Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Brain correlates of music-evoked emotions

Key Points

  • The superficial amygdala is involved in the processing of basic socio-affective information, including music.

  • Music-evoked pleasure is associated with activity of the dopaminergic mesolimbic reward pathway (in particular the right nucleus accumbens and the left dorsal striatum) and with activity of the ventromedial orbitofrontal cortex, pre-genual anterior cingulate cortex, amygdala, anterior insula and mediodorsal thalamus. Thus, music-evoked pleasure is associated with the activation of a phylogenetically old reward network that functions to ensure the survival of the individual and the species.

  • Owing to its high structural and functional centrality, the amygdala is in a key position to modulate and regulate emotion networks with regard to initiating, maintaining and terminating emotions.

  • The concept of musical tension relates to emotions arising from processing intra-musical structure, including emotions associated with the build-up, fulfilment and violation of predictions.

  • Progressing tones and harmonies create an entropic flux that gives rise to a constantly changing (un)certainty of predictions and thus to musical tension.

  • Music triggers engagement in social functions, hence musical activity is directly related to the fulfilment of basic human needs, such as communication, cooperation and social attachment. Supporting social functions was probably an important adaptive function of music in the evolution of humans.

  • The hippocampus plays a part in the generation of attachment-related emotions and can be activated by music owing to music's ability to support social attachment.

  • The auditory cortex has emotion-specific functional connections with a broad range of limbic, paralimbic and neocortical structures. Thus, the role of the auditory cortex in emotion is more extensive than previously believed.

  • Music influences, and interacts with, the processing of visual information (whether visual information is real or imagined). Emotion-specific functional connections between auditory and visual cortices are part of an affective–attentional network that might have a role in visual alertness, visual imagery and an involuntary shift of attention.

Abstract

Music is a universal feature of human societies, partly owing to its power to evoke strong emotions and influence moods. During the past decade, the investigation of the neural correlates of music-evoked emotions has been invaluable for the understanding of human emotion. Functional neuroimaging studies on music and emotion show that music can modulate activity in brain structures that are known to be crucially involved in emotion, such as the amygdala, nucleus accumbens, hypothalamus, hippocampus, insula, cingulate cortex and orbitofrontal cortex. The potential of music to modulate activity in these structures has important implications for the use of music in the treatment of psychiatric and neurological disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The main pathways underlying autonomic and muscular responses to music.
Figure 2: Neural correlates of music-evoked emotions.
Figure 3: Comparison of neural correlates of music-evoked emotions revealed in functional imaging studies with neuropsychological data.
Figure 4: Probability distributions of chords and chord progressions.

Similar content being viewed by others

References

  1. Perani, D. et al. Functional specializations for music processing in the human newborn brain. Proc. Natl Acad. Sci. USA 107, 4758–4763 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Zentner, M. & Eerola, T. Rhythmic engagement with music in infancy. Proc. Natl Acad. Sci. USA 107, 5768–5773 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Juslin, P. N. & Laukka, P. Expression, perception, and induction of musical emotions: a review and a questionnaire study of everyday listening. J. New Music Res. 33, 217–238 (2004).

    Article  Google Scholar 

  4. Todd, N. P. M., Paillard, A. C., Kluk, K., Whittle, E. & Colebatch, J. G. Vestibular receptors contribute to cortical auditory evoked potentials. Hearing Res. 309, 63–74 (2014).

    Article  Google Scholar 

  5. Todd, N. P. M. & Cody, F. W. Vestibular responses to loud dance music: a physiological basis of the “rock and roll threshold”? J. Acoust. Soc. Amer. 107, 496–500 (2000).

    Article  CAS  Google Scholar 

  6. Kandler, K. & Herbert, H. Auditory projections from the cochlear nucleus to pontine and mesencephalic reticular nuclei in the rat. Brain Res. 562, 230–242 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Balaban, C. D. & Thayer, J. F. Neurological bases for balance–anxiety links. J. Anxiety Disord. 15, 53–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Phillips-Silver, J. & Trainor, L. J. Feeling the beat: movement influences infant rhythm perception. Science 308, 1430 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Blood, A. J., Zatorre, R., Bermudez, P. & Evans, A. C. Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nature Neurosci. 2, 382–387 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Blood, A. J. & Zatorre, R. J. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl Acad. Sci. USA 98, 11818–11823 (2001). This landmark paper was the first to show that music-evoked pleasure is associated with nucleus accumbens activity.

    Article  CAS  PubMed  Google Scholar 

  11. Menon, V. & Levitin, D. J. The rewards of music listening: response and physiological connectivity of the mesolimbic system. Neuroimage 28, 175–184 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Khalfa, S., Schon, D., Anton, J. L. & Liégeois-Chauvel, C. Brain regions involved in the recognition of happiness and sadness in music. Neuroreport 16, 1981–1984 (2005).

    Article  PubMed  Google Scholar 

  13. Baumgartner, T., Lutz, K., Schmidt, C. F. & Jäncke, L. The emotional power of music: how music enhances the feeling of affective pictures. Brain Res. 1075, 151–164 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Koelsch, S., Fritz, T., Cramon, D. Y., Müller, K. & Friederici, A. D. Investigating emotion with music: an fMRI study. Hum. Brain Mapp. 27, 239–250 (2006).

    Article  PubMed  Google Scholar 

  15. Mitterschiffthaler, M. T., Fu, C. H., Dalton, J. A., Andrew, C. M. & Williams, S. C. A functional MRI study of happy and sad affective states evoked by classical music. Hum. Brain Mapp. 28, 1150–1162 (2007).

    Article  PubMed  Google Scholar 

  16. Eldar, E., Ganor, O., Admon, R., Bleich, A. & Hendler, T. Feeling the real world: limbic response to music depends on related content. Cereb. Cortex 17, 2828–2840 (2007).

    Article  PubMed  Google Scholar 

  17. Mizuno, T. & Sugishita, M. Neural correlates underlying perception of tonality-related emotional contents. Neuroreport 18, 1651–1655 (2007).

    Article  PubMed  Google Scholar 

  18. Koelsch, S., Fritz, T. & Schlaug, G. Amygdala activity can be modulated by unexpected chord functions during music listening. Neuroreport 19, 1815–1819 (2008).

    Article  PubMed  Google Scholar 

  19. Suzuki, M. et al. Discrete cortical regions associated with the musical beauty of major and minor chords. Cogn. Affect. Behav. Neurosci. 8, 126–131 (2008).

    Article  PubMed  Google Scholar 

  20. Green, A. C. et al. Music in minor activates limbic structures: a relationship with dissonance? Neuroreport 19, 711–715 (2008).

    Article  PubMed  Google Scholar 

  21. Chapin, H., Jantzen, K., Kelso, J. S., Steinberg, F. & Large, E. Dynamic emotional and neural responses to music depend on performance expression and listener experience. PloS ONE 5, e13812 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A. & Zatorre, R. J. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neurosci. 14, 257–262 (2011). Using positron emission tomography and functional MRI, this study shows that there is increased dopamine availability in different regions of the striatum during anticipation and experience of music-evoked frissons.

    Article  CAS  PubMed  Google Scholar 

  23. Mueller, K. et al. Investigating brain response to music: a comparison of different fMRI acquisition schemes. Neuroimage 54, 337–343 (2011).

    Article  PubMed  Google Scholar 

  24. Caria, A., Venuti, P. & de Falco, S. Functional and dysfunctional brain circuits underlying emotional processing of music in autism spectrum disorders. Cereb. Cortex 21, 2838–2849 (2011). This functional MRI study shows that individuals with ASD exhibit relatively intact perception and processing of music-evoked emotions despite their deficit in the ability to understand emotions in non-musical social communication.

    Article  PubMed  Google Scholar 

  25. Brattico, E. et al. A functional MRI study of happy and sad emotions in music with and without lyrics. Front. Psychol. 2, 308 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Trost, W., Ethofer, T., Zentner, M. & Vuilleumier, P. Mapping aesthetic musical emotions in the brain. Cereb. Cortex 22, 2769–2783 (2012). Using functional MRI, the authors investigated neural correlates of a range of different music-evoked emotions.

    Article  PubMed  Google Scholar 

  27. Salimpoor, V. N. et al. Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science 340, 216–219 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Koelsch, S. et al. The roles of superficial amygdala and auditory cortex in music-evoked fear and joy. Neuroimage 81, 49–60 (2013).

    Article  PubMed  Google Scholar 

  29. Lehne, M., Rohrmeier, M. & Koelsch, S. Tension-related activity in the orbitofrontal cortex and amygdala: an fMRI study with music. Soc. Cogn. Affect. Neurosci. http://dx.doi.org/10.1093/scan/nst141 (2013). Using continuous tension ratings, this functional MRI study shows that the orbitofrontal cortex and the amygdala play a part in music-evoked tension.

  30. Amunts, K. et al. Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat. Embryol. 210, 343–352 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Nieuwenhuys, R., Voogd, J. & Huijzen, C. V. The Human Central Nervous System (Springer, 2008).

    Book  Google Scholar 

  32. Pitkänen, A., Savander, V. & LeDoux, J. E. Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci. 20, 517–523 (1997).

    Article  PubMed  Google Scholar 

  33. Moreno, N. & González, A. Evolution of the amygdaloid complex in vertebrates, with special reference to the anamnio-amniotic transition. J. Anat. 211, 151–163 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bzdok, D. et al. ALE meta-analysis on facial judgments of trustworthiness and attractiveness. Brain Struct. Funct. 215, 209–223 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Kumar, S., von Kriegstein, K., Friston, K. & Griffiths, T. D. Features versus feelings: dissociable representations of the acoustic features and valence of aversive sounds. J. Neurosci. 32, 14184–14192 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cross, I. & Morley, I. in Communicative Musicality: Exploring the Basis of Human Companionship (eds Malloch, S. & Trevarthen, C.) 61–82 (Oxford Univ. Press, 2008).

    Google Scholar 

  37. Steinbeis, N. & Koelsch, S. Understanding the intentions behind man-made products elicits neural activity in areas dedicated to mental state attribution. Cereb. Cortex 19, 619–623 (2008).

    Article  PubMed  Google Scholar 

  38. Koelsch, S. Brain and Music (Wiley, 2012).

    Google Scholar 

  39. Juslin, P. N. & Laukka, P. Communication of emotions in vocal expression and music performance: different channels, same code? Psychol. Bull. 129, 770–814 (2003).

    Article  PubMed  Google Scholar 

  40. Fritz, T. et al. Universal recognition of three basic emotions in music. Curr. Biol. 19, 573–576 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Koelsch, S. & Skouras, S. Functional centrality of amygdala, striatum and hypothalamus in a “small-world” network underlying joy: an fMRI study with music. Hum. Brain Mapp. http://dx.doi.org/10.1002/hbm.22416 (2013). This was the first functional neuroimaging study applying eigenvector centrality mapping to investigate the neural correlates of emotion and to show functional centrality of the amygdala.

  42. LeDoux, J. E. Emotion circuits in the brain. Ann. Rev. Neurosci. 23, 155–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Murray, E. A. The amygdala, reward and emotion. Trends Cogn. Sci. 11, 489–497 (2007).

    Article  PubMed  Google Scholar 

  44. Holland, P. C. & Gallagher, M. Amygdala–frontal interactions and reward expectancy. Curr. Opin. Neurobiol. 14, 148–155 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Roozendaal, B., McEwen, B. S. & Chattarji, S. Stress, memory and the amygdala. Nature Rev. Neurosci. 10, 423–433 (2009).

    Article  CAS  Google Scholar 

  46. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Rev. Neurosci. 10, 186–198 (2009).

    Article  CAS  Google Scholar 

  47. Young, M. P., Scanneil, J. W., Burns, G. A. & Blakemore, C. Analysis of connectivity: neural systems in the cerebral cortex. Rev. Neurosci. 5, 227–250 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Pessoa, L. On the relationship between emotion and cognition. Nature Rev. Neurosci. 9, 148–158 (2008).

    Article  CAS  Google Scholar 

  49. Goldin, P. R., McRae, K., Ramel, W. & Gross, J. J. The neural bases of emotion regulation: reappraisal and suppression of negative emotion. Biol. Psychiatry 63, 577–586 (2008).

    Article  PubMed  Google Scholar 

  50. Brown, S., Martinez, M. J. & Parsons, L. M. Passive music listening spontaneously engages limbic and paralimbic systems. Neuroreport 15, 2033–2037 (2004).

    Article  PubMed  Google Scholar 

  51. Sescousse, G., Caldú, X., Segura, B. & Dreher, J.-C. Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies. Neurosci. Biobehav. Rev. 37, 681–696 (2013). A comprehensive meta-analysis of functional neuroimaging studies on reward processing in the brain.

    Article  PubMed  Google Scholar 

  52. Jacobson, L. & Sapolsky, R. The role of the hippocampus in feedback regulation of the hypothalamic–pituitary–adrenocortical axis. Endocr. Rev. 12, 118–134 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. O'Mara, S. The subiculum: what it does, what it might do, and what neuroanatomy has yet to tell us. J. Anat. 207, 271–282 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Koelsch, S. & Stegemann, T. in Music, Health and Wellbeing (eds MacDonald, R., Kreutz, D. & Mitchell, L.) 436–456 (Oxford Univ. Press, 2012).

    Google Scholar 

  55. Chanda, M. L. & Levitin, D. J. The neurochemistry of music. Trends Cogn. Sci. 17, 179–193 (2013).

    Article  PubMed  Google Scholar 

  56. Warner-Schmidt, J. L. & Duman, R. S. Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 16, 239–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Videbech, P. & Ravnkilde, B. Hippocampal volume and depression: a meta-analysis of MRI studies. Am. J. Psychiatry 161, 1957–1966 (2004).

    Article  PubMed  Google Scholar 

  58. Bremner, J. D. Does stress damage the brain? Biol. Psychiatry 45, 797–805 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Stein, M. B., Koverola, C., Hanna, C., Torchia, M. & McClarty, B. Hippocampal volume in women victimized by childhood sexual abuse. Psychol. Med. 27, 951–959 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Koelsch, S., Skouras, S. & Jentschke, S. Neural correlates of emotional personality: a structural and functional magnetic resonance imaging study. PLoS ONE 8, e77196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Koelsch, S. et al. A cardiac signature of emotionality. Eur. J. Neurosci. 26, 3328–3338 (2007).

    Article  PubMed  Google Scholar 

  62. Kraus, K. S. & Canlon, B. Neuronal connectivity and interactions between the auditory and limbic systems. effects of noise and tinnitus. Hear. Res. 288, 34–46 (2012).

    Article  PubMed  Google Scholar 

  63. Kimble, D. P., Rogers, L. & Hendrickson, C. W. Hippocampal lesions disrupt maternal, not sexual, behavior in the albino rat. J. Comp. Physiol. Psychol. 63, 401–407 (1967).

    Article  CAS  PubMed  Google Scholar 

  64. Liu, D. et al. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic–pituitary–adrenal responses to stress. Science 277, 1659–1662 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Meaney, M. J. Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu. Rev. Neurosci. 24, 1161–1192 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Weaver, I. C. G. et al. Epigenetic programming by maternal behavior. Nature Neurosci. 7, 847–854 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Neumann, I. D. & Landgraf, R. Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci. 35, 649–659 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Terburg, D. et al. Hypervigilance for fear after basolateral amygdala damage in humans. Transl. Psychiatry 2, e115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hirano, Y. et al. Effect of unpleasant loud noise on hippocampal activities during picture encoding: an fMRI study. Brain Cogn. 61, 280–285 (2006).

    Article  PubMed  Google Scholar 

  70. Fairhurst, M. T., Janata, P. & Keller, P. E. Being and feeling in sync with an adaptive virtual partner: brain mechanisms underlying dynamic cooperativity. Cereb. Cortex 23, 2592–2600 (2013).

    Article  PubMed  Google Scholar 

  71. Zatorre, R. J., Chen, J. L. & Penhune, V. B. When the brain plays music: auditory–motor interactions in music perception and production. Nature Rev. Neurosci. 8, 547–558 (2007).

    Article  CAS  Google Scholar 

  72. Janata, P., Tomic, S. T. & Haberman, J. M. Sensorimotor coupling in music and the psychology of the groove. J. Exp. Psychol. Gen. 141, 54–75 (2012).

    Article  PubMed  Google Scholar 

  73. Baumeister, R. F. & Leary, M. R. The need to belong: desire for interpersonal attachments as a fundamental human motivation. Psychol. Bull. 117, 497–529 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Cacioppo, J. T. & Patrick, W. Loneliness: Human Nature and the Need for Social Connection (W. W. Norton & Company, 2008).

    Google Scholar 

  75. Huron, D. in The Biological Foundations of Music Vol. 930 (Zatorre, R. J. & Peretz, I.) 43–61 (New York Academy of Sciences, 2001).

    Google Scholar 

  76. Omar, R. et al. The structural neuroanatomy of music emotion recognition: evidence from frontotemporal lobar degeneration. Neuroimage 56, 1814–1821 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hsieh, S., Hornberger, M., Piguet, O. & Hodges, J. Brain correlates of musical and facial emotion recognition: evidence from the dementias. Neuropsychologia 50, 1814–1822 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Gosselin, N. et al. Impaired recognition of scary music following unilateral temporal lobe excision. Brain 128, 628–640 (2005).

    Article  PubMed  Google Scholar 

  79. Gosselin, N., Peretz, I., Hasboun, D., Baulac, M. & Samson, S. Impaired recognition of musical emotions and facial expressions following anteromedial temporal lobe excision. Cortex 47, 1116–1125 (2011).

    Article  PubMed  Google Scholar 

  80. Gosselin, N., Peretz, I., Johnsen, E. & Adolphs, R. Amygdala damage impairs emotion recognition from music. Neuropsychologia 45, 236–244 (2007).

    Article  PubMed  Google Scholar 

  81. Gosselin, N. et al. Emotional responses to unpleasant music correlates with damage to the parahippocampal cortex. Brain 129, 2585–2592 (2006).

    Article  PubMed  Google Scholar 

  82. Griffiths, T. D., Warren, J. D., Dean, J. L. & Howard, D. “When the feeling's gone”: a selective loss of musical emotion. J. Neurol. Neurosurg. Psychiatry 75, 341–345 (2004).

    Google Scholar 

  83. Craig, A. D. How do you feel — now? The anterior insula and human awareness. Nature Rev. Neurosci. 10, 59–70 (2009).

    Article  CAS  Google Scholar 

  84. Juslin, P. N. From everyday emotions to aesthetic emotions: towards a unified theory of musical emotions. Phys. Life Rev. 10, 235–266 (2013).

    Article  PubMed  Google Scholar 

  85. Tramo, M. J., Cariani, P. A., Delgutte, B. & Braida, L. D. in The Biological Foundations of Music Vol. 930 (Zatorre, R. J. & Peretz, I.) 92–116 (New York Academy of Sciences, 2001).

    Google Scholar 

  86. Fritz, T. & Koelsch, S. Initial response to pleasant and unpleasant music: an fMRI study (Poster). Neuroimage 26 (Suppl. 1), 271 (2005).

    Google Scholar 

  87. Bendixen, A., SanMiguel, I. & Schröger, E. Early electrophysiological indicators for predictive processing in audition: a review. Int. J. Psychophysiol. 83, 120–131 (2012).

    Article  PubMed  Google Scholar 

  88. Friston, K. J. & Friston, D. A. in Sound—Perception—Performance (ed. Bader, R.) 43–69 (Springer, 2013).

    Book  Google Scholar 

  89. Pressing, J. Black atlantic rhythm: its computational and transcultural foundations. Music Percept. 19, 285–310 (2002).

    Article  Google Scholar 

  90. Bharucha, J. & Krumhansl, C. The representation of harmonic structure in music: hierarchies of stability as a function of context. Cognition 13, 63–102 (1983).

    Article  CAS  PubMed  Google Scholar 

  91. Lerdahl, F. & Krumhansl, C. L. Modeling tonal tension. Music Percept. 24, 329–366 (2007).

    Article  Google Scholar 

  92. Farbood, M. M. A parametric, temporal model of musical tension. Music Percept. 29, 387–428 (2012).

    Article  Google Scholar 

  93. Lehne, M., Rohrmeier, M., Gollmann, D. & Koelsch, S. The influence of different structural features on felt musical tension in two piano pieces by Mozart and Mendelssohn. Music Percept. 31, 171–185 (2013).

    Article  Google Scholar 

  94. Huron, D. B. Sweet Anticipation: Music and the Psychology of Expectation (MIT Press, 2006).

    Book  Google Scholar 

  95. Rohrmeier, M. & Rebuschat, P. Implicit learning and acquisition of music. Top. Cogn. Sci. 4, 525–553 (2012). An authoritative review of studies investigating implicit learning with music.

    Article  PubMed  Google Scholar 

  96. Pearce, M. T. & Wiggins, G. A. Auditory expectation: the information dynamics of music perception and cognition. Top. Cogn. Sci. 4, 625–652 (2012).

    Article  PubMed  Google Scholar 

  97. Gebauer, L., Kringelbach, M. L. & Vuust, P. Ever-changing cycles of musical pleasure. Psychomusicol. Music Mind Brain 22, 152–167 (2012). Using a framework of Bayesian inference and predictive coding, the authors propose a theory of music-evoked pleasure related to both fulfilment and violation of musical expectancies.

    Article  Google Scholar 

  98. Koelsch, S., Kilches, S., Steinbeis, N. & Schelinski, S. Effects of unexpected chords and of performer's expression on brain responses and electrodermal activity. PLoS ONE 3, e2631 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Steinbeis, N., Koelsch, S. & Sloboda, J. A. The role of harmonic expectancy violations in musical emotions: evidence from subjective, physiological, and neural responses. J. Cogn. Neurosci. 18, 1380–1393 (2006).

    Article  PubMed  Google Scholar 

  100. Koelsch, S., Fritz, T., Schulze, K., Alsop, D. & Schlaug, G. Adults and children processing music: an fMRI study. Neuroimage 25, 1068–1076 (2005).

    Article  PubMed  Google Scholar 

  101. Tillmann, B. et al. Cognitive priming in sung and instrumental music: activation of inferior frontal cortex. Neuroimage 31, 1771–1782 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Kilner, J. M., Friston, K. J. & Frith, C. D. Predictive coding: an account of the mirror neuron system. Cogn. Process. 8, 159–166 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Lundqvist, L. O., Carlsson, F., Hilmersson, P. & Juslin, P. N. Emotional responses to music: experience, expression, and physiology. Psychol. Music 37, 61–90 (2009). Using electromyography, this study shows emotional contagion through music.

    Article  Google Scholar 

  104. Khalfa, S., Roy, M., Rainville, P., Dalla Bella, S. & Peretz, I. Role of tempo entrainment in psychophysiological differentiation of happy and sad music? Int. J. Psychophysiol. 68, 17–26 (2008).

    Article  PubMed  Google Scholar 

  105. Hatfield, E., Cacioppo, J. T. & Rapson, R. L. Emotional contagion. Curr. Direct. Psychol. Sci. 2, 96–100 (1993).

    Article  Google Scholar 

  106. Lerner, Y., Papo, D., Zhdanov, A., Belozersky, L. & Hendler, T. Eyes wide shut: amygdala mediates eyes-closed effect on emotional experience with music. PLoS ONE 4, e6230 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Petrini, K., Crabbe, F., Sheridan, C. & Pollick, F. E. The music of your emotions: neural substrates involved in detection of emotional correspondence between auditory and visual music actions. PloS ONE 6, e19165 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pehrs, C. et al. How music alters a kiss: superior temporal gyrus controls fusiform–amygdalar effective connectivity. Soc. Cogn. Affect. Neurosci. http://dx.doi.org/10.1093/scan/nst169 (2013).

  109. Drevets, W. C., Price, J. L. & Furey, M. L. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct. Funct. 213, 93–118 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Maratos, A., Gold, C., Wang, X. & Crawford, M. Music therapy for depression. Cochrane Database Syst. Rev. 1, CD004517 (2008).

    Google Scholar 

  111. Allen, R. & Heaton, P. Autism, music, and the therapeutic potential of music in alexithymia. Music Percept. 27, 251–261 (2010).

    Article  Google Scholar 

  112. Quintin, E.-M., Bhatara, A., Poissant, H., Fombonne, E. & Levitin, D. J. Emotion perception in music in high-functioning adolescents with autism spectrum disorders. J. Autism Dev. Disord. 41, 1240–1255 (2011).

    Article  PubMed  Google Scholar 

  113. Lai, G., Pantazatos, S. P., Schneider, H. & Hirsch, J. Neural systems for speech and song in autism. Brain 135, 961–975 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Hsieh, S., Hornberger, M., Piguet, O. & Hodges, J. R. Neural basis of music knowledge: evidence from the dementias. Brain 134, 2523–2534 (2011).

    Article  PubMed  Google Scholar 

  115. Vanstone, A. D. et al. Episodic and semantic memory for melodies in Alzheimer's disease. Music Percept. 29, 501–507 (2012).

    Article  Google Scholar 

  116. Cuddy, L. L. et al. Memory for melodies and lyrics in alzheimer's disease. Music Percept. 29, 479–491 (2012). This article shows that long-term memory for music is spared through the mild and moderate stages of AD, and may even be preserved in some patients at the severe stage.

    Article  Google Scholar 

  117. Moussard, A., Bigand, E., Belleville, S. & Peretz, I. Music as an aid to learn new verbal information in alzheimer's disease. Music Percept. 29, 521–531 (2012).

    Article  Google Scholar 

  118. Finke, C., Esfahani, N. E. & Ploner, C. J. Preservation of musical memory in an amnesic professional cellist. Curr. Biol. 22, R591–R592 (2012). This study reveals that long-term memory for music depends on brain networks that are distinct from those involved in episodic and semantic memory.

    Article  CAS  PubMed  Google Scholar 

  119. Downey, L. E. et al. Mentalising music in frontotemporal dementia. Cortex 49, 1844–1855 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Cepeda, M., Carr, D., Lau, J. & Alvarez, H. Music for pain relief. Cochrane Database Syst. Rev. 2, CD004843 (2006).

    Google Scholar 

  121. Särkämö, T. et al. Music and speech listening enhance the recovery of early sensory processing after stroke. J. Cogn. Neurosci. 22, 2716–2727 (2010).

    Article  PubMed  Google Scholar 

  122. Zendel, B. R. & Alain, C. Musicians experience less age-related decline in central auditory processing. Psychol. Aging 27, 410–417 (2012).

    Article  PubMed  Google Scholar 

  123. Parbery-Clark, A., Strait, D. L., Anderson, S., Hittner, E. & Kraus, N. Musical experience and the aging auditory system: implications for cognitive abilities and hearing speech in noise. PLoS ONE 6, e18082 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Petrides, M. & Pandya, D. N. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J. Comp. Neurol. 228, 105–116 (1984).

    Article  CAS  PubMed  Google Scholar 

  125. Kaas, J. H. & Hackett, T. A. Subdivisions of auditory cortex and processing streams in primates. Proc. Natl Acad. Sci. USA 97, 11793–11799 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. House, J. S. Social isolation kills, but how and why? Psychosomat. Med. 63, 273–274 (2001).

    Article  CAS  Google Scholar 

  127. Koelsch, S., Offermanns, K. & Franzke, P. Music in the treatment of affective disorders: an exploratory investigation of a new method for music-therapeutic research. Music Percept. 27, 307–316 (2010).

    Article  Google Scholar 

  128. Russell, P. A. in The Social Psychology of Music (eds North, A. & Hargreaves, D. J.) 141–158 (Oxford Univ. Press, 1997).

    Google Scholar 

  129. Patel, A. D. Music, Language, and the Brain (Oxford Univ. Press, 2008).

    Google Scholar 

  130. Trehub, S. The developmental origins of musicality. Nature Neurosci. 6, 669–673 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Fitch, W. T. The biology and evolution of music: a comparative perspective. Cognition 100, 173–215 (2006).

    Article  PubMed  Google Scholar 

  132. Kirschner, S. & Tomasello, M. Joint drumming: social context facilitates synchronization in preschool children. J. Exp. Child Psychol. 102, 299–314 (2009).

    Article  PubMed  Google Scholar 

  133. Overy, K. & Molnar-Szakacs, I. Being together in time: musical experience and the mirror neuron system. Music Percept. 26, 489–504 (2009).

    Article  Google Scholar 

  134. Wiltermuth, S. S. & Heath, C. Synchrony and cooperation. Psychol. Sci. 20, 1–5 (2009).

    Article  PubMed  Google Scholar 

  135. Launay, J., Dean, R. T. & Bailes, F. Synchronization can influence trust following virtual interaction. Exp. Psychol. 60, 53–63 (2013).

    Article  PubMed  Google Scholar 

  136. Kirschner, S. & Tomasello, M. Joint music making promotes prosocial behavior in 4-year-old children. Evol. Hum. Behav. 31, 354–364 (2010).

    Article  Google Scholar 

  137. Rilling, J. K. et al. A neural basis for social cooperation. Neuron 35, 395–405 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. van Veelen, M., Garcá, J., Rand, D. G. & Nowak, M. A. Direct reciprocity in structured populations. Proc. Natl Acad. Sci. USA 109, 9929–9934 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Nowak, M. A. Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cross, I. Musicality and the human capacity for culture. Musicae Scientiae 12, 147–167 (2008).

    Article  Google Scholar 

  141. Siebel, W. Human Interaction (Glaser, 1994).

    Google Scholar 

  142. Fitch, W. T. The evolution of music in comparative perspective. Ann. NY Acad. Sci. 1060, 29–49 (2005).

    Article  PubMed  Google Scholar 

  143. Eickhoff, S. B. et al. A new spm toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25, 1325–1335 (2005).

    Article  PubMed  Google Scholar 

  144. Eickhoff, S. B. et al. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum. Brain Mapp. 30, 2907–2926 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F. & Fox, P. T. Activation likelihood estimation meta-analysis revisited. Neuroimage 59, 2349–2361 (2012).

    Article  PubMed  Google Scholar 

  146. Rohrmeier, M. & Cross, I. in Proc. 10th Intl Conf. Music Percept. Cogn. (eds Miyazaki, K., Hirage, Y., Adachi, M., Nakajima, Y. & Tsuzak, M.) 619–627 (2008).

    Google Scholar 

Download references

Acknowledgements

The author thanks M. Lehne, C. Pehrs, E. Gitterman, W. Trost, K. Friston, M. Pearce, N. Todd, S. Eickhoff, N. Gosselin and J. Warren for comments on the manuscript, and E. Gitterman for his help in preparing figure 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Koelsch.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary information S1 (box)

To visualize the main findings of previous functional neuroimaing studies on music-evoked emotions, and to provide coordinates for directed hypotheses of future studies, a meta-analysis was computed. (PDF 441 kb)

PowerPoint slides

Glossary

Music

Structured sounds that are produced by humans as a means of social interaction, expression, diversion or evocation of emotion.

Functional neuroimaging

Functional neuroimaging methods, such as functional MRI (fMRI) or positron emission tomography (PET), use indirect measures (for example, changes in regional blood flow) to localize neural activity in the brain.

Otolith organs

The two otolith organs, the saccule and utricle, are vestibular organs that sense linear acceleration (and its gravitational equivalent).

Vestibular nuclei

Nuclei that are located in the brainstem and receive information from the vestibular nerve.

Cochlear nuclei

Nuclei that are located in the brainstem and receive information from the cochlear ('auditory') nerve.

Forebrain

The forebrain (also called the prosencephalon) comprises the diencephalon, the telencephalon impar and the telencephalon (cerebrum).

Affective prosody

The non-lexical expression of emotion in speech, as characterized, for example, by pitch height, pitch range, pitch variability, loudness, velocity, rapidity of voice onsets and voice quality.

Eigenvector centrality

A measure of centrality (often used as a measure of the relative importance, or influence, of a node within a network); it assigns a large value if a node is connected with many other nodes that are themselves central within the network.

[11C]raclopride

[11C]raclopride is a radiolabelled D2 dopamine receptor antagonist that is used in positron emission tomography studies.

Frontotemporal lobar degeneration

A term used to describe a group of focal non-Alzheimer dementias that are characterized by selective atrophy of the frontal as well as temporal lobes of the brain. It includes syndromes led by behavioural and semantic disintegration, often accompanied by strikingly impaired understanding of emotional and social signals.

Dominant

A functional denotation of a chord built on the fifth scale tone.

Tonic

A functional denotation of a chord that is built on the first scale tone.

Submediant

A functional denotation of a chord built on the sixth scale tone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koelsch, S. Brain correlates of music-evoked emotions. Nat Rev Neurosci 15, 170–180 (2014). https://doi.org/10.1038/nrn3666

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3666

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing