The neurobiology of psychopathic traits in youths

Key Points

  • Youths with conduct disorder and psychopathic traits are particularly difficult to treat.

  • Psychopathic traits are associated with two main impairments: a reduced empathic response to distress in others and impairment in reinforcement-based decision making.

  • The reduced empathic response to distress principally reflects a reduced amygdala response to the distress of others (their fear, sadness or pain).

  • The impairment in reinforcement-based decision making reflects dysfunction in the roles of the ventromedial prefrontal cortex (vmPFC) and caudate in representing expected reward and punishment and in detecting inconsistencies between obtained and expected rewards or punishments.

  • These two main impairments interfere with socialization, leading to the development of an individual with reduced guilt and increased probability of using instrumental antisocial behaviour to achieve their goals.

  • Heritability studies implicate a genetic contribution to these impairments; however, molecular genetic information on this disorder remains in its infancy.

  • Environmental variables that affect the development of the amygdala, vmPFC and caudate have been identified, but their role in the development of psychopathic traits has not been clearly demonstrated.

  • Not all youths with conduct disorder show psychopathic traits — there are individuals with a notably different pathophysiology marked by anxiety and increased responsiveness to threat.

  • Effective treatment of conduct disorder may require differentiating patients into those with psychopathic traits versus those with anxiety and increased responsiveness to threat and developing distinct treatment approaches for each group.

Abstract

Conduct disorder is a childhood behaviour disorder that is characterized by persistent aggressive or antisocial behaviour that disrupts the child's environment and impairs his or her functioning. A proportion of children with conduct disorder have psychopathic traits. Psychopathic traits consist of a callous–unemotional component and an impulsive–antisocial component, which are associated with two core impairments. The first is a reduced empathic response to the distress of other individuals, which primarily reflects reduced amygdala responsiveness to distress cues; the second is deficits in decision making and in reinforcement learning, which reflects dysfunction in the ventromedial prefrontal cortex and striatum. Genetic and prenatal factors contribute to the abnormal development of these neural systems, and social–environmental variables that affect motivation influence the probability that antisocial behaviour will be subsequently displayed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Core regions implicated in, and functions disrupted by, psychopathic traits.
Figure 2: A framework for understanding conduct disorder.

References

  1. 1

    Kazdin, A. E., Whitley, M. & Marciano, P. L. Child–therapist and parent–therapist alliance and therapeutic change in the treatment of children referred for oppositional, aggressive, and antisocial behavior. J. Child Psychol. Psychiatry 47, 436–445 (2006).

    Article  PubMed  Google Scholar 

  2. 2

    Barry, C. T. et al. The importance of callous-unemotional traits for extending the concept of psychopathy to children. J. Abnorm. Psychol. 109, 335–340 (2000).

    Article  PubMed  Google Scholar 

  3. 3

    Lynam, D. R., Caspi, A., Moffitt, T. E., Loeber, R. & Stouthamer-Loeber, M. Longitudinal evidence that psychopathy scores in early adolescence predict adult psychopathy. J. Abnorm. Psychol. 116, 155–165 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    Burke, J. D., Loeber, R. & Lahey, B. B. Adolescent conduct disorder and interpersonal callousness as predictors of psychopathy in young adults. J. Clin. Child Adolesc. Psychol. 36, 334–346 (2007).

    Article  PubMed  Google Scholar 

  5. 5

    Wootton, J. M., Frick, P. J., Shelton, K. K. & Silverthorn, P. Ineffective parenting and childhood conduct problems: the moderating role of callous–unemotional traits. J. Consult. Clin. Psychol. 65, 301–308 (1997). The first study to report that the type of parenting has less of an impact on the behaviour of youths with high levels of callous–unemotional traits relative to youths with low levels of callous–unemotional traits; that is, the study shows that the pathophysiology of callous–unemotional traits interferes with socialization.

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Hawes, D. J. & Dadds, M. R. The treatment of conduct problems in children with callous–unemotional traits. J. Consult. Clin. Psychol. 73, 737–741 (2005).

    Article  PubMed  Google Scholar 

  7. 7

    Waschbusch, D. A., Carrey, N. J., Willoughby, M. T., King, S. & Andrade, B. F. Effects of methylphenidate and behavior modification on the social and academic behavior of children with disruptive behavior disorders: the moderating role of callous/unemotional traits. J. Clin. Child Adolesc. Psychol. 36, 629–644 (2007). A good example of a paper showing that psychosocial techniques have less of an impact on the behaviour of youths with high levels of callous–unemotional traits than youths with low levels of callous–unemotional traits. This paper is of particular interest as it also suggests that methylphenidate administration may be helpful in youths with high callous–unemotional traits.

    Article  PubMed  Google Scholar 

  8. 8

    Marsh, A. A. et al. Reduced amygdala response to fearful expressions in children and adolescents with callous-unemotional traits and disruptive behavior disorders. Am. J. Psychiatry 165, 712–720 (2008). The first study to document that youths with psychopathic traits show reduced amygdala responses to the fearful expressions of other individuals.

    Article  PubMed  Google Scholar 

  9. 9

    Finger, E. C. et al. Abnormal ventromedial prefrontal cortex function in children with psychopathic traits during reversal learning. Arch. General Psychiatry 65, 586–594 (2008).

    Article  Google Scholar 

  10. 10

    Jones, A. P., Laurens, K. R., Herba, C. M., Barker, G. J. & Viding, E. Amygdala hypoactivity to fearful faces in boys with conduct problems and callous–unemotional traits. Am. J. Psychiatry 166, 95–102 (2009).

    Article  PubMed  Google Scholar 

  11. 11

    Pardini, D. A., Frick, P. J. & Moffitt, T. E. Building an evidence base for DSM-5 conceptualizations of oppositional defiant disorder and conduct disorder: introduction to the special section. J. Abnorm. Psychol. 119, 683–688 (2010).

    Article  PubMed  Google Scholar 

  12. 12

    Hare, R. D. A research scale for the assessment of psychopathy in criminal populations. Pers. Indiv. Differ. 1, 111–119 (1980).

    Article  Google Scholar 

  13. 13

    Frick, P. J. Callous–unemotional traits and conduct problems: a two-factor model of psychopathy in children. Issues Criminal. Legal Psychol. 24, 47–51 (1995).

    Google Scholar 

  14. 14

    Blair, R. J. R. Responding to the emotions of others: dissociating forms of empathy through the study of typical and psychiatric populations. Conscious. Cogn. 14, 698–718 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Frith, U. Autism: Explaining the Enigma (Blackwell, 1989).

    Google Scholar 

  16. 16

    Blair, R. J. R. et al. Theory of mind in the psychopath. J. Forens. Psychiatry 7, 15–25 (1996).

    Article  Google Scholar 

  17. 17

    Richell, R. A. et al. Theory of mind and psychopathy: can psychopathic individuals read the 'language of the eyes'? Neuropsychologia 41, 523–526 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Dolan, M. & Fullam, R. Theory of mind and mentalizing ability in antisocial personality disorders with and without psychopathy. Psychol. Med. 34, 1093–1102 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Jones, A. P., Happe, F. G., Gilbert, F., Burnett, S. & Viding, E. Feeling, caring, knowing: different types of empathy deficit in boys with psychopathic tendencies and autism spectrum disorder. J. Child Psychol. Psychiatry 51, 1188–1197 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Anastassiou-Hadjicharalambous, X. & Warden, D. Cognitive and affective perspective-taking in conduct-disordered children high and low on callous-unemotional traits. Child Adolesc. Psychiatry Ment. Health 2, 16 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21

    Sebastian, C. L. et al. Neural responses to affective and cognitive theory of mind in children with conduct problems and varying levels of callous-unemotional traits. Arch. Gen. Psychiatry 69, 814–822 (2012).

    Article  PubMed  Google Scholar 

  22. 22

    Lombardo, M. V. et al. Shared neural circuits for mentalizing about the self and others. J. Cogn. Neurosci. 22, 1623–1635 (2010).

    Article  PubMed  Google Scholar 

  23. 23

    Amodio, D. M. & Frith, C. D. Meeting of minds: the medial frontal cortex and social cognition. Nature Rev. Neurosci. 7, 268–277 (2006).

    Article  CAS  Google Scholar 

  24. 24

    Saxe, R. & Baron-Cohen, S. The neuroscience of theory of mind. Soc. Neurosci. 1, 1–9 (2006).

    Article  Google Scholar 

  25. 25

    Blair, R. J. R. Facial expressions, their communicatory functions and neuro-cognitive substrates. Phil. Trans. R. Soc. Lond. B 358, 561–572 (2003).

    Article  CAS  Google Scholar 

  26. 26

    Fridlund, A. in International Review of Studies on Emotion Vol. 2 (ed. Strongman, K. T.) 117–137 (Wiley-Blackwell;1992).

    Google Scholar 

  27. 27

    Marsh, A. A. & Blair, R. J. Deficits in facial affect recognition among antisocial populations: a meta-analysis. Neurosci. Biobehav. Rev. 32, 454–465 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Dawel, A., O'Kearney, R., McKone, E. & Palermo, R. Not just fear and sadness: meta-analytic evidence of pervasive emotion recognition deficits for facial and vocal expressions in psychopathy. Neurosci. Biobehav. Rev. 36, 2288–2304 (2012).

    Article  PubMed  Google Scholar 

  29. 29

    White, S. F. et al. Reduced activity within the dorsal endogenous orienting of attention network to fearful expressions in youth with disruptive behavior disorders and psychopathic traits. Dev. Psychopathol. 24, 1105–1116 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Carre, J. M., Hyde, L. W., Neumann, C. S., Viding, E. & Hariri, A. R. The neural signatures of distinct psychopathic traits. Soc. Neurosci. 8, 122–135 (2013).

    Article  PubMed  Google Scholar 

  31. 31

    Blair, R. J. R., Colledge, E., Murray, L. & Mitchell, D. G. A selective impairment in the processing of sad and fearful expressions in children with psychopathic tendencies. J. Abnorm. Child Psychol. 29, 491–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Blair, R. J. R. et al. Reduced sensitivity to other's fearful expressions in psychopathic individuals. Pers. Indiv. Differ. 37, 1111–1121 (2004).

    Article  Google Scholar 

  33. 33

    Dolan, M. & Fullam, R. Face affect recognition deficits in personality-disordered offenders: association with psychopathy. Psychol. Med. 36, 1563–1569 (2006).

    Article  PubMed  Google Scholar 

  34. 34

    Dadds, M. R. et al. Attention to the eyes and fear-recognition deficits in child psychopathy. Br. J. Psychiatry 189, 280–281 (2006). An important study documenting that the impairment in the recognition of fearful expressions seen in youths with callous–unemotional traits is significantly reduced when the participant's attention is directed to the eye region of the face. This improvement is also seen in patients with amygdala lesions.

    Article  PubMed  Google Scholar 

  35. 35

    Stevens, D., Charman, T. & Blair, R. J. R. Recognition of emotion in facial expressions and vocal tones in children with psychopathic tendencies. J. Genet. Psychol. 162, 201–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. 36

    Woodworth, M. & Waschbusch, D. Emotional processing in children with conduct problems and callous/unemotional traits. Child Care Health Dev. 34, 234–244 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Blair, R. J. R., Budhani, S., Colledge, E. & Scott, S. Deafness to fear in boys with psychopathic tendencies. J. Child Psychol. Psychiatry 46, 327–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Munoz, L. Callous–unemotional traits are related to combined deficits in recognizing afraid faces and body poses. J. Am. Acad. Child Adolesc. Psychiatry 48, 554–562 (2009).

    Article  PubMed  Google Scholar 

  39. 39

    Blair, R. J. R. Responsiveness to distress cues in the child with psychopathic tendencies. Pers. Indiv. Differ. 27, 135–145 (1999).

    Article  Google Scholar 

  40. 40

    de Wied, M., van Boxtel, A., Matthys, W. & Meeus, W. Verbal, facial and autonomic responses to empathy-eliciting film clips by disruptive male adolescents with high versus low callous-unemotional traits. J. Abnorm. Child Psychol. 40, 211–223 (2012).

    Article  PubMed  Google Scholar 

  41. 41

    Anastassiou-Hadjicharalambous, X. & Warden, D. Physiologically-indexed and self-perceived affective empathy in conduct-disordered children high and low on callous–unemotional traits. Child Psychiatry Hum. Dev. 39, 503–517 (2008).

    Article  PubMed  Google Scholar 

  42. 42

    Aniskiewicz, A. S. Autonomic components of vicarious conditioning and psychopathy. J. Clin. Psychol. 35, 60–67 (1979).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Cheng, Y., Hung, A. Y. & Decety, J. Dissociation between affective sharing and emotion understanding in juvenile psychopaths. Dev. Psychopathol. 24, 623–636 (2012).

    Article  PubMed  Google Scholar 

  44. 44

    Pardini, D. A. & Byrd, A. L. Perceptions of aggressive conflicts and others' distress in children with callous-unemotional traits: 'I'll show you who's boss, even if you suffer and I get in trouble'. J. Child Psychol. Psychiatry 53, 283–291 (2012).

    Article  PubMed  Google Scholar 

  45. 45

    Dadds, M. R., El Masry, Y., Wimalaweera, S. & Guastella, A. J. Reduced eye gaze explains “fear blindness” in childhood psychopathic traits. J. Am. Acad. Child Adolesc. Psychiatry 47, 455–463 (2008).

    Article  PubMed  Google Scholar 

  46. 46

    Pessoa, L., Kastner, S. & Ungerleider, L. G. Attentional control of the processing of neutral and emotional stimuli. Cognitive Brain Res. 15, 31–45 (2002).

    Article  Google Scholar 

  47. 47

    Adolphs, R. et al. A mechanism for impaired fear recognition after amygdala damage. Nature 433, 68–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    White, S. F. et al. Reduced amygdala response in youths with disruptive behavior disorders and psychopathic traits: decreased emotional response versus increased top-down attention to nonemotional features. Am. J. Psychiatry 169, 750–758 (2012).

    Article  PubMed  Google Scholar 

  49. 49

    Viding, E. et al. Amygdala response to preattentive masked fear in children with conduct problems: the role of callous-unemotional traits. Am. J. Psychiatry 169, 1109–1116 (2012).

    Article  PubMed  Google Scholar 

  50. 50

    Marsh, A. A. et al. Empathic responsiveness in amygdala and anterior cingulate cortex in youths with psychopathic traits. J. Child Psychol. Psychiatry 54, 900–910 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Klinnert, M. D., Emde, R. N., Butterfield, P. & Campos, J. J. Social referencing: the infant's use of emotional signals from a friendly adult with mother present. Annu. Prog. Child Psychiatry Child Dev. 22, 427–432 (1987).

    Google Scholar 

  52. 52

    Mineka, S. & Cook, M. Mechanisms involved in the observational conditioning of fear. J. Exp. Psychol. Gen. 122, 23–38 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Blair, R. J. R. The amygdala and ventromedial prefrontal cortex in morality and psychopathy. Trends Cogn. Sci. 11, 387–392 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Jeon, D. et al. Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC. Nature Neurosci. 13, 482–488 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. 55

    Cushman, F., Gray, K., Gaffrey, A. & Mendes, W. B. Simulating murder: the aversion to harmful action. Emotion 12, 2–7 (2012).

    Article  PubMed  Google Scholar 

  56. 56

    O'Doherty, J. P. Beyond simple reinforcement learning: the computational neurobiology of reward-learning and valuation. Eur. J. Neurosci. 35, 987–990 (2012).

    Article  PubMed  Google Scholar 

  57. 57

    Balleine, B. W. & O'Doherty, J. P. Human and rodent homologues in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35, 48–69 (2010).

    Article  PubMed  Google Scholar 

  58. 58

    Budhani, S., Marsh, A. A., Pine, D. S. & Blair, R. J. R. Neural correlates of response reversal: considering acquisition. Neuroimage 34, 1754–1765 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Kuhnen, C. M. & Knutson, B. The neural basis of financial risk-taking. Neuron 47, 763–770 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Driscoll, D. M., Dal Monte, O., Solomon, J., Krueger, F. & Grafman, J. Empathic deficits in combat veterans with traumatic brain injury: a voxel-based lesion-symptom mapping study. Cogn. Behav. Neurol. 25, 160–166 (2012).

    Article  PubMed  Google Scholar 

  61. 61

    Engen, H. G. & Singer, T. Empathy circuits. Curr. Opin. Neurobiol 23, 275–282 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Janowski, V., Camerer, C. & Rangel, A. Empathic choice involves vmPFC value signals that are modulated by social processing implemented in IPL. Soc. Cogn. Affect. Neurosci. 8, 201–208 (2013).

    Article  PubMed  Google Scholar 

  63. 63

    Leopold, A. et al. Damage to the left ventromedial prefrontal cortex impacts affective theory of mind. Soc. Cogn. Affect. Neurosci. 7, 871–880 (2012).

    Article  PubMed  Google Scholar 

  64. 64

    Finger, E. C. et al. Disrupted reinforcement signaling in the orbital frontal cortex and caudate in youths with conduct disorder or oppositional defiant disorder and a high level of psychopathic traits. Am. J. Psychiatry 168, 834–841 (2011).

    Article  Google Scholar 

  65. 65

    Fisher, L. & Blair, R. J. R. Cognitive impairment and its relationship to psychopathic tendencies in children with emotional and behavioural difficulties. J. Abnorm. Child Psychol. 26, 511–519 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. 66

    O'Brien, B. S. & Frick, P. J. Reward dominance: associations with anxiety, conduct problems, and psychopathy in children. J. Abnorm. Child Psychol. 24, 223–240 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. 67

    Blair, R. J. R., Colledge, E. & Mitchell, D. G. Somatic markers and response reversal: is there orbitofrontal cortex dysfunction in boys with psychopathic tendencies? J. Abnorm. Child Psychol. 29, 499–511 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Budhani, S. & Blair, R. J. R. Response reversal and children with psychopathic tendencies: success is a function of salience of contingency change. J. Child Psychol. Psychiatry 46, 972–981 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Blair, R. J. R. Moral reasoning in the child with psychopathic tendencies. Pers. Indiv. Differ. 22, 731–739 (1997).

    Article  Google Scholar 

  70. 70

    Fairchild, G. et al. Decision making and executive function in male adolescents with early-onset or adolescence-onset conduct disorder and control subjects. Biol. Psychiatry 66, 162–168 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  71. 71

    Rothemund, Y. et al. Fear conditioning in psychopaths: event-related potentials and peripheral measures. Biol. Psychol. 90, 50–59 (2012).

    Article  PubMed  Google Scholar 

  72. 72

    Birbaumer, N. et al. Deficient fear conditioning in psychopathy: a functional magnetic resonance imaging study. Arch. Gen. Psychiatry 62, 799–805 (2005).

    Article  PubMed  Google Scholar 

  73. 73

    Fairchild, G., Van Goozen, S. H., Stollery, S. J. & Goodyer, I. M. Fear conditioning and affective modulation of the startle reflect in male adolescents with early-onset of adolescence-onset conduct disorder and healthy control subjects. Biol. Psychiatry 63, 279–285 (2008).

    Article  PubMed  Google Scholar 

  74. 74

    Gao, Y., Raine, A., Venables, P. H., Dawson, M. E. & Mednick, S. A. Association of poor childhood fear conditioning and adult crime. Am. J. Psychiatry 167, 56–60 (2010).

    Article  PubMed  Google Scholar 

  75. 75

    Blair, R. J. The amygdala and ventromedial prefrontal cortex: functional contributions and dysfunction in psychopathy. Phil. Trans. R. Soc. B 363, 2557–2565 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. 76

    White, S. F. et al. Disrupted expected value and prediction error signaling in youth with disruptive behavior disorders during a passive avoidance task. Am. J. Psychiatry 170, 315–323 (2013). The first model-based fMRI study of the reinforcement-based decision-making impairment in youths with disruptive behaviour disorders and its relationship with psychopathic traits. This was the first study to report specific computational impairments in this population in prediction error and expected value signalling within the caudate and vmPFC, respectively.

    PubMed  PubMed Central  Article  Google Scholar 

  77. 77

    Dayan, P. & Balleine, B. W. Reward, motivation, and reinforcement learning. Neuron 36, 285–298 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. 78

    Rescorla, R. A. & Wagner, A. R. in Classical Conditioning II (eds Black, A. H. & Prokasy, W. F.) 64–99 (Century-Crofts, 1972).

    Google Scholar 

  79. 79

    Rubia, K. et al. Disorder-specific dissociation of orbitofrontal dysfunction in boys with pure conduct disorder during reward and ventrolateral prefrontal dysfunction in boys with pure ADHD during sustained attention. Am. J. Psychiatry 166, 83–94 (2009).

    Article  PubMed  Google Scholar 

  80. 80

    Crowley, T. J. et al. Risky decisions and their consequences: neural processing by boys with antisocial substance disorder. PLoS ONE 5, e12835 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  81. 81

    Bjork, J. M., Chen, G., Smith, A. R. & Hommer, D. W. Incentive-elicited mesolimbic activation and externalizing symptomatology in adolescents. J. Child Psychol. Psychiatry 51, 827–837 (2010).

    Article  PubMed  Google Scholar 

  82. 82

    Anderson, N. E. & Kiehl, K. A. The psychopath magnetized: insights from brain imaging. Trends Cogn. Sci. 16, 52–60 (2012).

    Article  PubMed  Google Scholar 

  83. 83

    Marsh, A. A. et al. Reduced amygdala–orbitofrontal connectivity during moral judgments in youths with disruptive behavior disorders and psychopathic traits. Psychiatry Res. 194, 279–286 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  84. 84

    Strohle, A. et al. Reward anticipation and outcomes in adult males with attention-deficit/hyperactivity disorder. Neuroimage 39, 966–972 (2008).

    Article  PubMed  Google Scholar 

  85. 85

    Plichta, M. M. et al. Neural hyporesponsiveness and hyperresponsiveness during immediate and delayed reward processing in adult attention-deficit/hyperactivity disorder. Biol. Psychiatry 65, 7–14 (2009).

    Article  PubMed  Google Scholar 

  86. 86

    Scheres, A., Milham, M. P., Knutson, B. & Castellanos, F. X. Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder. Biol. Psychiatry 61, 720–724 (2007).

    Article  PubMed  Google Scholar 

  87. 87

    Chassin, L., Pitts, S. C., DeLucia, C. & Todd, M. A longitudinal study of children of alcoholics: predicting young adult substance use disorders, anxiety, and depression. J. Abnorm. Psychol. 108, 106–119 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. 88

    Serec, M. et al. Health-related lifestyle, physical and mental health in children of alcoholic parents. Drug Alcohol Rev. 31, 861–870 (2012).

    Article  PubMed  Google Scholar 

  89. 89

    Heitzeg, M. M., Nigg, J. T., Yau, W. Y., Zubieta, J. K. & Zucker, R. A. Affective circuitry and risk for alcoholism in late adolescence: differences in frontostriatal responses between vulnerable and resilient children of alcoholic parents. Alcohol. Clin. Exp. Res. 32, 414–426 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  90. 90

    Yau, W. Y. et al. Nucleus accumbens response to incentive stimuli anticipation in children of alcoholics: relationships with precursive behavioral risk and lifetime alcohol use. J. Neurosci. 32, 2544–2551 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  91. 91

    Jensen, P. S. et al. ADHD comorbidity findings from the MTA study: comparing comorbid subgroups. J. Am. Acad. Child Adolesc. Psychiatry 40, 147–158 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. 92

    Armstrong, T. D. & Costello, E. J. Community studies on adolescent substance use, abuse, or dependence and psychiatric comorbidity. J. Consult. Clin. Psychol. 70, 1224–1239 (2002).

    Article  PubMed  Google Scholar 

  93. 93

    Huebner, B. et al. Morphometric brain abnormalities in boys with conduct disorder. J. Am. Acad. Child Adolesc. Psychiatry 47, 540–547 (2008).

    Article  PubMed  Google Scholar 

  94. 94

    Sterzer, P., Stadler, C., Poustka, F. & Kleinschmidt, A. A structural neural deficit in adolescents with conduct disorder and its association with lack of empathy. Neuroimage 37, 335–342 (2007).

    Article  PubMed  Google Scholar 

  95. 95

    Fairchild, G. et al. Brain structure abnormalities in early-onset and adolescent-onset conduct disorder. Am. J. Psychiatry 168, 624–633 (2011).

    Article  PubMed  Google Scholar 

  96. 96

    Fairchild, G. et al. Brain structure abnormalities in adolescent girls with conduct disorder. J. Child Psychol. Psychiatry 54, 86–95 (2013).

    Article  PubMed  Google Scholar 

  97. 97

    Ermer, E., Cope, L. M., Nyalakanti, P. K., Calhoun, V. D. & Kiehl, K. A. Aberrant paralimbic gray matter in incarcerated male adolescents with psychopathic traits. J. Am. Acad. Child Adolesc. Psychiatry 52, 94–103 (2013). One of the few structural imaging studies of youths with psychopathic traits. It is particularly important because of the large number of participants assessed.

    PubMed  PubMed Central  Article  Google Scholar 

  98. 98

    De Brito, S. A. et al. Size matters: increased grey matter in boys with conduct problems and callous-unemotional traits. Brain 132, 843–852 (2009).

    Article  PubMed  Google Scholar 

  99. 99

    Dalwani, M. et al. Reduced cortical gray matter volume in male adolescents with substance and conduct problems. Drug Alcohol Depend. 118, 295–305 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  100. 100

    Krusei, M. J. P., Casanova, M. F., Mannheim, G. & Johnson-Bilder, A. Reduced temporal lobe volume in early onset conduct disorder. Psychiatry Res. 132, 1–11 (2004).

    Article  Google Scholar 

  101. 101

    Hyatt, C. J., Haney-Caron, E. & Stevens, M. C. Cortical thickness and folding deficits in conduct-disordered adolescents. Biol. Psychiatry 72, 207–214 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  102. 102

    Fahim, C. et al. Neuroanatomy of childhood disruptive behavior disorders. Aggress. Behav. 37, 326–337 (2011).

    Article  PubMed  Google Scholar 

  103. 103

    Craig, M. C. et al. Altered connections on the road to psychopathy. Mol. Psychiatry 14, 946–953 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. 104

    Motzkin, J. C., Newman, J. P., Kiehl, K. A. & Koenigs, M. Reduced prefrontal connectivity in psychopathy. J. Neurosci. 31, 17348–17357 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  105. 105

    Sundram, F. et al. White matter microstructural abnormalities in the frontal lobe of adults with antisocial personality disorder. Cortex 48, 216–229 (2012).

    Article  PubMed  Google Scholar 

  106. 106

    Finger, E. C. et al. Impaired functional but preserved structural connectivity in limbic white matter tracts in youth with conduct disorder or oppositional defiant disorder plus psychopathic traits. Psychiatry Res. 202, 239–244 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  107. 107

    Sarkar, S. et al. Frontotemporal white-matter microstructural abnormalities in adolescents with conduct disorder: a diffusion tensor imaging study. Psychol. Med. 43, 401–411 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. 108

    Passamonti, L. et al. Abnormal anatomical connectivity between the amygdala and orbitofrontal cortex in conduct disorder. PLoS ONE 7, e48789 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  109. 109

    Upadhyay, J. et al. Alterations in brain structure and functional connectivity in prescription opioid-dependent patients. Brain 133, 2098–2114 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  110. 110

    Bodensteiner, J. B. & Schaefer, G. B. Wide cavum septum pellucidum: a marker of disturbed brain development. Pediatr. Neurol. 6, 391–394 (1990).

    Article  CAS  PubMed  Google Scholar 

  111. 111

    Sarwar, M. The septum pellucidum: normal and abnormal. Am. J. Neuroradiol. 10, 989–1005 (1989).

    CAS  PubMed  Google Scholar 

  112. 112

    White, S. F. et al. The relationship between large cavum septum pellucidum and antisocial behavior, callous–unemotional traits and psychopathy in adolescents. J. Child Psychol. Psychiatry 54, 575–581 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  113. 113

    Raine, A., Lee, L., Yang, Y. & Colletti, P. Neurodevelopmental marker for limbic maldevelopment in antisocial personality disorder and psychopathy. Br. J. Psychiatry 197, 186–192 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  114. 114

    May, F. S., Chen, Q. C., Gilbertson, M. W., Shenton, M. E. & Pitman, R. K. Cavum septum pellucidum in monozygotic twins discordant for combat exposure: relationship to posttraumatic stress disorder. Biol. Psychiatry 55, 656–658 (2004).

    PubMed  PubMed Central  Article  Google Scholar 

  115. 115

    Nopoulos, P., Krie, A. & Andreasen, N. C. Enlarged cavum septi pellucidi in patients with schizophrenia: clinical and cognitive correlates. J. Neuropsychiatry Clin. Neurosci. 12, 344–349 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. 116

    Kim, M. J. et al. The occurrence of cavum septi pellucidi enlargement is increased in bipolar disorder patients. Bipolar Disord. 9, 274–280 (2007).

    Article  PubMed  Google Scholar 

  117. 117

    Swayze, V. et al. Magnestic resonance imaging of brain anomalies in fetal alcohol syndrome. Pediatrics 99, 232–240 (1997).

    Article  PubMed  Google Scholar 

  118. 118

    Streissguth, A. P. et al. Risk factors for adverse life outcomes in fetal alcohol syndrome and fetal alcohol effects. J. Dev. Behav. Pediatr. 25, 228–238 (2004).

    Article  PubMed  Google Scholar 

  119. 119

    Wakschlag, L. S. et al. Interaction of prenatal exposure to cigarettes and MAOA genotype in pathyways to youth antisocial behavior. Mol. Psychiatry 15, 928–937 (2013).

    Article  CAS  Google Scholar 

  120. 120

    Schlotz, W. & Phillips, D. I. Fetal origins of mental health: evidence and mechanisms. Brain Behav. Immunol. 23, 905–916 (2009).

    Article  Google Scholar 

  121. 121

    Ermer, E., Cope, L. M., Nyalakanti, P. K., Calhoun, V. D. & Kiehl, K. A. Aberrant paralimbic gray matter in criminal psychopathy. J. Abnorm. Psychol. 121, 649–658 (2012).

    Article  PubMed  Google Scholar 

  122. 122

    van Goozen, S. H., Matthys, W., Cohen-Kettenis, P. T., Thijssen, J. H. & van Engeland, H. Adrenal androgens and aggression in conduct disorder prepubertal boys and normal controls. Biol. Psychiatry 43, 156–158 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. 123

    Fairchild, G. et al. Cortisol diurnal rhythm and stress reactivity in male adolescents with early-onset or adolescence-onset conduct disorder. Biol. Psychiatry 64, 599–606 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  124. 124

    Lopez-Duran, N. L., Olson, S. L., Hajal, N. J., Felt, B. T. & Vazquez, D. M. Hypothalamic pituitary adrenal axis functioning in reactive and proactive aggression in children. J. Abnorm. Child Psychol. 37, 169–182 (2009).

    Article  PubMed  Google Scholar 

  125. 125

    LeDoux, J. E. The amygdala. Curr. Biol. 17, R868–R874 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. 126

    Hawes, D. J., Brennan, J. & Dadds, M. R. Cortisol, callous-unemotional traits, and pathways to antisocial behavior. Curr. Opin. Psychiatry 22, 357–362 (2009).

    Article  PubMed  Google Scholar 

  127. 127

    Blair, R. J. R., Peschardt, K. S., Budhani, S., Mitchell, D. G. & Pine, D. S. The development of psychopathy. J. Child Psychol. Psychiatry 47, 262–276 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. 128

    Rhee, S. H. & Waldman, I. D. Genetic and environmental influences on antisocial behavior: a meta-analysis of twin and adoption studies. Psychol. Bull. 128, 490–529 (2002).

    Article  PubMed  Google Scholar 

  129. 129

    Viding, E., Blair, R. J. R., Moffitt, T. E. & Plomin, R. Evidence for substantial genetic risk for psychopathy in 7-year-olds. J. Child Psychol. Psychiatry 46, 592–597 (2005). One of the first studies to document the high heritability of callous–unemotional traits in youths.

    Article  PubMed  Google Scholar 

  130. 130

    Viding, E. et al. In search of genes associated with risk for psychopathic tendencies in children: a two-stage genome-wide association study of pooled DNA. J. Child Psychol. Psychiatry 51, 780–788 (2010).

    Article  PubMed  Google Scholar 

  131. 131

    Smolka, M. N. et al. Catechol-O-methyltransferase Val158Met genotype affects processing of emotional stimuli in the amygdala and prefrontal cortex. J. Neurosci. 25, 836–842 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  132. 132

    Heinz, A. J., Beck, A., Meyer-Lindenberg, A., Sterzer, P. & Heinz, A. Cognitive and neurobiological mechanisms of alcohol-related aggression. Nature Rev. Neurosci. 12, 400–413 (2011).

    Article  CAS  Google Scholar 

  133. 133

    Meyer-Lindenberg, A. et al. Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc. Natl Acad. Sci. USA 103, 6269–6274 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. 134

    Rujescu, D., Giegling, I., Gietl, A., Hartmann, A. M. & Moller, H. J. A functional single nucleotide polymorphism (V158M) in the COMT gene is associated with aggressive personality traits. Biol. Psychiatry 54, 34–39 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. 135

    Caspi, A. et al. Role of genotype in the cycle of violence in maltreated children. Science 297, 851–854 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. 136

    Beitchman, J. H. et al. Serotonin transporter polymorphisms and persistent, pervasive childhood aggression. Am. J. Psychiatry 164, 1103–1105 (2006).

    Article  Google Scholar 

  137. 137

    Zai, C. et al. Dopaminergic system genes in childhood aggression: possible role for DRD2. World J. Biol. Psychiatry 13, 65–74 (2012).

    Article  PubMed  Google Scholar 

  138. 138

    Sadeh, N. et al. Serotonin transporter gene associations with psychopathic traits in youth vary as a function of socioeconomic resources. J. Abnorm. Psychol. 119, 604–609 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  139. 139

    Hirata, Y., Zai, C. C., Nowrouzi, B., Beitchman, J. H. & Kennedy, J. L. Study of the catechol-O-methyltransferase (COMT) gene with high aggression in children. Aggress. Behav 39, 45–51 (2013).

    Article  PubMed  Google Scholar 

  140. 140

    Hariri, A. R. et al. A susceptibility gene for affective disorders and the response of the human amygdala. Arch. Gen. Psychiatry 62, 146–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. 141

    Moul, C., Dobson-Stone, C., Brennan, J., Hawes, D. & Dadds, M. An exploration of the serotonin system in antisocial boys with high levels of callous-unemotional traits. PLoS ONE 8, e56619 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  142. 142

    Beitchman, J. H. et al. Childhood aggression, callous-unemotional traits and oxytocin genes. Eur. Child Adolesc. Psychiatry 21, 125–132 (2012).

    Article  PubMed  Google Scholar 

  143. 143

    McCrory, E. J. et al. Heightened neural reactivity to threat in child victims of family violence. Curr. Biol. 21, R947–R948 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. 144

    Tottenham, N. et al. Elevated amygdala response to faces following early deprivation. Dev. Sci. 14, 190–204 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  145. 145

    Bogdan, R., Williamson, D. E. & Hariri, A. R. Mineralocorticoid receptor Iso/Val (rs5522) genotype moderates the association between previous childhood emotional neglect and amygdala reactivity. Am. J. Psychiatry 169, 515–522 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  146. 146

    Dodge, K. A., Pettit, G. S., Bates, J. E. & Valente, E. Social information-processing patterns partially mediate the effect of early physical abuse on later conduct problems. J. Abnorm. Psychol. 104, 632–643 (1995). A classic study demonstrating the impact that physical abuse has on the development of hostile attribution biases and the implications of this for the development of reactive aggression.

    Article  CAS  PubMed  Google Scholar 

  147. 147

    Fontaine, N. M., Rijsdijk, F. V., McCrory, E. J. & Viding, E. Etiology of different developmental trajectories of callous-unemotional traits. J. Am. Acad. Child Adolesc. Psychiatry 49, 656–664 (2010).

    PubMed  Google Scholar 

  148. 148

    Barker, E. D., Oliver, B. R., Viding, E., Salekin, R. T. & Maughan, B. The impact of prenatal maternal risk, fearless temperament and early parenting on adolescent callous-unemotional traits: a 14-year longitudinal investigation. J. Child Psychol. Psychiatry 52, 878–888 (2011).

    Article  PubMed  Google Scholar 

  149. 149

    Durlak, J. A., Weissberg, R. P., Dymnicki, A. B., Taylor, R. D. & Schellinger, K. B. The impact of enhancing students' social and emotional learning: a meta-analysis of school-based universal interventions. Child Dev. 82, 405–432 (2011).

    Article  PubMed  Google Scholar 

  150. 150

    Chamberlain, P. & Smith, D. K. in Evidence-Based Psychotherapies for Children and Adolescents (eds Kazdin, A. E. & Weisz, J. R.) 282–300 (Guilford Press, 2003).

    Google Scholar 

  151. 151

    Henggeler, S. W. & Lee, T. in Evidence-Based Psychotherapies for Children and Adolescents (eds Kazdin, A. E. & Weisz, J. R.) 301–322 (Guilford Press, 2003).

    Google Scholar 

  152. 152

    Eyberg, S. M., Nelson, M. M. & Boggs, S. R. Evidence-based psychosocial treatments for children and adolescents with disruptive behavior. J. Clin. Child Adolesc. Psychol. 37, 215–237 (2008).

    Article  PubMed  Google Scholar 

  153. 153

    Oxford, M., Cavell, T. A. & Hughes, J. N. Callous/unemotional traits moderate the relation between ineffective parenting and child externalizing problems: a partial replication and extension. J. Clin. Child Adolesc. Psychol. 32, 577–585 (2003).

    Article  PubMed  Google Scholar 

  154. 154

    Pasalich, D. S., Dadds, M. R., Hawes, D. J. & Brennan, J. Do callous-unemotional traits moderate the relative importance of parental coercion versus warmth in child conduct problems? An observational study. J. Child Psychol. Psychiatry 52, 1308–1315 (2011).

    Article  PubMed  Google Scholar 

  155. 155

    Haas, S. M. et al. Treatment response in CP/ADHD children with callous/unemotional traits. J. Abnorm. Child Psychol. 39, 541–552 (2011).

    Article  PubMed  Google Scholar 

  156. 156

    Masi, G. et al. Predictors of nonresponse to psychosocial treatment in children and adolescents with disruptive behavior disorders. J. Child Adolesc. Psychopharmacol. 21, 51–55 (2011).

    Article  PubMed  Google Scholar 

  157. 157

    Manders, W. A., Dekovic, M., Asscher, J. J., van der Laan, P. H. & Prins, P. J. Psychopathy as predictor and moderator of multisystemic therapy outcomes among adolescents treated for antisocial behavior. J. Abnorm. Child Psychol. 41, 1121–1132 (2013).

    Article  PubMed  Google Scholar 

  158. 158

    Felmingham, K. et al. Changes in anterior cingulate and amygdala after cognitive behavior therapy of post traumatic stress disorder. Psychol. Sci. 18, 127–129 (2007).

    Article  PubMed  Google Scholar 

  159. 159

    Afifi, T. O., McMillan, K. A., Asmundson, G. J., Pietrzak, R. H. & Sareen, J. An examination of the relation between conduct disorder, childhood and adulthood traumatic events, and posttraumatic stress disorder in a nationally representative sample. J. Psychiatr. Res. 45, 1564–1572 (2011).

    Article  PubMed  Google Scholar 

  160. 160

    Hawes, D. J. & Dadds, M. R. Stability and malleability of callous-unemotional traits during treatment for childhood conduct problems. J. Clin. Child Adolesc. Psychol. 36, 347–355 (2007).

    Article  PubMed  Google Scholar 

  161. 161

    Pardini, D. A., Lochman, J. E. & Powell, N. The development of callous-unemotional traits and antisocial behavior in children: are there shared and/or unique predictors? J. Clin. Child Adolesc. Psychol. 36, 319–333 (2007).

    Article  PubMed  Google Scholar 

  162. 162

    Greenaway, M. & Elbe, D. Focus on aripiprazole: a review of its use in child and adolescent psychiatry. J. Can. Acad. Child Adolesc. Psychiatry 18, 250–260 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  163. 163

    Findling, R. L. Atypical antipsychotic treatment of disruptive behavior disorders in children and adolescents. J. Clin. Psychiatry 69 (Suppl. 4), 9–14 (2008).

    CAS  PubMed  Google Scholar 

  164. 164

    Zito, J. M. et al. Psychotropic medication patterns among youth in foster care. Pediatrics 121, e157–163 (2008).

    Article  PubMed  Google Scholar 

  165. 165

    Burris, K. D. et al. Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J. Pharmacol. Exp. Ther. 302, 381–389 (2002).

    Article  CAS  PubMed  Google Scholar 

  166. 166

    Taylor, D. M. Aripiprazole: a review of its pharmacology and clinical use. Int. J. Clin. Pract. 57, 49–54 (2003).

    CAS  PubMed  Google Scholar 

  167. 167

    Huang, M., Ichiwaka, J., Li, Z., Dai, J. & Meltzer, H. Y. Augmentation by citalopram of risperidone-induced monoamine release in rat prefrontal cortex. Psychopharmacol. (Berl.) 185, 274–281 (2006).

    Article  CAS  Google Scholar 

  168. 168

    Blair, K. S. et al. The role of 5-HTTLPR in choosing the lesser of two evils, the better of two goods: examining the impact of 5-HTTLPR genotype and tryptophan depletion in object choice. Psychopharmacology 196, 29–38 (2008).

    Article  CAS  PubMed  Google Scholar 

  169. 169

    Finger, E. C. et al. The impact of tryptophan depletion and 5-HTTLPR genotype on passive avoidance and response reversal instrumental learning tasks. Neuropsychopharmacology 32, 206–215 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. 170

    Marsh, A. A. et al. Impaired recognition of fear facial expressions in 5-HTTLPR S-polymorphism carriers following tryptophan depletion. Psychopharmacology (Berl.) 189, 387–394 (2006).

    Article  CAS  Google Scholar 

  171. 171

    Schultz, W. Multiple functions of dopamine neurons. F1000 Biol. Rep. 2, 2 (2010).

    PubMed  PubMed Central  Google Scholar 

  172. 172

    Dayan, P. Instrumental vigour in punishment and reward. Eur. J. Neurosci. 35, 1152–1168 (2012).

    Article  PubMed  Google Scholar 

  173. 173

    Hasler, G., Mondillo, K., Drevets, W. C. & Blair, R. J. R. Impairments of probabilistic response reversal and passive avoidance following catecholamine depletion. Neuropsychopharmacology 34, 2691–2698 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  174. 174

    Takahashi, H. et al. Effects of dopaminergic and serotonergic manipulation on emotional processing: a pharmacological fMRI study. Neuroimage 27, 991–1001 (2005).

    Article  PubMed  Google Scholar 

  175. 175

    Hariri, A. R. et al. Dexroamphetamine modulates the response of the human amygdala. Neuropsychopharmacology 27, 1036–1040 (2002).

    Article  CAS  PubMed  Google Scholar 

  176. 176

    Rugino, T. A. & Janvier, Y. M. Aripiprazole in children and adolescents: clinical experience. J. Child Neurol. 20, 603–610 (2005).

    Article  PubMed  Google Scholar 

  177. 177

    Allison, D. B. & Casey, D. E. Antipsychotic-induced weight gain: a review of the literature. J. Clin. Psychiatry 62, 22–31 (2001).

    CAS  PubMed  Google Scholar 

  178. 178

    Lambert, M. T., Copeland, L. A., Sampson, N. & Duffy, S. A. New-onset type-2 diabetes associated with atypical antipsychotic medications. Biol. Psychiatry 30, 919–923 (2006).

    CAS  Google Scholar 

  179. 179

    Schoenbaum, G. & Roesch, M. Orbitofrontal cortex, associative learning, and expectancies. Neuron 47, 633–636 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  180. 180

    Schoenbaum, G., Chiba, A. A. & Gallagher, M. Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nature Neurosci. 1, 155–159 (1998).

    Article  CAS  PubMed  Google Scholar 

  181. 181

    Insel, T. et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167, 748–751 (2010).

    Article  PubMed  Google Scholar 

  182. 182

    Aharoni, E. et al. Neuroprediction of future rearrest. Proc. Natl Acad. Sci. USA 110, 6223–6228 (2013).

    Article  CAS  PubMed  Google Scholar 

  183. 183

    Pardini, D. A., Erickson, K., Loeber, R. & Raine, A. Lower amygdala volume in men is associated with childhood aggression, early psychopathic traits, and future violence. Biol. Psychiatry http://dx.doi.org/10.1016/j.biopsych.2013.04.003 (2013).

  184. 184

    Blanchard, R. J., Blanchard, D. C. & Takahashi, L. K. Attack and defensive behaviour in the albino rat. Animal Behav. 25, 197–224 (1977).

    Article  Google Scholar 

  185. 185

    Panksepp, J. Affective Neuroscience: The Foundations of Human and Animal Emotions (Oxford Univ. Press, 1998).

    Google Scholar 

  186. 186

    Gregg, T. R. & Siegel, A. Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression. Prog. Neuropsychopharmacol. Biol. Psychiatry 25, 91–140 (2001).

    Article  CAS  PubMed  Google Scholar 

  187. 187

    Lin, D. et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470, 221–226 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  188. 188

    Nelson, R. J. & Trainor, B. C. Neural mechanisms of aggression. Nature Rev. Neurosci. 8, 536–546 (2007).

    Article  CAS  Google Scholar 

  189. 189

    Blair, R. J. R. Neuro-cognitive models of aggression, the antisocial personality disorders and psychopathy. J. Neurol. Neurosurg. Psychiatry 71, 727–731 (2001).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  190. 190

    Mobbs, D. et al. When fear is near: threat imminence elicits prefrontal-periacqueductal gray shifts in humans. Science 317, 1079–1083 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  191. 191

    Mobbs, D. et al. Neural activity associated with monitoring the oscillating threat value of a tarantula. Proc. Natl Acad. Sci. USA 107, 20582–20586 (2010).

    Article  PubMed  Google Scholar 

  192. 192

    Mobbs, D. et al. From threat to fear: the neural organization of defensive fear systems in humans. J. Neurosci. 29, 12236–12243 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  193. 193

    Dodge, K. A., Lochman, J. E., Harnish, J. D., Bates, J. E. & Pettit, G. S. Reactive and proactive aggression in school children and psychiatrically impaired chronically assaultive youth. J. Abnorm. Psychol. 106, 37–51 (1997).

    Article  CAS  PubMed  Google Scholar 

  194. 194

    Lahey, B. B., Loeber, R., Burke, J., Rathouz, P. J. & McBurnett, K. Waxing and waning in concert: dynamic comorbidity of conduct disorder with other disruptive and emotional problems over 7 years among clinic-referred boys. J. Abnorm. Psychol. 111, 556–567 (2002).

    Article  PubMed  Google Scholar 

  195. 195

    Frick, P. J., Ray, J. V., Thornton, L. C. & Kahn, R. E. Can callous-unemotional traits enhance the understanding, diagnosis, and treatment of serious conduct problems in children and adolescents? A comprehensive review. Psychol. Bull. http://dx.doi.org/10.1037/a0033076 (2013). An important recent review on diagnostic considerations with respect to conduct disorder and callous–unemotional traits.

  196. 196

    Patrick, C. J. Emotion and psychopathy: startling new insights. Psychophysiology 31, 319–330 (1994).

    Article  CAS  PubMed  Google Scholar 

  197. 197

    Verona, E., Patrick, C. J. & Joiner, T. E. Psychopathy, antisocial personality, and suicide risk. J. Abnorm. Psychol. 110, 462–470 (2001).

    Article  CAS  PubMed  Google Scholar 

  198. 198

    Feder, A., Nestler, E. J. & Charney, D. S. Psychobiology and molecular genetics of resilience. Nature Rev. Neurosci. 10, 446–457 (2009).

    Article  CAS  Google Scholar 

  199. 199

    Blair, R. J. R. A cognitive developmental approach to morality: investigating the psychopath. Cognition 57, 1–29 (1995).

    Article  CAS  PubMed  Google Scholar 

  200. 200

    Haidt, J. The emotional dog and its rational tail: a social intuitionist approach to moral judgment. Psychol. Rev. 108, 814–834 (2001).

    Article  CAS  PubMed  Google Scholar 

  201. 201

    Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M. & Cohen, J. D. An fMRI investigation of emotional engagement in moral judgment. Science 293, 1971–1972 (2001).

    Article  Google Scholar 

  202. 202

    Moll, J., Zahn, R., de Oliveira-Souza, R., Krueger, F. & Grafman, J. Opinion: the neural basis of human moral cognition. Nature Rev. Neurosci. 6, 799–809 (2005).

    Article  CAS  Google Scholar 

  203. 203

    Glenn, A. L., Raine, A. & Schug, R. A. The neural correlates of moral decision-making in psychopathy. Mol. Psychiatry 14, 5–6 (2008).

    Article  Google Scholar 

  204. 204

    Harenski, C. L., Harenski, K. A., Shane, M. S. & Kiehl, K. A. Aberrant neural processing of moral violations in criminal psychopaths. J. Abnorm. Psychol. 119, 863–874 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  205. 205

    Sakai, J. T., Dalwani, M. S., Gelhorn, H. L., Mikulich-Gilbertson, S. K. & Crowley, T. J. A. Behavioral test of accepting benefits that cost others: associations with conduct problems and callous-unemotionality. PLoS ONE 7, e36158 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  206. 206

    Smetana, J. G. Preschool children's conceptions of moral and social rules. Child Dev. 52, 1333–1336 (1981).

    Article  Google Scholar 

  207. 207

    Smetana, J. G. in The Child as Psychologist: An Introduction to the Development of Social Cognition (ed. Bennett, M.) 111–141 (Harvester Wheatsheaf, 1993).

    Google Scholar 

  208. 208

    Haidt, J. The new synthesis in moral psychology. Science 316, 998–1002 (2007).

    Article  CAS  PubMed  Google Scholar 

  209. 209

    Glenn, A. L., Iyer, R., Graham, J., Koleva, S. & Haidt, J. Are all types of morality compromised in psychopathy. J. Personal. Disord. 23, 384–398 (2009).

    Article  Google Scholar 

  210. 210

    Aharoni, E., Antonenko, O. & Kiehl, K. A. Disparities in the moral intuitions of criminal offenders: the role of psychopathy. J. Res. Pers. 45, 322–327 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  211. 211

    Blair, R. J. R. & Cipolotti, L. Impaired social response reversal: a case of “acquired sociopathy”. Brain 123, 1122–1141 (2000).

    Article  PubMed  Google Scholar 

  212. 212

    Murphy, F. C., Nimmo-Smith, I. & Lawrence, A. D. Functional neuroanatomy of emotions: a meta-analysis. Cogn. Affect. Behav. Neurosci. 3, 207–233 (2003).

    Article  PubMed  Google Scholar 

  213. 213

    Martel, G. et al. Murine GRPR and stathmin control in opposite directions both cued fear extinction and neural activities of the amygdala and prefrontal cortex. PLoS ONE 7, e30942 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  214. 214

    Klucken, T. et al. The 5-HTTLPR polymorphism is associated with altered hemodynamic responses during appetitive conditioning. Hum. Brain Mapp. 34, 2549–2560 (2012).

    Article  PubMed  Google Scholar 

  215. 215

    Stein, J. L. et al. Discovery and replication of dopamine-related gene effects on caudate volume in young and elderly populations (N = 1198) using genome-wide search. Mol. Psychiatry 16, 927–937 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  216. 216

    Workman, J. L., Fonken, L. K., Gusfa, J., Kassouf, K. M. & Nelson, R. J. Post-weaning environmental enrichment alters affective responses and interacts with behavioral testing to alter nNOS immunoreactivity. Pharmacol. Biochem. Behav. 100, 25–32 (2011).

    Article  CAS  PubMed  Google Scholar 

  217. 217

    Isaacs, E. B. et al. The effect of early human diet on caudate volumes and IQ. Pediatr. Res. 63, 308–314 (2008).

    Article  PubMed  Google Scholar 

  218. 218

    Seidel, K., Poeggel, G., Holetschka, R., Helmeke, C. & Braun, K. Paternal deprivation affects the development of corticotrophin-releasing factor-expressing neurones in prefrontal cortex, amygdala and hippocampus of the biparental octodon degus. J. Neuroendocrinol. 23, 1166–1176 (2011).

    Article  CAS  PubMed  Google Scholar 

  219. 219

    D'Addario, C. et al. Ethanol induces epigenetic modulation of prodynorphin and pronociceptin gene expression in the rat amygdala complex. J. Mol. Neurosci. 49, 312–319 (2013).

    Article  CAS  PubMed  Google Scholar 

  220. 220

    Kochanska, G., Gross, J. N., Lin, M. H. & Nichols, K. E. Guilt in young children: development, determinants, and relations with a broader system of standards. Child Dev. 73, 461–482 (2002).

    Article  PubMed  Google Scholar 

  221. 221

    Kochanska, G. Multiple pathways to conscience for children with different temperaments: from toddlerhood to age 5. Dev Psychol. 33, 228–240 (1997).

    Article  CAS  PubMed  Google Scholar 

  222. 222

    Ernst, M. et al. Amygdala and nucleus accumbens in responses to receipt and omission of gains in adults and adolescents. Neuroimage 25, 1279–1291 (2005).

    Article  PubMed  Google Scholar 

  223. 223

    Hare, T. A. et al. Biological substrates of emotional reactivity and regulation in adolescence during an emotional go-nogo task. Biol. Psychiatry 63, 927–934 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  224. 224

    Galvan, A. et al. Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. J. Neurosci. 26, 6885–6892 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  225. 225

    Quevedo, K. M., Benning, S. D., Gunnar, M. R. & Dahl, R. E. The onset of puberty: effects on the psychophysiology of defensive and appetitive motivation. Dev. Psychopathol. 21, 27–45 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  226. 226

    Wendelken, C., Baym, C. L., Gazzaley, A. & Bunge, S. A. Neural indices of improved attentional modulation over middle childhood. Dev. Cogn. Neurosci. 1, 175–186 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  227. 227

    Velanova, K., Wheeler, M. E. & Luna, B. The maturation of task set-related activation supports late developmental improvements in inhibitory control. J. Neurosci. 29, 12558–12567 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  228. 228

    Wymbs, B. T. et al. Callous–unemotional traits as unique prospective risk factors for substance use in early adolescent boys and girls. J. Abnorm. Child Psychol. 40, 1099–1110 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  229. 229

    Alia-Klein, N. et al. Gene × disease interaction on orbitofrontal gray matter in cocaine addiction. Arch. Gen. Psychiatry 68, 283–294 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  230. 230

    Kasanetz, F. et al. Prefrontal synaptic markers of cocaine addiction-like behavior in rats. Mol. Psychiatry 18, 729–737 (2013).

    Article  CAS  PubMed  Google Scholar 

  231. 231

    Yucel, M. et al. Regional brain abnormalities associated with long-term heavy cannabis use. Arch. Gen. Psychiatry 65, 694–701 (2008).

    Article  PubMed  Google Scholar 

  232. 232

    Koenigs, M., Baskin-Sommers, A., Zeier, J. & Newman, J. P. Investigating the neural correlates of psychopathy: a critical review. Mol. Psychiatry 16, 792–799 (2011).

    Article  CAS  PubMed  Google Scholar 

  233. 233

    Pardini, D. A. & Phillips, M. Neural responses to emotional and neutral facial expressions in chronically violent men. J. Psychiatry Neurosci. 35, 390–398 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  234. 234

    Deeley, Q. et al. Facial emotion processing in criminal psychopathy. Preliminary functional magnetic resonance imaging study. Br. J. Psychiatry 189, 533–539 (2006).

    Article  PubMed  Google Scholar 

  235. 235

    Contreras-Rodriguez, O. et al. Disrupted neural processing of emotional faces in psychopathy. Soc. Cogn. Affect. Neurosci. http://dx.doi.org/10.1093/scan/nst014 (2013).

  236. 236

    Dolan, M. C. & Fullam, R. S. Psychopathy and functional magnetic responance imaging blood oxygenation level-dependent respones to emotional faces in violence patients with schizophrenia. Biol. Psychiatry 66, 570–577 (2009).

    Article  PubMed  Google Scholar 

  237. 237

    Sommer, M. et al. In psychopathic patients emotion attribution modulates activity in outcome-related brain areas. Psychiatry Res. 182, 88–95 (2010).

    Article  PubMed  Google Scholar 

  238. 238

    Blair, R. J. R., Jones, L., Clark, F. & Smith, M. The psychopathic individual: a lack of responsiveness to distress cues? Psychophysiology 34, 192–198 (1997).

    Article  CAS  PubMed  Google Scholar 

  239. 239

    House, T. H. & Milligan, W. L. Autonomic responses to modeled distress in prison psychopaths. J. Personal. Social Psychol. 34, 556–560 (1976).

    Article  CAS  Google Scholar 

  240. 240

    Newman, J. P., Patterson, C. M. & Kosson, D. S. Response perseveration in psychopaths. J. Abnorm. Psychol. 96, 145–148 (1987).

    Article  CAS  PubMed  Google Scholar 

  241. 241

    Budhani, S., Richell, R. A. & Blair, R. J. Impaired reversal but intact acquisition: probabilistic response reversal deficits in adult individuals with psychopathy. J. Abnorm. Psychol. 115, 552–558 (2006).

    Article  PubMed  Google Scholar 

  242. 242

    Young, L., Koenigs, M., Kruepke, M. & Newman, J. P. Psychopathy increases perceived moral permissibility of accidents. J. Abnorm. Psychol. 121, 659–667 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  243. 243

    Koenigs, M., Kruepke, M., Zeier, J. & Newman, J. P. Utilitarian moral judgment in psychopathy. Soc. Cogn. Affect. Neurosci. 7, 708–714 (2011). An interesting paper documenting the impairment in moral judgements seen in individuals with psychopathy.

    PubMed  PubMed Central  Article  Google Scholar 

  244. 244

    Yang, Y., Raine, A., Colletti, P., Toga, A. W. & Narr, K. L. Morphological alterations in the prefrontal cortex and the amygdala in unsuccessful psychopaths. J. Abnorm. Psychol. 119, 546–554 (2010).

    Article  PubMed  Google Scholar 

  245. 245

    Yang, Y., Raine, A., Colletti, P., Toga, A. W. & Narr, K. L. Abnormal temporal and prefrontal cortical gray matter thinning in psychopaths. Mol. Psychiatry 14, 561–562 (2009).

    Article  CAS  PubMed  Google Scholar 

  246. 246

    Ly, M. et al. Cortical thinning in psychopathy. Am. J. Psychiatry 169, 743–749 (2012).

    Article  PubMed  Google Scholar 

  247. 247

    Kiehl, K. A. et al. Limbic abnormalities in affective processing by criminal psychopaths as revealed by functional magnetic resonance imaging. Biol. Psychiatry 50, 677–684 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the National Institute of Mental Health, National Institutes of Health, USA, under grant number 1-ZIA-MH002860-08.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. James R. Blair.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

Observational fear

The phenomenon that an infant's avoidance responses to a previously novel object are modified by the mother's apparent emotional reaction to this object. Typically, infants avoid objects associated with maternal fear.

Transgressions

Actions that violate norms.

Passive avoidance learning

An experimental paradigm in which the individual learns to approach or passively avoid (by not responding to) objects that elicit either reward or punishment (for example, money gain or loss).

Operant extinction

An experimental paradigm in which the individual learns that responding to an object is rewarding but then, after a change of reinforcement contingency, should extinguish this response as responding comes to be associated with punishment.

Reversal learning

An experimental paradigm in which the individual initially learns to make a response towards one of a paired set of stimuli to gain reward but then, after a change of reinforcement contingency, should reverse their behaviour towards the second object as the first object comes to be associated with punishment.

Prediction error

The difference between the amount of reward or punishment received and the amount expected.

Expected value

The expected reward or punishment following the commission of a specific response.

Functional anisotropy

A parameter in diffusion tensor imaging, which images brain structures by measuring the diffusion properties of water molecules. It provides information about the microstructural integrity of white-matter tracts.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blair, R. The neurobiology of psychopathic traits in youths. Nat Rev Neurosci 14, 786–799 (2013). https://doi.org/10.1038/nrn3577

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing