Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurobiology of food intake in health and disease

Key Points

  • The energy homeostasis system effectively ensures stability of body fat stores under usual conditions by processing humoral inputs related to both total body energy stores and current nutrient availability and transducing them into neuronal signals that powerfully influence the perception of satiety on the one hand and of food reward on the other.

  • During conditions of negative energy balance (for example, starvation or a calorically restricted diet), homeostatic responses are engaged to promote increased food intake by reducing the satiating while enhancing the rewarding properties of food.

  • Two well-studied leptin-sensing neuronal subpopulations involved in feeding are those that co-express neuropeptide Y, agouti-related protein (AGRP; an antagonist of melanocortin signalling) and GABA, and those that express pro-opiomelanocortin (POMC).

  • Optogenetic and pharmacogenetic (designer receptors exclusively activated by a designer drug) strategies demonstrate that AGRP neuronal activation is sufficient to rapidly and potently stimulate food and increase the motivation to work for food.

  • Conversely, stimulation and inhibition of POMC neurons using either optogenetics or DREADDs in mice reduces and increases food intake, respectively through the melanocortin receptor 4.

  • Neurocircuits exist that are normally inhibited, but when activated in response to emergent or stressful stimuli, can override the homeostatic control of energy balance.

  • In response to the lack of either immediately available fuel (such as hypoglycaemia) or the amount of stored fuel (leptin deficiency), the brain triggers an overlapping set of responses that drive increased food intake.

  • During conditions of stress, trauma and illness, a neurocircuit involving calcitonin gene-related peptide-containing neurons in the parabrachial nucleus is activated that functions as an 'off' switch' for feeding.

  • Improved knowledge of how these emergency-activated circuits interact with the energy homeostasis system is fundamental for understanding the control of food intake and may bear on the pathogenesis of disorders at both ends of the body weight spectrum.

Abstract

Under normal conditions, food intake and energy expenditure are balanced by a homeostatic system that maintains stability of body fat content over time. However, this homeostatic system can be overridden by the activation of 'emergency response circuits' that mediate feeding responses to emergent or stressful stimuli. Inhibition of these circuits is therefore permissive for normal energy homeostasis to occur, and their chronic activation can cause profound, even life-threatening, changes in body fat mass. This Review highlights how the interplay between homeostatic and emergency feeding circuits influences the biologically defended level of body weight under physiological and pathophysiological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CNS regulation of energy homeostasis.
Figure 2: Integration of long-term homeostatic and short-term satiety signals.
Figure 3: Integration of homeostatic and reward-related inputs.
Figure 4: Neurocircuits involved in the homeostatic regulation of feeding.
Figure 5: Activation of emergency neurocircuits that inhibit feeding.

Similar content being viewed by others

References

  1. Edholm, O. G. Energy balance in man studies carried out by the Division of Human Physiology, National Institute for Medical Research. J. Hum. Nutr. 31, 413–431 (1977).

    CAS  PubMed  Google Scholar 

  2. Edholm, O. G., Fletcher, J. G., Widdowson, E. M. & McCance, R. A. The energy expenditure and food intake of individual men. Br. J. Nutr. 9, 286–300 (1955).

    Article  CAS  PubMed  Google Scholar 

  3. Bray, G. A., Flatt, J. P., Volaufova, J., Delany, J. P. & Champagne, C. M. Corrective responses in human food intake identified from an analysis of 7-d food-intake records. Am. J. Clin. Nutr. 88, 1504–1510 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Schwartz, M. W. et al. Central nervous system control of food intake. Nature 404, 661–671 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Morton, G. J., Cummings, D. E., Baskin, D. G., Barsh, G. S. & Schwartz, M. W. Central nervous system control of food intake and body weight. Nature 443, 289–295 (2006). This comprehensive review provides a new conceptual understanding of how energy homeostasis is achieved.

    Article  CAS  PubMed  Google Scholar 

  6. Saper, C. B., Chou, T. C. & Elmquist, J. K. The need to feed: homeostatic and hedonic control of eating. Neuron 36, 199–211 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Nguyen, D. M. & El-Serag, H. B. The epidemiology of obesity. Gastroenterol. Clin. North Am. 39, 1–7 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Braun, T. P. & Marks, D. L. Pathophysiology and treatment of inflammatory anorexia in chronic disease. J. Cachexia Sarcopenia Muscle 1, 135–145 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ritter, R. C. & Slusser, P. 5-Thio-D-glucose causes increased feeding and hyperglycemia in the rat. Am. J. Physiol. 238, E141–E144 (1980). This study provides evidence that the hindbrain is important in responding to neuroglucopenia.

    CAS  PubMed  Google Scholar 

  10. Kennedy, G. The role of depot fat in the hypothalamic control of food intake in the rat. Proc. R. Soc. Lond. B 140, 578–592 (1953).

    Article  CAS  PubMed  Google Scholar 

  11. Gao, Q. & Horvath, T. L. Neurobiology of feeding and energy expenditure. Annu. Rev. Neurosci. 30, 367–398 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Rosenbaum, M. & Leibel, R. L. Adaptive thermogenesis in humans. Int. J. Obes. (Lond.) 34 (Suppl. 1), 47–55 (2010).

    Article  Google Scholar 

  13. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994). This study describes the mapping and sequencing of the gene that encodes the hormone leptin.

    Article  CAS  PubMed  Google Scholar 

  14. Considine, R. V. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Schwartz, M. W., Peskind, E., Raskind, M., Boyko, E. J. & Porte, D. Jr. Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nature Med. 2, 589–593 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Baskin, D. G., Breininger, J. F. & Schwartz, M. W. Leptin receptor mRNA identifies a subpopulation of neuropeptide Y neurons activated by fasting in rat hypothalamus. Diabetes 48, 828–833 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Elmquist, J. K., Bjorbaek, C., Ahima, R. S., Flier, J. S. & Saper, C. B. Distributions of leptin receptor mRNA isoforms in the rat brain. J. Comp. Neurol. 395, 535–547 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Campfield, L. A., Smith, F. J., Guisez, Y., Devos, R. & Burn, P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269, 546–549 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Halaas, J. L. et al. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc. Natl Acad. Sci. USA 94, 8878–8883 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, G.-H. et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 379, 632–635 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Bagdade, J. D., Bierman, E. L. & Porte, D. Jr. The significance of basal insulin levels in the evaluation of the insulin response to glucose in diabetic and nondiabetic subjects. J. Clin. Invest. 46, 1549–1557 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Woods, S. C., Lotter, E. C., McKay, L. D. & Porte, D. Jr. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282, 503–505 (1979). An early study demonstrating that insulin is an adiposity signal that acts in the brain of non-human primates to regulate food intake and body weight.

    Article  CAS  PubMed  Google Scholar 

  23. Bruning, J. C. et al. Role of brain insulin receptor in control of body weight and reproduction. Science 289, 2122–2125 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Batterham, R. L. et al. Gut hormone PYY3–36 physiologically inhibits food intake. Nature 418, 650–654 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Turton, M. D. et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69–72 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Gibbs, J., Young, R. C. & Smith, G. P. Cholecystokinin decreases food intake in rats. J. Comp. Physiol. Psychol. 84, 488–495 (1973).

    Article  CAS  PubMed  Google Scholar 

  27. Tschop, M., Smiley, D. L. & Heiman, M. L. Ghrelin induces adiposity in rodents. Nature 407, 908–913 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Lam, T. K. Neuronal regulation of homeostasis by nutrient sensing. Nature Med. 16, 392–395 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Strubbe, J. H. & Woods, S. C. The timing of meals. Psychol. Rev. 111, 128–141 (2004).

    Article  PubMed  Google Scholar 

  30. West, D. B., Fey, D. & Woods, S. C. Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am. J. Physiol. 246, R776–R787 (1984).

    CAS  PubMed  Google Scholar 

  31. McMinn, J. E., Sindelar, D. K., Havel, P. J. & Schwartz, M. W. Leptin deficiency induced by fasting impairs the satiety response to cholecystokinin. Endocrinology 141, 4442–4448 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Barrachina, M. D., Martinez, V., Wang, L., Wei, J. Y. & Tache, Y. Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proc. Natl Acad. Sci. USA 94, 10455–10460 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Figlewicz, D. P., Stein, L. J., West, D., Porte, D. Jr & Woods, S. C. Intracisternal insulin alters sensitivity to CCK-induced meal suppression in baboons. Am. J. Physiol. 250, R856–R860 (1986).

    CAS  PubMed  Google Scholar 

  34. Emond, M., Schwartz, G. J., Ladenheim, E. E. & Moran, T. H. Central leptin modulates behavioral and neural responsivity to CCK. Am. J. Physiol. 276, R1545–R1549 (1999).

    CAS  PubMed  Google Scholar 

  35. Williams, D. L., Baskin, D. G. & Schwartz, M. W. Evidence that intestinal glucagon-like peptide-1 plays a physiological role in satiety. Endocrinology 150, 1680–1687 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Hulsey, M. G., Lu, H., Wang, T., Martin, R. J. & Baile, C. A. Intracerebroventricular (i.c.v.) administration of mouse leptin in rats: behavioral specificity and effects on meal patterns. Physiol. Behav. 65, 445–455 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Kahler, A. et al. Chronic administration of OB protein decreases food intake by selectively reducing meal size in male rats. Am. J. Physiol. 275, R180–R185 (1998).

    CAS  PubMed  Google Scholar 

  38. McLaughlin, C. L. & Baile, C. A. Decreased sensitivity of Zucker obese rats to the putative satiety agent cholecystokinin. Physiol. Behav. 25, 543–548 (1980).

    Article  CAS  PubMed  Google Scholar 

  39. Morton, G. J. et al. Leptin regulates insulin sensitivity via phosphatidylinositol-3-OH kinase signaling in mediobasal hypothalamic neurons. Cell. Metab. 2, 411–420 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Grill, H. J. et al. Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology 143, 239–246 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Morton, G. J. et al. Leptin action in the forebrain regulates the hindbrain response to satiety signals. J. Clin. Invest. 115, 703–710 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barrera, J. G., Sandoval, D. A., D'Alessio, D. A. & Seeley, R. J. GLP-1 and energy balance: an integrated model of short-term and long-term control. Nature Rev. Endocrinol. 7, 507–516 (2011).

    Article  CAS  Google Scholar 

  43. Berthoud, H. R. Homeostatic and non-homeostatic pathways involved in the control of food intake and energy balance. Obesity, 14, (Suppl. 5), 197S–200S (2006).

    Article  Google Scholar 

  44. Figlewicz, D. P. Adiposity signals and food reward: expanding the CNS roles of insulin and leptin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R882–R892 (2003). This is one of the first reviews to describe the role of the adiposity hormones in the regulation of the reward system.

    Article  CAS  PubMed  Google Scholar 

  45. Dossat, A. M., Lilly, N., Kay, K. & Williams, D. L. Glucagon-like peptide 1 receptors in nucleus accumbens affect food intake. J. Neurosci. 31, 14453–14457 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mehta, S. et al. Regional brain response to visual food cues is a marker of satiety that predicts food choice. Am. J. Clin. Nutr. 96, 989–999 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nijs, I. M., Muris, P., Euser, A. S. & Franken, I. H. Differences in attention to food and food intake between overweight/obese and normal-weight females under conditions of hunger and satiety. Appetite 54, 243–254 (2010).

    Article  PubMed  Google Scholar 

  48. Figlewicz, D. P. & Sipols, A. J. Energy regulatory signals and food reward. Pharmacol. Biochem. Behav. 97, 15–24 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fulton, S., Woodside, B. & Shizgal, P. Modulation of brain reward circuitry by leptin. Science 287, 125–128 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Farooqi, I. S. et al. Leptin regulates striatal regions and human eating behavior. Science 317, 1355 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Berthoud, H. R., Lenard, N. R. & Shin, A. C. Food reward, hyperphagia, and obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R1266–R1277 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stice, E., Figlewicz, D. P., Gosnell, B. A., Levine, A. S. & Pratt, W. E. The contribution of brain reward circuits to the obesity epidemic. Neurosci. Biobehav. Rev. 37, 2047–2058 (2012).

    Article  PubMed  Google Scholar 

  53. Kelley, A. E., Baldo, B. A., Pratt, W. E. & Will, M. J. Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol. Behav. 86, 773–795 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Leinninger, G. M. et al. Leptin acts via leptin receptor-expressing lateral hypothalamic neurons to modulate the mesolimbic dopamine system and suppress feeding. Cell. Metab. 10, 89–98 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hahn, T. M., Breininger, J. F., Baskin, D. G. & Schwartz, M. W. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nature Neurosci. 1, 271–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Hagan, M. M. et al. Long-term orexigenic effects of AgRP-(83—132) involve mechanisms other than melanocortin receptor blockade. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R47–R52 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Cowley, M. A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001). A groundbreaking study identifying POMC neurons in the ARC as being leptin-responsive and under GABA inhibition.

    Article  CAS  PubMed  Google Scholar 

  58. Spanswick, D., Smith, M. A., Groppi, V. E., Logan, S. D. & Ashford, M. L. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 390, 521–525 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Spanswick, D., Smith, M. A., Mirshamsi, S., Routh, V. H. & Ashford, M. L. Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats. Nature Neurosci. 3, 757–758 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Cowley, M. A. et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37, 649–661 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Schwartz, M. W. et al. Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes 45, 531–535 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Schwartz, M. W. et al. Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 46, 2119–2123 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Fan, W., Boston, B. A., Kesterson, R. A., Hruby, V. J. & Cone, R. D. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385, 165–168 (1997). This paper was one of the first to identify the melanocortin system and the MC4R in the control of feeding behaviour.

    Article  CAS  PubMed  Google Scholar 

  64. Williams, K. W. et al. Segregation of acute leptin and insulin effects in distinct populations of arcuate proopiomelanocortin neurons. J. Neurosci. 30, 2472–2479 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hill, J. W. et al. Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell. Metab. 11, 286–297 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sohn, J. W. et al. Serotonin 2C receptor activates a distinct population of arcuate pro-opiomelanocortin neurons via TRPC channels. Neuron 71, 488–497 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sohn, J. W., Elmquist, J. K. & Williams, K. W. Neuronal circuits that regulate feeding behavior and metabolism. Trends Neurosci. 36, 504–512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gautron, L. & Elmquist, J. K. Sixteen years and counting: an update on leptin in energy balance. J. Clin. Invest. 121, 2087–2093 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. van de Wall, E. et al. Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 149, 1773–1785 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Ring, L. E. & Zeltser, L. M. Disruption of hypothalamic leptin signaling in mice leads to early-onset obesity, but physiological adaptations in mature animals stabilize adiposity levels. J. Clin. Invest. 120, 2931–2941 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dhillon, H. et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49, 191–203 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Fulton, S. et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 51, 811–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Hommel, J. D. et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51, 801–810 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Hayes, M. R. et al. Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation. Cell. Metab. 11, 77–83 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Balthasar, N. et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42, 983–991 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Leshan, R. L., Greenwald-Yarnell, M., Patterson, C. M., Gonzalez, I. E. & Myers, M. G. Jr. Leptin action through hypothalamic nitric oxide synthase-1-expressing neurons controls energy balance. Nature Med. 18, 820–823 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Tong, Q., Ye, C. P., Jones, J. E., Elmquist, J. K. & Lowell, B. B. Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nature Neurosci. 11, 998–1000 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Wu, Q., Boyle, M. P. & Palmiter, R. D. Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell 137, 1225–1234 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wu, Q., Clark, M. S. & Palmiter, R. D. Deciphering a neuronal circuit that mediates appetite. Nature 483, 594–597 (2012). An excellent paper identifying the PBN as an integration centre of visceral toxicity via hindbrain glutamatergic signals and GABAergic homeostatic feeding circuits.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Carter, M. E., Soden, M. E., Zweifel, L. S. & Palmiter, R. D. Genetic identification of a neural circuit that suppresses appetite. Nature 503, 111–114 (2013). In this paper, the authors identify a neural circuit that suppresses appetite.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kramer, R. H., Mourot, A. & Adesnik, H. Optogenetic pharmacology for control of native neuronal signaling proteins. Nature Neurosci. 16, 816–823 (2013).

    Article  PubMed  Google Scholar 

  83. Packer, A. M., Roska, B. & Hausser, M. Targeting neurons and photons for optogenetics. Nature Neurosci. 16, 805–815 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Aponte, Y., Atasoy, D. & Sternson, S. M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nature Neurosci. 14, 351–355 (2011). The first use of optogenetics in the field of energy balance, examining the effect of AGRP neuronal activation on feeding.

    Article  CAS  PubMed  Google Scholar 

  85. Atasoy, D., Betley, J. N., Su, H. H. & Sternson, S. M. Deconstruction of a neural circuit for hunger. Nature 488, 172–177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Krashes, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011). Another pioneering study using DREADD technology to manipulate neurons involved in energy homeostasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. White, J. D. & Kershaw, M. Increased hypothalamic neuropeptide Y expression following food deprivation. Mol. Cell Neurosci. 1, 41–48 (1990).

    Article  CAS  PubMed  Google Scholar 

  88. Sipols, A. J., Baskin, D. G. & Schwartz, M. W. Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes 44, 147–151 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Wilding, J. P. et al. Increased neuropeptide-Y messenger ribonucleic acid (mRNA) and decreased neurotensin mRNA in the hypothalamus of the obese (ob/ob) mouse. Endocrinology 132, 1939–1944 (1993).

    Article  CAS  PubMed  Google Scholar 

  90. Krashes, M. J., Shah, B. P., Koda, S. & Lowell, B. B. Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators GABA, NPY, and AgRP. Cell. Metab. 18, 588–595 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Leibowitz, S. F., Hammer, N. J. & Chang, K. Hypothalamic paraventricular nucleus lesions produce overeating and obesity in the rat. Physiol. Behav. 27, 1031–1040 (1981).

    Article  CAS  PubMed  Google Scholar 

  92. Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Vaisse, C., Clement, K., Guy Grand, B. & Froguel, P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nature Genet. 20, 113–114 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Yeo, G. S. et al. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nature Genet. 20, 111–112 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Farooqi, I. S. et al. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med. 348, 1085–1095 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Mountjoy, K. G., Mortrud, M. T., Low, M. J., Simerly, R. B. & Cone, R. D. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol. Endocrinol. 8, 1298–1308 (1994).

    CAS  PubMed  Google Scholar 

  97. Cowley, M. A. et al. Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: evidence of a cellular basis for the adipostat. Neuron 24, 155–163 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Giraudo, S. Q., Billington, C. J. & Levine, A. S. Feeding effects of hypothalamic injection of melanocortin 4 receptor ligands. Brain Res. 809, 302–306 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Balthasar, N. et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123, 493–505 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Rossi, J. et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell. Metab. 13, 195–204 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Arletti, R., Benelli, A. & Bertolini, A. Influence of oxytocin on feeding behavior in the rat. Peptides 10, 89–93 (1989).

    Article  CAS  PubMed  Google Scholar 

  102. Arletti, R., Benelli, A. & Bertolini, A. Oxytocin inhibits food and fluid intake in rats. Physiol. Behav. 48, 825–830 (1990).

    Article  CAS  PubMed  Google Scholar 

  103. Olson, B. R. et al. Oxytocin and an oxytocin agonist administered centrally decrease food intake in rats. Peptides 12, 113–118 (1991).

    Article  CAS  PubMed  Google Scholar 

  104. Morton, G. J. et al. Peripheral oxytocin suppresses food intake and causes weight loss in diet-induced obese rats. Am. J. Physiol. Endocrinol. Metab. 302, E134–E144 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Blevins, J. E. & Ho, J. M. Role of oxytocin signaling in the regulation of body weight. Rev. Endocr. Metab. Disord. 14, 311–329 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Blevins, J. E., Eakin, T. J., Murphy, J. A., Schwartz, M. W. & Baskin, D. G. Oxytocin innervation of caudal brainstem nuclei activated by cholecystokinin. Brain Res. 993, 30–41 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Blevins, J. E., Schwartz, M. W. & Baskin, D. G. Evidence that paraventricular nucleus oxytocin neurons link hypothalamic leptin action to caudal brainstem nuclei controlling meal size. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R87–R96 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Kublaoui, B. M., Gemelli, T., Tolson, K. P., Wang, Y. & Zinn, A. R. Oxytocin deficiency mediates hyperphagic obesity of Sim1 haploinsufficient mice. Mol. Endocrinol. 22, 1723–1734 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bonnefond, A. et al. Loss-of-function mutations in SIM1 contribute to obesity and Prader–Willi-like features. J. Clin. Invest. 123, 3037–3041 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Holder, J. L. Jr, Butte, N. F. & Zinn, A. R. Profound obesity associated with a balanced translocation that disrupts the SIM1 gene. Hum. Mol. Genet. 9, 101–108 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Ramachandrappa, S. et al. Rare variants in single-minded 1 (SIM1) are associated with severe obesity. J. Clin. Invest. 123, 3042–3050 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Swaab, D. F., Purba, J. S. & Hofman, M. A. Alterations in the hypothalamic paraventricular nucleus and its oxytocin neurons (putative satiety cells) in Prader–Willi syndrome: a study of five cases. J. Clin. Endocrinol. Metab. 80, 573–579 (1995).

    CAS  PubMed  Google Scholar 

  113. Camerino, C. Low sympathetic tone and obese phenotype in oxytocin-deficient mice. Obesity 17, 980–984 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Takayanagi, Y. et al. Oxytocin receptor-deficient mice developed late-onset obesity. Neuroreport 19, 951–955 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Beall, C., Ashford, M. L. & McCrimmon, R. J. The physiology and pathophysiology of the neural control of the counterregulatory response. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R215–R223 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Gerich, J. E. et al. Prevention of human diabetic ketoacidosis by somatostatin. Evidence for an essential role of glucagon. N. Engl. J. Med. 292, 985–989 (1975).

    Article  CAS  PubMed  Google Scholar 

  117. Garber, A. J. et al. The role of adrenergic mechanisms in the substrate and hormonal response to insulin-induced hypoglycemia in man. J. Clin. Invest. 58, 7–15 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rizza, R. A., Cryer, P. E. & Gerich, J. E. Role of glucagon, catecholamines, and growth hormone in human glucose counterregulation. Effects of somatostatin and combined α- and β-adrenergic blockade on plasma glucose recovery and glucose flux rates after insulin-induced hypoglycemia. J. Clin. Invest. 64, 62–71 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ritter, S., Li, A. J., Wang, Q. & Dinh, T. T. Minireview: the value of looking backward: the essential role of the hindbrain in counterregulatory responses to glucose deficit. Endocrinology 152, 4019–4032 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. McCrimmon, R. J. & Sherwin, R. S. Hypoglycemia in type 1 diabetes. Diabetes 59, 2333–2339 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Routh, V. H. Glucose-sensing neurons: are they physiologically relevant? Physiol. Behav. 76, 403–413 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Watts, A. G. & Donovan, C. M. Sweet talk in the brain: glucosensing, neural networks, and hypoglycemic counterregulation. Front. Neuroendocrinol. 31, 32–43 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Dryden, S., Pickavance, L., Henderson, L. & Williams, G. Hyperphagia induced by hypoglycemia in rats is independent of leptin and hypothalamic neuropeptide Y. (NPY). Peptides 19, 1549–1555 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Russell-Jones, D. & Khan, R. Insulin-associated weight gain in diabetes—causes, effects and coping strategies. Diabetes Obes. Metab. 9, 799–812 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Sindelar, D. K. et al. Neuropeptide Y is required for hyperphagic feeding in response to neuroglucopenia. Endocrinology 145, 3363–3368 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Sergeyev, V., Broberger, C., Gorbatyuk, O. & Hokfelt, T. Effect of 2-mercaptoacetate and 2-deoxy-D-glucose administration on the expression of NPY, AGRP, POMC, MCH and hypocretin/orexin in the rat hypothalamus. Neuroreport 11, 117–121 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Luquet, S., Phillips, C. T. & Palmiter, R. D. NPY/AgRP neurons are not essential for feeding responses to glucoprivation. Peptides 28, 214–225 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Corrin, S. E., McCarthy, H. D., McKibbin, P. E. & Williams, G. Unchanged hypothalamic neuropeptide Y concentrations in hyperphagic, hypoglycemic rats: evidence for specific metabolic regulation of hypothalamic NPY. Peptides 12, 425–430 (1991).

    Article  CAS  PubMed  Google Scholar 

  129. Ritter, S., Bugarith, K. & Dinh, T. T. Immunotoxic destruction of distinct catecholamine subgroups produces selective impairment of glucoregulatory responses and neuronal activation. J. Comp. Neurol. 432, 197–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Havel, P. J. et al. Marked and rapid decreases of circulating leptin in streptozotocin diabetic rats: reversal by insulin. Am. J. Physiol. 274, R1482–R1491 (1998).

    CAS  PubMed  Google Scholar 

  131. American Diabetes Association. Standards of medical care in diabetes—2011. Diabetes Care 34 (Suppl. 1), 11–61 (2011).

  132. Kumaresan, P. & Turner, C. W. Effect of alloxan on feed consumption and on replacement therapy with graded levels of insulin in rats. Proc. Soc. Exp. Biol. Med. 122, 526–527 (1966).

    Article  CAS  PubMed  Google Scholar 

  133. Ahima, R. S. et al. Role of leptin in the neuroendocrince response to fasting. Nature 382, 250–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  134. Bray, G. A., Fisler, J. & York, D. A. Neuroendocrine control of the development of obesity: understanding gained from studies of experimental animal models. Front. Neuroendocrinol. 11, 128–181 (1990).

    Google Scholar 

  135. Fujikawa, T., Chuang, J. C., Sakata, I., Ramadori, G. & Coppari, R. Leptin therapy improves insulin-deficient type 1 diabetes by CNS-dependent mechanisms in mice. Proc. Natl Acad. Sci. USA 107, 17391–17396 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  136. German, J. P. et al. Leptin activates a novel CNS mechanism for insulin-independent normalization of severe diabetic hyperglycemia. Endocrinology 152, 394–404 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Hidaka, S. et al. Chronic central leptin infusion restores hyperglycemia independent of food intake and insulin level in streptozotocin-induced diabetic rats. FASEB J. 16, 509–518 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Lin, C. Y., Higginbotham, D. A., Judd, R. L. & White, B. D. Central leptin increases insulin sensitivity in streptozotocin-induced diabetic rats. Am. J. Physiol. Endocrinol. Metab. 282, E1084–E1091 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Peters, A. et al. The selfish brain: competition for energy resources. Neurosci. Biobehav. Rev. 28, 143–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Schwartz, M. W. & Niswender, K. D. Adiposity signaling and biological defense against weight gain: absence of protection or central hormone resistance? J. Clin. Endocrinol. Metab. 89, 5889–5897 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Ryan, K. K., Woods, S. C. & Seeley, R. J. Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity. Cell. Metab. 15, 137–149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Knowler, W. C. et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 374, 1677–1686 (2009).

    Article  PubMed  Google Scholar 

  143. Safer, D. J. Diet, behavior modification, and exercise: a review of obesity treatments from a long-term perspective. South Med. J. 84, 1470–1474 (1991).

    Article  CAS  PubMed  Google Scholar 

  144. Hagan, M. M. et al. Role of the CNS melanocortin system in the response to overfeeding. J. Neurosci. 19, 2362–2367 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sims, E. A. et al. Experimental obesity in man. Trans. Assoc. Am. Physicians 81, 153–170 (1968).

    CAS  PubMed  Google Scholar 

  146. Deriaz, O., Fournier, G., Tremblay, A., Despres, J. P. & Bouchard, C. Lean-body-mass composition and resting energy expenditure before and after long-term overfeeding. Am. J. Clin. Nutr. 56, 840–847 (1992).

    Article  CAS  PubMed  Google Scholar 

  147. Diaz, E. O., Prentice, A. M., Goldberg, G. R., Murgatroyd, P. R. & Coward, W. A. Metabolic response to experimental overfeeding in lean and overweight healthy volunteers. Am. J. Clin. Nutr. 56, 641–655 (1992).

    Article  CAS  PubMed  Google Scholar 

  148. Leibel, R. L., Rosenbaum, M. & Hirsch, J. Changes in energy expenditure resulting from altered body weight. N. Engl. J. Med. 332, 621–628 (1995).

    Article  CAS  PubMed  Google Scholar 

  149. Sims, E. A. et al. Endocrine and metabolic effects of experimental obesity in man. Recent Prog. Horm. Res. 29, 457–496 (1973).

    CAS  PubMed  Google Scholar 

  150. Farooqi, I. S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341, 879–884 (1999). A seminal study showing leptin replacement can correct metabolic and endocrine abnormalities in humans with congenital leptin deficiency.

    Article  CAS  PubMed  Google Scholar 

  151. El-Haschimi, K., Pierroz, D. D., Hileman, S. M., Bjorbaek, C. & Flier, J. S. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J. Clin. Invest. 105, 1827–1832 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Heymsfield, S. B. et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 282, 1568–1575 (1999).

    Article  CAS  PubMed  Google Scholar 

  153. Myers, M. G. Jr., Leibel, R. L., Seeley, R. J. & Schwartz, M. W. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol. Metab. 21, 643–651 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Posey, K. et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 296, E1003–E1012 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. De Souza, C. T. et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 146, 4192–4199 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Thaler, J. P. et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest. 122, 153–162 (2012). A notable study postulating that neuronal injury due to high-fat feeding underlies the development of obesity.

    Article  PubMed  Google Scholar 

  160. Zhang, X. et al. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell 135, 61–73 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Thaler, J. P., Guyenet, S. J., Dorfman, M. D., Wisse, B. E. & Schwartz, M. W. Hypothalamic inflammation: marker or mechanism of obesity pathogenesis? Diabetes 62, 2629–2634 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Reilly, S. The parabrachial nucleus and conditioned taste aversion. Brain Res. Bull. 48, 239–254 (1999).

    Article  CAS  PubMed  Google Scholar 

  163. Reilly, S. & Trifunovic, R. Lateral parabrachial nucleus lesions in the rat: aversive and appetitive gustatory conditioning. Brain Res. Bull. 52, 269–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  164. Reilly, S. & Trifunovic, R. Lateral parabrachial nucleus lesions in the rat: neophobia and conditioned taste aversion. Brain Res. Bull. 55, 359–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  165. Grossberg, A. J., Scarlett, J. M. & Marks, D. L. Hypothalamic mechanisms in cachexia. Physiol. Behav. 100, 478–489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Stefater, M. A., Wilson-Perez, H. E., Chambers, A. P., Sandoval, D. A. & Seeley, R. J. All bariatric surgeries are not created equal: insights from mechanistic comparisons. Endocr. Rev. 33, 595–622 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Berglund, E. D. et al. Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis. J. Clin. Invest. 123, 5061–5070 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Smith, S. R. et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. N. Engl. J. Med. 363, 245–256 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Gadde, K. M. et al. Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo-controlled, phase 3 trial. Lancet 377, 1341–1352 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Marx, J. Cellular warriors at the battle of the bulge. Science 299, 846–849 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a US National Institute of Diabetes and Digestive and Kidney Diseases Grant to M.W.S (DK090320, DK083042, and DK052989) and G.J.M. (DK089053), the US National Institutes of Health (NIH) funded Nutrition Obesity Research Center (DK035816) and Diabetes Research Center (DK17047) at the University of Washington and a NIH Diabetes and Metabolism training Grant (F32 DK097859; T32 DK0007247).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Schwartz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Energy homeostasis

The biological process by which the body maintains body fat stores by balancing energy intake with energy expenditure over time.

Anorexia

A disorder that is characterized by a reduction in energy intake and accompanied weight loss.

Adiposity negative feedback signals

Hormones that circulate in direct proportion to body fat and convey the state of total energy stores to the CNS.

Satiety

The state of feeling full to the point of satisfaction after the consumption of food.

Neuropeptide

A small protein-like molecule that is used by neurons to communicate with each other, often in a paracrine manner.

Optogenetics

A technique that uses light to control the activity of specific neurons in living tissue.

DREADD

(Designer receptor exclusively activated by a designer drug). G protein-coupled receptors that are modified for activation by binding to inert small molecules that are used to non-invasively control neuronal signalling.

Neurotransmitters

Chemical messengers that are released by the end of a nerve fibre, causing an impulse to be passed from once cell to another.

Leptin resistance

A state in which the body is no longer responsive to the anorexic effect of exogenous leptin.

Conditioned taste aversion

(CTA). A learned response of an animal to avoid repeated ingestion of certain foods that cause nausea or sickness.

Cachexia

A condition that is characterized by anorexia, weight loss and disproportionate wasting of muscle and adipose tissue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morton, G., Meek, T. & Schwartz, M. Neurobiology of food intake in health and disease. Nat Rev Neurosci 15, 367–378 (2014). https://doi.org/10.1038/nrn3745

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3745

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing