Abstract
Criminal behaviour and violence are increasingly viewed as worldwide public health problems. A growing body of knowledge shows that criminal behaviour has a neurobiological basis, and this has intensified judicial interest in the potential application of neuroscience to criminal law. It also gives rise to important questions. What are the implications of such application for predicting future criminal behaviour and protecting society? Can it be used to prevent violence? And what are the implications for the way offenders are punished?
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Raine, A. The Anatomy of Violence: The Biological Roots of Crime (Pantheon, 2013).
Tuvblad, C. et al. The genetic and environmental etiology of decision-making: a longitudinal twin study. J. Adolesc. 36, 245–255 (2013).
Ferguson, C. J. Genetic contributions to antisocial personality and behavior: a meta-analytic review from an evolutionary perspective. J. Soc. Psychol. 150, 160–180 (2010).
Cadoret, R. J. et al. Associations of the serotonin transporter promoter polymorphism with aggressivity, attention deficit, and conduct disorder in an adoptee population. Compr. Psychiatry 44, 88–101 (2003).
DeLisi, M., Beaver, K. M., Vaughn, M. G. & Wright, J. P. All in the family: gene × environment interaction between DRD2 and criminal father is associated with five antisocial phenotypes. Crim. Justice Behav. 36, 1187–1197 (2009).
DeYoung, C. G. et al. Variation in the catechol-O-methyltransferase Val158Met polymorphism associated with conduct disorder and ADHD symptoms, among adolescent male delinquents. Psychiatr. Genet. 20, 20–24 (2010).
Gadow, K. D., Devincent, C. J., Olvet, D. M., Pisarevskaya, V. & Hatchwell, E. Association of DRD4 polymorphism with severity of oppositional defiant disorder, separation anxiety disorder and repetitive behaviors in children with autism spectrum disorder. Eur. J. Neurosci. 32, 1058–1065 (2010).
Vassos, E., Collier, D. A. & Fazel, S. Systematic meta-analyses and field synopsis of genetic association studies of violence and aggression. Mol. Psychiatry http://dx.doi.org/10.1038/mp.2013.31 (2013).
Caspi, A. et al. Role of genotype in the cycle of violence in maltreated children. Science 297, 851–854 (2002).
Tremblay, R. E. Understanding development and prevention of chronic physical aggression: towards experimental epigenetics studies. Phil. Trans. R. Soc. B 363, 2613–2622 (2008).
Raine, A., Buchsbaum, M. S. & Lacasse, L. Brain abnormalities in murderers indicated by positron emission tomography. Biol. Psychiatry 42, 495–508 (1997).
Arseneault, L., Tremblay, R. E., Boulerice, B., Seguin, J. R. & Saucier, J. F. Minor physical anomalies and family adversity as risk factors for violent delinquency in adolescence. Am. J. Psychiatry 157, 917–923 (2000).
Mednick, S. A. & Kandel, E. S. Congenital determinants of violence. Bull. Am. Acad. Psychiatry Law 16, 101–109 (1988).
Ryan, S. R., Schechter, J. C. & Brennan, P. A. Perinatal factors, parenting behavior, and reactive aggression: does cortisol reactivity mediate this developmental risk process? J. Abnorm. Child Psychol. 40, 1211–1222 (2012).
Pine, D. S., Shaffer, D., Schonfeld, I. S. & Davies, M. Minor physical anomalies: modifiers of environmental risks for psychiatric impairment? J. Am. Acad. Child Adolesc. Psychiatry 36, 395–403 (1997).
Raine, A., Lee, L., Yang, Y. & Colletti, P. Neurodevelopmental marker for limbic maldevelopment in antisocial personality disorder and psychopathy. Br. J. Psychiatry 197, 186–192 (2010).
Sarwar, M. The septum pellucidum: normal and abnormal. AJNR Am. J. Neuroradiol. 10, 989–1005 (1989).
Pardini, D. A., Raine, A., Erickson, K. & Loeber, R. Lower amygdala volume in men is associated with childhood aggression, early psychopathic traits, and future violence. Biol. Psychiatry http://dx.doi.org/10.1016/j.biopsych.2013.04.003 (2013).
Brennan, P. A., Grekin, E. R. & Mednick, S. A. Maternal smoking during pregnancy and adult male criminal outcomes. Arch. Gen. Psychiatry 56, 215–219 (1999).
Sood, B. et al. Prenatal alcohol exposure and childhood behavior at age 6 to 7 years: I. dose–response effect. Pediatrics 108, e34 (2001).
Maughan, B., Taylor, A., Caspi, A. & Moffitt, T. E. Prenatal smoking and early childhood conduct problems: testing genetic and environmental explanations of the association. Arch. Gen.Psychiatry 61, 836–843 (2004).
Jaffee, S. R., Strait, L. B. & Odgers, C. L. From correlates to causes: can quasi-experimental studies and statistical innovations bring us closer to identifying the causes of antisocial behavior? Psychol. Bull. 138, 272–295 (2012).
Olympio, K. P. K., Gonçalves, C., Günther, W. M. R. & Bechara, E. J. H. Neurotoxicity and aggressiveness triggered by low-level lead in children: a review. Rev. Panam. Salud Publica 26, 266–275 (2009).
Wright, J. P. et al. Association of prenatal and childhood blood lead concentrations with criminal arrests in early adulthood. PloS Med. 5, 732–740 (2008).
Fergusson, D. M., Boden, J. M. & Horwood, L. J. Dentine lead levels in childhood and criminal behaviour in late adolescence and early adulthood. J. Epidemiol. Commun. Health 62, 1045–1050 (2008).
Ericson, J. E. et al. Prenatal manganese levels linked to childhood behavioral disinhibition. Neurotoxicol. Teratol. 29, 181–187 (2007).
Neugebauer, R., Hoek, H. W. & Susser, E. Prenatal exposure to wartime famine and development of antisocial personality disorder in early adulthood. JAMA 282, 455–462 (1999).
Galler, J. R. et al. Socioeconomic outcomes in adults malnourished in the first year of life: a 40-year study. Pediatrics 130, e1–e7 (2012).
Liu, J. H., Raine, A., Venables, P. H. & Mednick, S. Malnutrition at age 3 years and externalizing behavior problems at ages 8, 11 and 17 years. Am. J. Psychiatry 161, 2005–2013 (2004).
Hawes, D. J., Brennan, J. & Dadds, M. R. Cortisol, callous–unemotional traits, and pathways to antisocial behavior. Curr. Opin. Psychiatry 22, 357–362 (2009).
van Goozen, S. H., Fairchild, G., Snoek, H. & Harold, G. T. The evidence for a neurobiological model of childhood antisocial behavior. Psychol. Bull. 133, 149–182 (2007).
Shoal, G. D., Giancola, P. R. & Kilrillova, G. P. Salivary cortisol, personality, and aggressive behavior in adolescent boys: a 5-year longitudinal study. J. Am. Acad. Child Adolesc. Psychiatry 42, 1101–1107 (2003).
McBurnett, K., Lahey, B. B., Rathouz, P. J. & Loeber, R. Low salivary cortisol and persistent aggression in boys referred for disruptive behavior. Arch. Gen. Psychiatry 57, 38–43 (2000).
Archer, J., Graham-Kevan, N. & Davies, M. Testosterone and aggression: a reanalysis of Book, Starzyk, and Quinsey's study. Aggress. Violent Behav. 10, 241–261 (2005).
Pope, H. G. Jr, Kouri, E. M. & Hudson, J. I. Effects of supraphysiologic doses of testosterone on mood and aggression in normal men: a randomized controlled trial. Arch. Gen. Psychiatry 57, 133–140 (2000).
O'Connor, D. B., Archer, J., Hair, W. M. & Wu, F. C. Exogenous testosterone, aggression, and mood in eugonadal and hypogonadal men. Physiol. Behav. 75, 557–566 (2002).
Tarter, R. E. et al. Prospective study of the association between abandoned dwellings and testosterone level on the development of behaviors leading to cannabis use disorder in boys. Biol. Psychiatry 65, 116–121 (2009).
van Bokhoven, I. et al. Salivary testosterone and aggression, delinquency, and social dominance in a population-based longitudinal study of adolescent males. Horm. Behav. 50, 118–125 (2006).
Nelson, R. J. & Trainor, B. C. Neural mechanisms of aggression. Nature Rev. Neurosci. 8, 536–546 (2007).
Moore, T. M., Scarpa, A. & Raine, A. A meta-analysis of serotonin metabolite 5-HIAA and antisocial behavior. Aggressive Behav. 28, 299–316 (2002).
Coccaro, E. F. Central serotonin and impulsive aggression. Br. J. Psychiatry 155 (Suppl. 8), 52–62 (1989).
Rubia, K. et al. Tryptophan depletion reduces right inferior prefrontal activation during response inhibition in fast, event-related fMRI. Psychopharmacology 179, 791–803 (2005).
Blair, R. J. The amygdala and ventromedial prefrontal cortex in morality and psychopathy. Trends Cogn. Sci. 11, 387–392 (2007).
Alia-Klein, N. et al. Brain monoamine oxidase A activity predicts trait aggression. J. Neurosci. 28, 5099–5104 (2008).
Ortiz, J. & Raine, A. Heart rate level and antisocial behavior in children and adolescents: a meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry 43, 154–162 (2004).
Armstrong, T. A., Keller, S., Franklin, T. W. & Macmillan, S. N. Low resting heart rate and antisocial behavior: a brief review of evidence and preliminary results from a new test. Crim. Justice Behav. 36, 1125–1140 (2009).
De Vries-Bouw, M. et al. The predictive value of low heart rate and heart rate variability during stress for reoffending in delinquent male adolescents. Psychophysiology 48, 1597–1604 (2011).
Jennings, W. G., Piquero, A. R. & Farrington, D. P. Does resting heart rate at age 18 distinguish general and violent offending up to age 50? Findings from the Cambridge Study in Delinquent Development. J. Crim. Justice 41, 213–219 (2013).
Raine, A., Venables, P. H. & Williams, M. Relationships between central and autonomic measures of arousal at age 15 years and criminality at age 24 years. Arch. Gen. Psychiatry 47, 1003–1007 (1990).
Gao, Y. & Raine, A. P3 event-related potential impairments in antisocial and psychopathic individuals: a meta-analysis. Biol. Psychol. 82, 199–210 (2009).
Gao, Y., Raine, A., Venables, P. H. & Mednick, S. A. The association between P3 amplitude at age 11 and criminal offending at age 23. J. Clin. Child Adolesc. Psychol. 42, 120–130 (2012).
Lorber, M. F. Psychophysiology of aggression, psychopathy, and conduct problems: a meta-analysis. Pychol. Bull. 130, 531–552 (2004).
Raine, A. The Psychopathology of Crime: Criminal Behavior as a Clinical Disorder (Academic Press, 1993).
Fairchild, G., Van Goozen, S. H., Stollery, S. J. & Goodyer, I. M. Fear conditioning and affective modulation of the startle reflex in male adolescents with early-onset or adolescence-onset conduct disorder and healthy control subjects. Biol. Psychiatry 63, 279–285 (2008).
Fairchild, G., Stobbe, Y., van Goozen, S. H. M., Calder, A. J. & Goodyer, I. M. Facial expression recognition, fear conditioning, and startle modulation in female subjects with conduct disorder. Biol. Psychiatry 68, 272–279 (2010).
Syngelaki, E. M., Fairchild, G., Moore, S. C., Savage, J. C. & van Goozen, S. H. Fearlessness in juvenile offenders is associated with offending rate. Dev. Sci. 16, 84–90 (2013).
Sehlmeyer, C. et al. Human fear conditioning and extinction in neuroimaging: a systematic review. PLoS ONE 4, e5865 (2009).
Patrick, C. J., Venables, N. C. & Skeem, J. in Psychopathy and Law: A Practitioner's Guide (eds Häkkänen-Nyholm, H. & Nyholm, J.-O.) 39–77 (Wiley, 2012).
Gao, Y., Raine, A., Venables, P. H. & Dawson, M. E. Association of poor childhood fear conditioning and adult crime. Am. J. Psychiatry 167, 56–60 (2010).
Raine, A., Venables, P. H. & Williams, M. Better autonomic conditioning and faster electrodermal half-recovery time at age 15 years as possible protective factors agains crime at 29 years. Dev. Psychol. 32, 624–630 (1996).
Yang, Y. & Raine, A. Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: a meta-analysis. Psychiatry Res. 174, 81–88 (2009).
Holroyd, C. B. & Coles, M. G. H. The neural basis. of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev. 109, 679–709 (2002).
Kiehl, K. A., Liddle, P. F. & Hopfinger, J. B. Error processing and the rostral anterior cingulate: an event-related fMRI study. Psychophysiology 37, 216–223 (2000).
Kosson, D. S. et al. The role of the amygdala and rostral anterior cingulate in encoding expected outcomes during learning. Neuroimage 29, 1161–1172 (2006).
Devinsky, O., Morrell, M. J. & Vogt, B. A. Contributions of anterior cingulate cortex to behaviour. Brain 118, 279–306 (1995).
Danckert, J. et al. Goal-directed selective attention and response competition monitoring: evidence from unilateral parietal and anterior cingulate lesions. Neuropsychology 14, 16–28 (2000).
Hornak, J. et al. Changes in emotion after circumscribed surgical lesions of the orbitofrontal and cingulate cortices. Brain 126, 1691–1712 (2003).
Damasio, A. R. Descartes' Error: Emotion, Reason, and the Human Brain (G. P. Putnam's Sons, 1994).
Blair, R. J. The roles of the orbital frontal cortex in the modulation of antisocial behavior. Brain Cogn. 55, 198–208 (2004).
Grafman, J. et al. Frontal lobe injuries, violence, and aggression: a report of the Vietnam Head Injury Study. Neurology 46, 1231–1238 (1996).
Burns, J. M. & Swerdlow, R. H. Right orbitofrontal tumor with pedophilia symptom and constructional apraxia sign. Arch. Neurol. 60, 437–440 (2003).
Yang, Y., Raine, A., Narr, K. L., Colletti, P. & Toga, A. W. Localization of deformations within the amygdala in individuals with psychopathy. Arch. Gen. Psychiatry 66, 986–994 (2009).
Glenn, A. L., Raine, A. & Schug, R. A. The neural correlates of moral decision-making in psychopathy. Mol. Psychiatry 14, 5–6 (2009).
Jones, A. P., Laurens, K. R., Herba, C. M., Barker, G. J. & Viding, E. Amygdala hypoactivity to fearful faces in boys with conduct problems and callous–unemotional traits. Am. J. Psychiatry 166, 95–102 (2009).
Birbaumer, N. et al. Deficient fear conditioning in psychopathy: a functional magnetic resonance imaging study. Arch. Gen. Psychiatry 62, 799–805 (2005).
Coccaro, E. F., McCloskey, M. S., Fitzgerald, D. A. & Phan, K. L. Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biol. Psychiatry 62, 168–178 (2007).
Tranel, D., Gullickson, G., Koch, M. & Adolphs, R. Altered experience of emotion following bilateral amygdala damage. Cogn. Neurospsychiatry 11, 219–232 (2006).
Adolphs, R. et al. Recognition of facial emotion in nine individuals with bilateral amygdala damage. Neuropsychologia 37, 1111–1117 (1999).
Aharoni, E. et al. Neuroprediction of future rearrest. Proc. Natl Acad. Sci. USA 110, 6223–6228 (2013).
Fazel, S., Lichtenstein, P., Grann, M. & Långström, N. Risk of violent crime in individuals with epilepsy and traumatic brain injury: a 35-year Swedish population study. PLoS Med. 8, e1001150 (2011).
Timonen, M. et al. The association of preceding traumatic brain injury with mental disorders, alcoholism and criminality: the Northern Finland 1966 Birth Cohort Study. Psychiatry Res. 113, 217–226 (2002).
Raine, A. et al. Increased executive functioning, attention, and cortical thickness in white-collar criminals. Hum. Brain Mapp. 33, 2932–2940 (2012).
Toro, R. et al. Prenatal exposure to maternal cigarette smoking and the adolescent cerebral cortex. Neuropsychopharmacology 33, 1019–1027 (2008).
Cecil, K. M. et al. Decreased brain volume in adults with childhood lead exposure. PloS Med. 5, 741–750 (2008).
Meyer-Lindenberg, A. et al. Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc. Natl Acad. Sci. USA 103, 6269–6274 (2006).
Wahlund, K. & Kristiansson, M. Aggression, psychopathy and brain imaging — review and future recommendations. Int. J. Law Psychiatry 32, 266–271 (2009).
Cornet, L. J. M., de Kogel, C. H., Nijman, H. L. I., Raine, A. & van der Laan, P. H. Neurobiological factors as predictors of cognitive–behavioral therapy outcome in individuals with antisocial behavior: a review of the literature. Int. J. Offender Ther. Comp. Criminol. http://dx.doi.org/10.1177/0306624X13494694 (2013).
Tiger Aspect Productions. Mindshock: sex on the brain. Channel Four (UK, 2006).
Morse, S. J. Voluntary control of behavior and responsibility. Am. J. Bioeth. 7, 12–13 (2007).
Morse, S. J. Psychopathy and criminal responsibility. Neuroethics 1, 205–212 (2008).
Viding, E. & McCrory, E. J. Genetic and neurocognitive contributions to the development of psychopathy. Dev. Psychopathol. 24, 969–983 (2012).
Hare, R. D. & Neumann, C. S. Structural models of psychopathy. Curr. Psychiatry Rep. 7, 57–64 (2005).
van der Leij, J. B., Jackson, J. L., Malsch, M. & Nijboer, J. F. Residential mental health assessment within Dutch criminal cases: a discussion. Behav. Sci. Law 19, 691–702 (2001).
Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M. & Cohen, J. An fMRI investigation of emotional engagement in moral judgment. Science 293, 2105–2108 (2001).
Neumann, C. S., Johansson, P. T. & Hare, R. D. The Psychopathy Checklist-Revised (PCL-R), low anxiety, and fearlessness: a structural equation modeling analysis. Personal. Disord. 4, 129–137 (2013).
Patrick, C. J., Cuthbert, B. N. & Lang, P. J. Emotion in the criminal psychopath: fear image processing. J. Abnorm. Psychol. 103, 523–534 (1994).
Sapolsky, R. M. The frontal cortex and the criminal justice system. Phil. Trans. R. Soc. Lond. B 359, 1787–1796 (2004).
Farah, M. J. Neuroethics: the ethical, legal, and societal impact of neuroscience. Annu. Rev. Psychol. 63, 571–591 (2012).
Frazer, K. A., Murray, S. S., Schork, N. J. & Topol, E. J. Human genetic variation and its contribution to complex traits. Nature Rev. Genet. 10, 241–251 (2009).
Hariri, A. R. The neurobiology of individual differences in complex behavioral traits. Annu. Rev. Neurosci. 32, 225–247 (2009).
Raine, A. et al. Corpus callosum abnormalities in psychopathic antisocial individuals. Arch. Gen. Psychiatry 60, 1134–1142 (2003).
Raine, A., Lencz, T., Bihrle, S., LaCasse, L. & Colletti, P. Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Arch. Gen. Psychiatry 57, 119–127 (2000).
Mackintosh, N. et al. Brain waves 4: neuroscience and the law. The Royal Society [online], (2011).
Berk, R., Sherman, L., Barnes, G., Kurtz, E. & Ahlman, L. Forecasting murder within a population of probationers and parolees: a high stakes application of statistical learning. J. R. Stat. Soc. A 172, 191–211 (2009).
Pappadopulos, E. et al. Pharmacotherapy of aggression in children and adolescents: efficacy and effect size. J. Can. Acad. Child Adolesc. Psychiatry 15, 27–39 (2006).
New, A. S. et al. Fluoxetine increases relative metabolic rate in prefrontal cortex in impulsive aggression. Psychopharmacology 176, 451–458 (2004).
Lösel, F. & Schmucker, M. The effectiveness of treatment for sexual offenders: a comprehensive meta-analysis. J. Exp. Criminol. 1, 117–146 (2005).
Douglas, T., Bonte, P., Focquaert, F., Devolder, K. & Sterckx, S. Coercion, incarceration, and chemical castration: an argument from autonomy. J. Bioeth. Inq. 10, 393–405 (2013).
Zaalberg, A., Nijman, H., Bulten, E., Stroosma, L. & van der Staak, C. Effects of nutritional supplements on aggression, rule-breaking, and psychopathology among young adult prisoners. Aggressive Behav. 36, 117–126 (2010).
Gesch, S. M., Hampson, S. E., Eves, A. & Crowder, M. J. Influence of supplemental vitamins, minerals and essential fatty acids on the antisocial behaviour of young adult prisoners. Br. J. Psychiatry 181, 22–28 (2002).
Gustafsson, P. A. et al. EPA supplementation improves teacher-rated behaviour and oppositional symptoms in children with ADHD. Acta Paediatr. 99, 1540–1549 (2010).
Kirby, A., Woodward, A., Jackson, S., Wang, Y. & Crawford, M. A. A double-blind, placebo-controlled study investigating the effects of omega-3 supplementation in children aged 8–10 years from a mainstream school population. Res. Dev. Disabil. 31, 718–730 (2010).
Calderon, F. & Kim, H.-Y. Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J. Neurochem. 90, 979–988 (2004).
Olds, D. et al. Long-term effects of nurse home visitation on children's criminal and antisocial behavior: 15-year follow-up of a randomized controlled trial. JAMA 280, 1238–1244 (1998).
Raine, A. et al. Early educational and health enrichment at age 3–5 years is associated with increased autonomic and central nervous system arousal and orienting at age 11 years: evidence from the Mauritius Child Health Project. Psychophysiology 38, 254–266 (2001).
Raine, A., Mellingen, K., Liu, J., Venables, P. H. & Mednick, S. Effects of environmental enrichment at 3–5 years on schizotypal personality and antisocial behavior at ages 17 and 23 years. Am. J. Psychiatry 160, 1627–1635 (2003).
Ruff, C. C., Ugazio, G. & Fehr, E. Changing social norm compliance with noninvasive brain stimulation. Science 342, 482–484 (2013).
Desbordes, G. et al. Effects of mindful-attention and compassion meditation training on amygdala response to emotional stimuli in an ordinary, non-meditative state. Front. Hum. Neurosci. 6, 292 (2012).
Davidson, R. J. et al. Alterations in brain and immune function produced by mindfulness meditation. Psychosom. Med. 65, 564–570 (2003).
Himelstein, S. Meditation research: the state of the art in correctional settings. Int. J. Offender Ther. Comp. Criminol. 55, 646–661 (2010).
Wupperman, P. et al. Mindfulness and modification therapy for behavioral dysregulation: results from a pilot study targeting alcohol use and aggression in women. J. Clin. Psychol. 68, 50–66 (2012).
Hjalmarsson, R. & Lindquist, M. J. The origins of intergenerational associations in crime: lessons from Swedish adoption data. Labour Econ. 20, 68–81 (2013).
Raine, A. & Yang, Y. Neural foundations to moral reasoning and antisocial behavior. Soc. Cogn. Affect. Neurosci. 1, 203–213 (2006).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Rights and permissions
About this article
Cite this article
Glenn, A., Raine, A. Neurocriminology: implications for the punishment, prediction and prevention of criminal behaviour. Nat Rev Neurosci 15, 54–63 (2014). https://doi.org/10.1038/nrn3640
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrn3640