, P. W. Inhibition of oxidative metabolism increases persistent sodium current in rat CA1 hippocampal neurons. J. Physiol. 510, 735–741 (1998).

    PubMed  PubMed Central  Google Scholar 

  119. Hammarstrom, A. K. & Gage, P. W. Hypoxia and persistent sodium current. Eur. Biophys. J. 31, 323–330 (2002).

    PubMed  Google Scholar 

  120. Somjen, G. G. & Muller, M. Potassium-induced enhancement of persistent inward current in hippocampal neurons in isolation and in tissue slices. Brain Res. 885, 102–110 (2000).

    CAS  PubMed  Google Scholar 

  121. Muller, M. & Somjen, G. G. Inhibition of major cationic inward currents prevents spreading depression-like hypoxic depolarization in rat hippocampal tissue slices. Brain Res. 812, 1–13 (1998).

    CAS  PubMed  Google Scholar 

  122. Mitani, A. & Tanaka, K. Functional changes of glial glutamate transporter GLT-1 during ischemia: an in vivo study in the hippocampal CA1 of normal mice and mutant mice lacking GLT-1. J. Neurosci. 23, 7176–7182 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. MacVicar, B. A. & Thompson, R. J. Non-junction functions of pannexin-1 channels. Trends Neurosci. 33, 93–102 (2010).

    CAS  PubMed  Google Scholar 

  124. Weilinger, N. L., Tang, P. L. & Thompson, R. J. Anoxia-induced NMDA receptor activation opens pannexin channels via Src family kinases. J. Neurosci. 32, 12579–12588 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Madry, C., Haglerod, C. & Attwell, D. The role of pannexin hemichannels in the anoxic depolarization of hippocampal pyramidal cells. Brain 133, 3755–3763 (2010).

    PubMed  PubMed Central  Google Scholar 

  126. Bargiotas, P. et al. Pannexins in ischemia-induced neurodegeneration. Proc. Natl Acad. Sci. USA 108, 20772–20777 (2011).

    CAS  PubMed  Google Scholar 

  127. Xiong, Z. G. et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118, 687–698 (2004).

    CAS  PubMed  Google Scholar 

  128. Tymianski, M. Emerging mechanisms of disrupted cellular signaling in brain ischemia. Nature Neurosci. 14, 1369–1373 (2011).

    CAS  PubMed  Google Scholar 

  129. Gao, J. et al. Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron 48, 635–646 (2005).

    CAS  PubMed  Google Scholar 

  130. Olah, M. E. et al. Ca2+-dependent induction of TRPM2 currents in hippocampal neurons. J. Physiol. 587, 965–979 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Aarts, M. et al. A key role for TRPM7 channels in anoxic neuronal death. Cell 115, 863–877 (2003).

    CAS  PubMed  Google Scholar 

  132. Wei, W. L. et al. TRPM7 channels in hippocampal neurons detect levels of extracellular divalent cations. Proc. Natl Acad. Sci. USA 104, 16323–16328 (2007).

    CAS  PubMed  Google Scholar 

  133. Cao, Y., Welch, K. M., Aurora, S. & Vikingstad, E. M. Functional MRI-BOLD of visually triggered headache in patients with migraine. Arch. Neurol. 56, 548–554 (1999).

    CAS  PubMed  Google Scholar 

  134. Hadjikhani, N. et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc. Natl Acad. Sci. USA 98, 4687–4692 (2001). A functional MRI study in a patient showing perturbations in the occipital cortex during visual aura that are consistent with features of CSD in the rodent cortex.

    CAS  PubMed  Google Scholar 

  135. Vecchia, D. & Pietrobon, D. Migraine: a disorder of brain excitatory-inhibitory balance? Trends Neurosci. 35, 507–520 (2012).

    CAS  PubMed  Google Scholar 

  136. Eikermann-Haerter, K. et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy syndrome mutations increase susceptibility to spreading depression. Ann. Neurol. 69, 413–418 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Brennan, K. C. et al. Casein kinase Iδ mutations in familial migraine and advanced sleep phase. Sci. Transl. Med. 5, 183ra56 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Charles, A. C. & Baca, S. M. Cortical spreading depression and migraine. Nature Rev. Neurol. 9, 637–644 (2013).

    Google Scholar 

  139. Pietrobon, D. & Striessnig, J. Neurobiology of migraine. Nature Rev. Neurosci. 4, 386–398 (2003).

    CAS  Google Scholar 

  140. Zhang, X. et al. Activation of meningeal nociceptors by cortical spreading depression: implications for migraine with aura. J. Neurosci. 30, 8807–8814 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Bolay, H. et al. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nature Med. 8, 136–142 (2002).

    CAS  PubMed  Google Scholar 

  142. Zhang, X. et al. Activation of central trigeminovascular neurons by cortical spreading depression. Ann. Neurol. 69, 855–865 (2011).

    PubMed  PubMed Central  Google Scholar 

  143. Lauritzen, M., Hansen, A. J., Kronborg, D. & Wieloch, T. Cortical spreading depression is associated with arachidonic acid accumulation and preservation of energy charge. J. Cereb. Blood Flow Metab. 10, 115–122 (1990).

    CAS  PubMed  Google Scholar 

  144. Mercier, F. & Hatton, G. I. Immunocytochemical basis for a meningeo-glial network. J. Comp. Neurol. 420, 445–465 (2000).

    CAS  PubMed  Google Scholar 

  145. Noseda, R., Constandil, L., Bourgeais, L., Chalus, M. & Villanueva, L. Changes of meningeal excitability mediated by corticotrigeminal networks: a link for the endogenous modulation of migraine pain. J. Neurosci. 30, 14420–14429 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Weiller, C. et al. Brain stem activation in spontaneous human migraine attacks. Nature Med. 1, 658–660 (1995).

    CAS  PubMed  Google Scholar 

  147. Goadsby, P. J., Lipton, R. B. & Ferrari, M. D. Migraine—current understanding and treatment. N. Engl. J. Med. 346, 257–270 (2002).

    CAS  PubMed  Google Scholar 

  148. Borsook, D. & Burstein, R. The enigma of the dorsolateral pons as a migraine generator. Cephalalgia 32, 803–812 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Stankewitz, A., Aderjan, D., Eippert, F. & May, A. Trigeminal nociceptive transmission in migraineurs predicts migraine attacks. J. Neurosci. 31, 1937–1943 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Ayata, C. Spreading depression: from serendipity to targeted therapy in migraine prophylaxis. Cephalalgia 29, 1095–1114 (2009).

    CAS  PubMed  Google Scholar 

  151. Ayata, C., Jin, H., Kudo, C., Dalkara, T. & Moskowitz, M. A. Suppression of cortical spreading depression in migraine prophylaxis. Ann. Neurol. 59, 652–661 (2006). In vivo pharmacological rodent study showing that five preventative drugs for migraine raise the CSD threshold in the cortex, suggesting a common action for these agents.

    CAS  PubMed  Google Scholar 

  152. Andreou, A. P. & Goadsby, P. J. Topiramate in the treatment of migraine: a kainate (glutamate) receptor antagonist within the trigeminothalamic pathway. Cephalalgia 31, 1343–1358 (2011).

    PubMed  Google Scholar 

  153. Wolthausen, J., Sternberg, S., Gerloff, C. & May, A. Are cortical spreading depression and headache in migraine causally linked? Cephalalgia 29, 244–249 (2009).

    CAS  PubMed  Google Scholar 

  154. Antal, A. et al. Homeostatic metaplasticity of the motor cortex is altered during headache-free intervals in migraine with aura. Cereb. Cortex 18, 2701–2705 (2008).

    PubMed  Google Scholar 

  155. Conte, A. et al. Differences in short-term primary motor cortex synaptic potentiation as assessed by repetitive transcranial magnetic stimulation in migraine patients with and without aura. Pain 148, 43–48 (2010).

    PubMed  Google Scholar 

  156. Siniatchkin, M. et al. Abnormal changes of synaptic excitability in migraine with aura. Cereb. Cortex 22, 2207–2216 (2012).

    PubMed  Google Scholar 

  157. Eikermann-Haerter, K. et al. Migraine mutations increase stroke vulnerability by facilitating ischemic depolarizations. Circulation 125, 335–345 (2012).

    PubMed  Google Scholar 

  158. Arboleda-Velasquez, J. F. et al. Hypomorphic Notch 3 alleles link Notch signaling to ischemic cerebral small-vessel disease. Proc. Natl Acad. Sci. USA 108, E128–E135 (2011).

    PubMed  Google Scholar 

  159. Nozari, A. et al. Microemboli may link spreading depression, migraine aura, and patent foramen ovale. Ann. Neurol. 67, 221–229 (2010).

    PubMed  PubMed Central  Google Scholar 

  160. Post, M. C. & Budts, W. The relationship between migraine and right-to-left shunt: fact or fiction? Chest 130, 896–901 (2006).

    PubMed  Google Scholar 

  161. Schwedt, T. J., Demaerschalk, B. M. & Dodick, D. W. Patent foramen ovale and migraine: a quantitative systematic review. Cephalalgia 28, 531–540 (2008).

    CAS  PubMed  Google Scholar 

  162. Handke, M., Harloff, A., Olschewski, M., Hetzel, A. & Geibel, A. Patent foramen ovale and cryptogenic stroke in older patients. N. Engl. J. Med. 357, 2262–2268 (2007).

    CAS  PubMed  Google Scholar 

  163. Rundek, T. et al. Patent foramen ovale and migraine: a cross-sectional study from the Northern Manhattan Study (NOMAS). Circulation 118, 1419–1424 (2008).

    PubMed  PubMed Central  Google Scholar 

  164. Sevgi, E. B., Erdener, S. E., Demirci, M., Topcuoglu, M. A. & Dalkara, T. Paradoxical air microembolism induces cerebral bioelectrical abnormalities and occasionally headache in patent foramen ovale patients with migraine. J. Am. Heart Assoc. 1, e001735 (2012).

    PubMed  PubMed Central  Google Scholar 

  165. Kurth, T., Chabriat, H. & Bousser, M. G. Migraine and stroke: a complex association with clinical implications. Lancet Neurol. 11, 92–100 (2012).

    PubMed  Google Scholar 

  166. Moskowitz, M. A., Lo, E. H. & Iadecola, C. The science of stroke: mechanisms in search of treatments. Neuron 67, 181–198 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Hossmann, K. A. Periinfarct depolarizations. Cerebrovasc. Brain Metab. Rev. 8, 195–208 (1996).

    CAS  PubMed  Google Scholar 

  168. Iadecola, C. & Anrather, J. The immunology of stroke: from mechanisms to translation. Nature Med. 17, 796–808 (2011).

    CAS  PubMed  Google Scholar 

  169. Dreier, J. P. et al. Nitric oxide scavenging by hemoglobin or nitric oxide synthase inhibition by N-nitro-L-arginine induces cortical spreading ischemia when K+ is increased in the subarachnoid space. J. Cereb. Blood Flow Metab. 18, 978–990 (1998).

    CAS  PubMed  Google Scholar 

  170. Nakamura, H. et al. Spreading depolarizations cycle around and enlarge focal ischaemic brain lesions. Brain 133, 1994–2006 (2010).

    PubMed  PubMed Central  Google Scholar 

  171. Yuzawa, I. et al. Cortical spreading depression impairs oxygen delivery and metabolism in mice. J. Cereb. Blood Flow Metab. 32, 376–386 (2012).

    CAS  PubMed  Google Scholar 

  172. Sukhotinsky, I. et al. Perfusion pressure-dependent recovery of cortical spreading depression is independent of tissue oxygenation over a wide physiologic range. J. Cereb. Blood Flow Metab. 30, 1168–1177 (2010).

    PubMed  PubMed Central  Google Scholar 

  173. Shin, H. K. et al. Vasoconstrictive neurovascular coupling during focal ischemic depolarizations. J. Cereb. Blood Flow Metab. 26, 1018–1030 (2006).

    PubMed  Google Scholar 

  174. Dijkhuizen, R. M. et al. Correlation between tissue depolarizations and damage in focal ischemic rat brain. Brain Res. 840, 194–205 (1999).

    CAS  PubMed  Google Scholar 

  175. Mies, G., Iijima, T. & Hossmann, K. A. Correlation between peri-infarct DC shifts and ischaemic neuronal damage in rat. Neuroreport 4, 709–711 (1993).

    CAS  PubMed  Google Scholar 

  176. Dohmen, C. et al. Spreading depolarizations occur in human ischemic stroke with high incidence. Ann. Neurol. 63, 720–728 (2008). A study showing that following middle cerebral artery occlusion, individuals with acute stroke exhibit recurrent spreading depolarizations, which can be detected by recordings from the exposed cortex.

    PubMed  Google Scholar 

  177. Dreier, J. P. et al. Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain 132, 1866–1881 (2009).

    PubMed  PubMed Central  Google Scholar 

  178. Woitzik, J. et al. Delayed cerebral ischemia and spreading depolarization in absence of angiographic vasospasm after subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. 32, 203–212 (2012).

    PubMed  Google Scholar 

  179. Dreier, J. P. et al. Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain 129, 3224–3237 (2006).

    PubMed  Google Scholar 

  180. Bosche, B. et al. Recurrent spreading depolarizations after subarachnoid hemorrhage decreases oxygen availability in human cerebral cortex. Ann. Neurol. 67, 607–617 (2010).

    PubMed  PubMed Central  Google Scholar 

  181. Dreier, J. P. et al. Nitric oxide modulates the CBF response to increased extracellular potassium. J. Cereb. Blood Flow Metab. 15, 914–919 (1995).

    CAS  PubMed  Google Scholar 

  182. Hartings, J. A. et al. Spreading depolarisations and outcome after traumatic brain injury: a prospective observational study. Lancet Neurol. 10, 1058–1064 (2011).

    PubMed  Google Scholar 

  183. Hartings, J. A. et al. Spreading depolarizations and late secondary insults after traumatic brain injury. J. Neurotrauma 26, 1857–1866 (2009).

    PubMed  PubMed Central  Google Scholar 

  184. Sakowitz, O. W. et al. Preliminary evidence that ketamine inhibits spreading depolarizations in acute human brain injury. Stroke 40, e519–522 (2009).

    CAS  PubMed  Google Scholar 

  185. Hertle, D. N. et al. Effect of analgesics and sedatives on the occurrence of spreading depolarizations accompanying acute brain injury. Brain 135, 2390–2398 (2012).

    PubMed  Google Scholar 

  186. Basarsky, T. A., Feighan, D. & MacVicar, B. A. Glutamate release through volume-activated channels during spreading depression. J. Neurosci. 19, 6439–6445 (1999).

    CAS  PubMed  Google Scholar 

  187. Basarsky, T. A., Duffy, S. N., Andrew, R. D. & MacVicar, B. A. Imaging spreading depression and associated intracellular calcium waves in brain slices. J. Neurosci. 18, 7189–7199 (1998).

    CAS  PubMed  Google Scholar 

  188. Balestrino, M., Young, J. & Aitken, P. Block of (Na+,K+)ATPase with ouabain induces spreading depression-like depolarization in hippocampal slices. Brain Res. 838, 37–44 (1999).

    CAS  PubMed  Google Scholar 

  189. Anderson, T. R., Jarvis, C. R., Biedermann, A. J., Molnar, C. & Andrew, R. D. Blocking the anoxic depolarization protects without functional compromise following simulated stroke in cortical brain slices. J. Neurophysiol. 93, 963–979 (2005).

    CAS  PubMed  Google Scholar 

  190. Moskowitz, M. A., Nozaki, K. I. & Kraig, R. P. Neocortical spreading depression provokes the expression of C-fos protein-like-immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J. Neurosci. 13, 1167–1177 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Holland, P. R. et al. Acid-sensing ion channel 1: a novel therapeutic target for migraine with aura. Ann. Neurol. 72, 559–563 (2012).

    CAS  PubMed  Google Scholar 

  192. Akerman, S., Holland, P. R. & Goadsby, P. J. Mechanically-induced cortical spreading depression associated regional cerebral blood flow changes are blocked by Na+ ion channel blockade. Brain Res. 1229, 27–36 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The support of the Italian Ministry of University and Research (PRIN2010) and of the University of Padova (Strategic Project 2008 and Progetto Ateneo 2012) to D.P. is gratefully acknowledged. The authors gratefully thank A. Tottene for help with the figures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniela Pietrobon or Michael A. Moskowitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Ischaemic penumbra

The peri-infarct zone of brain tissue that remains vulnerable but viable for several hours after a stroke because of a collateral blood supply.

Interstitial direct current potential

The local mean value of extracellular voltage.

Stratum radiatum

A layer of the hippocampus that contains a portion of the apical dendrites of CA1 pyramidal cells and the axons (Schaffer collaterals) of the CA3 pyramidal cells that form synapses onto the CA1 dendrites.

Oligaemia

A mild or moderate reduction in blood flow to the brain.

Familial hemiplegic migraine

(FHM). An autosomal dominant subtype of classic migraine that is typically associated with prolonged one-sided weakness (motor aura) and is sometimes accompanied by visual, sensory and/or language auras.

K+ spatial buffering

The mechanism by which functionally coupled highly K+-permeable glial cells transfer K+ from regions of increased extracellular K concentration ([K+]e) to regions of lower [K+]e; K+ entry in regions of high [K+]e causes a glial depolarization that spreads through the glial syncytium and generates a net driving force, causing K+ outflow in regions of lower [K+]e.

Gliotransmitters

Transmitter molecules that are released by glial cells and participate in intercellular communication between neurons and glial cells.

Infarct volume

The volume of tissue that dies after the interruption of blood flow in the brain.

Trigeminovascular system

A network of peripheral and central axonal projections from trigeminal ganglion cells that transmit impulses centrally from the meninges and its blood vessels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pietrobon, D., Moskowitz, M. Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations. Nat Rev Neurosci 15, 379–393 (2014). https://doi.org/10.1038/nrn3770

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3770

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing