The histaminergic network in the brain: basic organization and role in disease

Key Points

  • The histaminergic system is implicated in various brain disorders. A mutation in the gene encoding histidine decarboxylase, the histamine synthesizing enzyme, has been identified to be a cause of dominantly inherited Guilles de la Tourette syndrome.

  • In clinical trials, histamine H2 receptor antagonists have shown therapeutic efficacy for schizophrenia. and histamine H3 receptor antagonists have shown promise for combating daytime sleepiness in patients with narcolepsy.

  • In experimental allergic encephalomyelitis, a mouse model of multiple sclerosis, animals lacking histidine decarboxylase (and hence histamine synthesis) or histamine receptors show abnormal development of disease symptoms.

  • Histamine regulates feeding, obesity and the actions of leptin via histamine H1 receptor signalling in the hypothalamus; antipsychotic drugs bind to H1 receptors and cause obesity through this mechanism.

  • Histamine H3 receptor antagonists regulate alcohol self-administration and conditioned place preference in rodents, probably through a modulatory action on dopaminergic signalling. These drugs have already been tested for other disease conditions, so clinical trials on alcoholism could be carried out without extensive early phase studies.

Abstract

Histamine acts as a modulatory neurotransmitter in the mammalian brain. It has an important role in the maintenance of wakefulness, and dysfunction in the histaminergic system has been linked to narcolepsy. Recent evidence suggests that aberrant histamine signalling in the brain may also be a key factor in Gilles de la Tourette syndrome, Parkinson's disease and addictive behaviours. Furthermore, multiple sclerosis (MS) and experimental autoimmune encephalitis, which is an often-used model for MS, are associated with changes in the histaminergic system. This Review explores the possible roles of brain histamine in the mechanisms underlying these diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Human brain cortical, thalamocortical and thalamic histaminergic systems.
Figure 2: Localization of histamine receptors in different types of cells in the brain that are potentially involved in blood–brain barrier permeability and multiple sclerosis.
Figure 3: Key brain areas involved in the regulation of feeding and their innervation by histaminergic fibres.
Figure 4: Cortical, striatal and nigral neuronal systems regulated by H3 receptors.

References

  1. 1

    Panula, P., Yang, H. Y. & Costa, E. Histamine-containing neurons in the rat hypothalamus. Proc. Natl Acad. Sci. USA 81, 2572–2576 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Watanabe, T. et al. Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res. 295, 13–25 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Haas, H. & Panula, P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nature Rev. Neurosci. 4, 121–130 (2003).

    Article  CAS  Google Scholar 

  4. 4

    Haas, H. L., Sergeeva, O. A. & Selbach, O. Histamine in the nervous system. Physiol. Rev. 88, 1183–1241 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Anichtchik, O. V., Rinne, J. O., Kalimo, H. & Panula, P. An altered histaminergic innervation of the substantia nigra in Parkinson's disease. Exp. Neurol. 163, 20–30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Ercan-Sencicek, A. G. et al. L-histidine decarboxylase and Tourette's syndrome. N. Engl. J. Med. 362, 1901–1908 (2010). This study identified a mutation in the HDC as a rare and first distinct cause of dominantly inherited GTS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Saligrama, N., Noubade, R., Case, L. K., Del Rio, R. & Teuscher, C. Combinatorial roles for histamine H1-H2 and H3-H4 receptors in autoimmune inflammatory disease of the central nervous system. Eur. J. Immunol. 42, 1536–1546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Tuomisto, L. & Panula, P. in Histaminergic Neurons: Morphology and Function (eds Watanabe, T. & Wada, H.) 177–192 (CRC Press, 1991).

    Google Scholar 

  9. 9

    Airaksinen, M. S. et al. Histamine neurons in human hypothalamus: anatomy in normal and Alzheimer diseased brains. Neuroscience 44, 465–481 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Ericson, H., Watanabe, T. & Kohler, C. Morphological analysis of the tuberomammillary nucleus in the rat brain: delineation of subgroups with antibody against L-histidine decarboxylase as a marker. J. Comp. Neurol. 263, 1–24 (1987). This was the first study to identify functional heterogeneity among the histaminergic neurons projecting to different parts of the brain.

    Article  CAS  Google Scholar 

  11. 11

    Panula, P. et al. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol. Dis. 40, 46–57 (2010).

    Article  CAS  Google Scholar 

  12. 12

    Sundvik, M. et al. The histaminergic system regulates wakefulness and orexin/hypocretin neuron development via histamine receptor H1 in zebrafish. FASEB J. 25, 4338–4347 (2011). This was first study to demonstrate that HCRT regulates the development of histaminergic neurons.

    Article  CAS  Google Scholar 

  13. 13

    Sundvik, M., Chen, Y. C. & Panula, P. Presenilin1 regulates histamine neuron development and behavior in zebrafish, Danio rerio. J. Neurosci. 33, 1589–1597 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Panula, P., Pirvola, U., Auvinen, S. & Airaksinen, M. S. Histamine-immunoreactive nerve fibers in the rat brain. Neuroscience 28, 585–610 (1989).

    Article  CAS  Google Scholar 

  15. 15

    Miklos, I. H. & Kovacs, K. J. Functional heterogeneity of the responses of histaminergic neuron subpopulations to various stress challenges. Eur. J. Neurosci. 18, 3069–3079 (2003).

    Article  CAS  Google Scholar 

  16. 16

    Blandina, P., Munari, L., Provensi, G. & Passani, M. B. Histamine neurons in the tuberomamillary nucleus: a whole center or distinct subpopulations? Front. Syst. Neurosci. 6, 33 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Giannoni, P. et al. Heterogeneity of histaminergic neurons in the tuberomammillary nucleus of the rat. Eur. J. Neurosci. 29, 2363–2374 (2009).

    Article  Google Scholar 

  18. 18

    Arrang, J. M., Garbarg, M. & Schwartz, J. C. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature 302, 832–837 (1983).

    Article  CAS  Google Scholar 

  19. 19

    Arrang, J. M. et al. Highly potent and selective ligands for histamine H3-receptors. Nature 327, 117–123 (1987).

    Article  CAS  Google Scholar 

  20. 20

    Yamamoto, Y., Mochizuki, T., Okakura-Mochizuki, K., Uno, A. & Yamatodani, A. Thioperamide, a histamine H3 receptor antagonist, increases GABA release from the rat hypothalamus. Methods Find. Exp. Clin. Pharmacol. 19, 289–298 (1997).

    CAS  PubMed  Google Scholar 

  21. 21

    Blandina, P. et al. Histamine H3 receptor inhibition of K+-evoked release of acetylcholine from rat cortex in vivo. Inflamm. Res. 45, S54–S55 (1996).

    Article  CAS  Google Scholar 

  22. 22

    Schlicker, E., Kathmann, M., Detzner, M., Exner, H. J. & Gothert, M. H3 receptor-mediated inhibition of noradrenaline release: an investigation into the involvement of Ca2+ and K+ ions, G protein and adenylate cyclase. Naunyn Schmiedebergs Arch. Pharmacol. 350, 34–41 (1994).

    Article  CAS  Google Scholar 

  23. 23

    Garcia-Ramirez, M., Aceves, J. & Arias-Montano, J. A. Intranigral injection of the H3 agonist immepip and systemic apomorphine elicit ipsilateral turning behaviour in naive rats, but reduce contralateral turning in hemiparkinsonian rats. Behav. Brain Res. 154, 409–415 (2004).

    Article  CAS  Google Scholar 

  24. 24

    Arias-Montaño, J. A., Floran, B., Garcia, M., Aceves, J. & Young, J. M. Histamine H3 receptor-mediated inhibition of depolarization-induced, dopamine D1 receptor-dependent release of [3H]-γ-aminobutryic acid from rat striatal slices. Br. J. Pharmacol. 133, 165–171 (2001). One of the first studies to show that H 3 R interferes with dopaminergic regulation of GABA release from striatal neurons, a finding that is relevant for understanding PD, GTS and reward mechanisms.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Ferrada, C. et al. Interactions between histamine H3 and dopamine D2 receptors and the implications for striatal function. Neuropharmacology 55, 190–197 (2008).

    Article  CAS  Google Scholar 

  26. 26

    Connelly, W. M. et al. The histamine H4 receptor is functionally expressed on neurons in the mammalian CNS. Br. J. Pharmacol. 157, 55–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Bongers, G. et al. An 80-amino acid deletion in the third intracellular loop of a naturally occurring human histamine H3 isoform confers pharmacological differences and constitutive activity. J. Pharmacol. Exp. Ther. 323, 888–898 (2007).

    Article  CAS  Google Scholar 

  28. 28

    Drutel, G. et al. Identification of rat H3 receptor isoforms with different brain expression and signaling properties. Mol. Pharmacol. 59, 1–8 (2001).

    Article  CAS  Google Scholar 

  29. 29

    Takeshita, Y. et al. Histamine modulates high-voltage-activated calcium channels in neurons dissociated from the rat tuberomammillary nucleus. Neuroscience 87, 797–805 (1998).

    Article  CAS  Google Scholar 

  30. 30

    Saper, C. B., Scammell, T. E. & Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature 437, 1257–1263 (2005).

    Article  CAS  Google Scholar 

  31. 31

    Takahashi, K., Lin, J. S. & Sakai, K. Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J. Neurosci. 26, 10292–10298 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Lin, J. S., Sakai, K., Vanni-Mercier, G. & Jouvet, M. A critical role of the posterior hypothalamus in the mechanisms of wakefulness determined by microinjection of muscimol in freely moving cats. Brain Res. 479, 225–240 (1989). This paper identified that the posterior hypothalamus has a crucial role in the mechanisms of wakefulness and that sleep results from functional blockade of the hypothalamic waking centre.

    Article  CAS  Google Scholar 

  33. 33

    Zecharia, A. Y. et al. GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep–wake switch or propofol-induced loss of consciousness. J. Neurosci. 32, 13062–13075 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Lin, J. S., Sakai, K. & Jouvet, M. Evidence for histaminergic arousal mechanisms in the hypothalamus of cat. Neuropharmacology 27, 111–122 (1988).

    Article  CAS  Google Scholar 

  35. 35

    Sakai, K., Takahashi, K., Anaclet, C. & Lin, J. S. Sleep-waking discharge of ventral tuberomammillary neurons in wild-type and histidine decarboxylase knock-out mice. Front. Behav. Neurosci. 4, 53 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Xu, C. Q. et al. Histamine innervation and activation of septohippocampal GABAergic neurones: involvement of local ACh release. J. Physiol. 561, 657–670 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Lin, J. S., Hou, Y., Sakai, K. & Jouvet, M. Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat. J. Neurosci. 16, 1523–1537 (1996).

    Article  CAS  Google Scholar 

  38. 38

    Kiviranta, T., Tuomisto, L. & Airaksinen, E. M. Diurnal and age-related changes in cerebrospinal fluid tele-methylhistamine levels during infancy and childhood. Pharmacol. Biochem. Behav. 49, 997–1000 (1994).

    Article  CAS  Google Scholar 

  39. 39

    Zant, J. C., Rozov, S., Wigren, H. K., Panula, P. & Porkka-Heiskanen, T. Histamine release in the basal forebrain mediates cortical activation through cholinergic neurons. J. Neurosci. 32, 13244–13254 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Ellender, T. J., Huerta-Ocampo, I., Deisseroth, K., Capogna, M. & Bolam, J. P. Differential modulation of excitatory and inhibitory striatal synaptic transmission by histamine. J. Neurosci. 31, 15340–15351 (2011). This was the first study to identify the role of histamine in the striatal circuits that are implicated in GTS and PD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    McCormick, D. A. & Williamson, A. Modulation of neuronal firing mode in cat and guinea pig LGNd by histamine: possible cellular mechanisms of histaminergic control of arousal. J. Neurosci. 11, 3188–3199 (1991).

    Article  CAS  Google Scholar 

  42. 42

    Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585 (1998).

    Article  CAS  Google Scholar 

  43. 43

    de Lecea, L. et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl Acad. Sci. USA 95, 322–327 (1998).

    Article  CAS  Google Scholar 

  44. 44

    Peyron, C. et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18, 9996–10015 (1998).

    Article  CAS  Google Scholar 

  45. 45

    Kaslin, J., Nystedt, J. M., Ostergard, M., Peitsaro, N. & Panula, P. The orexin/hypocretin system in zebrafish is connected to the aminergic and cholinergic systems. J. Neurosci. 24, 2678–2689 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Anaclet, C. et al. Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models. J. Neurosci. 29, 14423–14438 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Eriksson, K. S., Sergeeva, O., Brown, R. E. & Haas, H. L. Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J. Neurosci. 21, 9273–9279 (2001). This was first study to show that HCRT directly regulates histaminergic neurons.

    Article  CAS  Google Scholar 

  48. 48

    Bayer, L. et al. Orexins (hypocretins) directly excite tuberomammillary neurons. Eur. J. Neurosci. 14, 1571–1575 (2001).

    Article  CAS  Google Scholar 

  49. 49

    Yamanaka, A. et al. Orexins activate histaminergic neurons via the orexin 2 receptor. Biochem. Biophys. Res. Commun. 290, 1237–1245 (2002).

    Article  CAS  Google Scholar 

  50. 50

    Huang, Z. L. et al. Arousal effect of orexin A depends on activation of the histaminergic system. Proc. Natl Acad. Sci. USA 98, 9965–9970 (2001).

    Article  CAS  Google Scholar 

  51. 51

    Ishizuka, T., Murotani, T. & Yamatodani, A. Modanifil activates the histaminergic system through the orexinergic neurons. Neurosci. Lett. 483, 193–196 (2010).

    Article  CAS  Google Scholar 

  52. 52

    Lin, L. et al. Measurement of hypocretin/orexin content in the mouse brain using an enzyme immunoassay: the effect of circadian time, age and genetic background. Peptides 23, 2203–2211 (2002).

    Article  CAS  Google Scholar 

  53. 53

    Heller, H. C. & Ruby, N. F. Sleep and circadian rhythms in mammalian torpor. Annu. Rev. Physiol. 66, 275–289 (2004).

    Article  CAS  Google Scholar 

  54. 54

    Sallmen, T. et al. Major changes in the brain histamine system of the ground squirrel Citellus lateralis during hibernation. J. Neurosci. 19, 1824–1835 (1999).

    Article  CAS  Google Scholar 

  55. 55

    Sallmen, T., Lozada, A. F., Beckman, A. L. & Panula, P. Intrahippocampal histamine delays arousal from hibernation. Brain Res. 966, 317–320 (2003).

    Article  CAS  Google Scholar 

  56. 56

    Nikmanesh, F. G., Spangenberger, H. & Igelmund, P. Histamine enhances synaptic transmission in hippocampal slices from hibernating and warm-acclimated Turkish hamsters. Neurosci. Lett. 210, 119–120 (1996).

    Article  CAS  Google Scholar 

  57. 57

    Kukko-Lukjanov, T. K. et al. Histaminergic neurons protect the developing hippocampus from kainic acid-induced neuronal damage in an organotypic coculture system. J. Neurosci. 26, 1088–1097 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Tamura, Y., Monden, M., Shintani, M., Kawai, A. & Shiomi, H. Neuroprotective effects of hibernation-regulating substances against low-temperature-induced cell death in cultured hamster hippocampal neurons. Brain Res. 1108, 107–116 (2006).

    Article  CAS  Google Scholar 

  59. 59

    Alvarez, E. O. The role of histamine on cognition. Behav. Brain Res. 199, 183–189 (2009).

    Article  CAS  Google Scholar 

  60. 60

    Pollard, H., Moreau, J., Arrang, J. M. & Schwartz, J. C. A detailed autoradiographic mapping of histamine H3 receptors in rat brain areas. Neuroscience 52, 169–189 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Martinez-Mir, M. I. et al. Three histamine receptors (H1, H2 and H3) visualized in the brain of human and non-human primates. Brain Res. 526, 322–327 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    de Almeida, M. A. & Izquierdo, I. Memory facilitation by histamine. Arch. Int. Pharmacodyn. Ther. 283, 193–198 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    de Almeida, M. A. & Izquierdo, I. Intracerebroventricular histamine, but not 48/80, causes posttraining memory facilitation in the rat. Arch. Int. Pharmacodyn. Ther. 291, 202–207 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Dai, H. et al. Selective cognitive dysfunction in mice lacking histamine H1 and H2 receptors. Neurosci. Res. 57, 306–313 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Rizk, A., Curley, J., Robertson, J. & Raber, J. Anxiety and cognition in histamine H3 receptor−/− mice. Eur. J. Neurosci. 19, 1992–1996 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  66. 66

    Dere, E. et al. Histidine-decarboxylase knockout mice show deficient nonreinforced episodic object memory, improved negatively reinforced water-maze performance, and increased neo- and ventro-striatal dopamine turnover. Learn. Mem. 10, 510–519 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67

    Acevedo, S. F., Ohtsu, H., Benice, T. S., Rizk-Jackson, A. & Raber, J. Age-dependent measures of anxiety and cognition in male histidine decarboxylase knockout (Hdc−/−) mice. Brain Res. 1071, 113–123 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Liu, L. et al. Improved learning and memory of contextual fear conditioning and hippocampal CA1 long-term potentiation in histidine decarboxylase knock-out mice. Hippocampus 17, 634–641 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Chepkova, A. et al. Histamine receptor expression, hippocampal plasticity and ammonia in histidine decarboxylase knockout mice. Cell. Mol. Neurobiol. 32, 17–25 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Acevedoa, S. F., Pfankuch, T., Ohtsu, H. & Raber, J. Anxiety and cognition in female histidine decarboxylase knockout (Hdc−/−) mice. Behav. Brain Res. 168, 92–99 (2006).

    Article  CAS  Google Scholar 

  71. 71

    Horvath, T. L. & Diano, S. The floating blueprint of hypothalamic feeding circuits. Nature Rev. Neurosci. 5, 662–667 (2004).

    Article  CAS  Google Scholar 

  72. 72

    Saper, C. B., Chou, T. C. & Elmquist, J. K. The need to feed: homeostatic and hedonic control of eating. Neuron 36, 199–211 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Gillum, M. P. et al. N-acylphosphatidylethanolamine, a gut- derived circulating factor induced by fat ingestion, inhibits food intake. Cell 135, 813–824 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Dietrich, M. O. & Horvath, T. L. Feeding signals and brain circuitry. Eur. J. Neurosci. 30, 1688–1696 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  75. 75

    Umehara, H. et al. Deprivation of anticipated food under scheduled feeding induces c-Fos expression in the caudal part of the arcuate nucleus of hypothalamus through histamine H1 receptors in rats: potential involvement of E3 subgroup of histaminergic neurons in tuberomammillary nucleus. Brain Res. 1387, 61–70 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Kroeze, W. K. et al. H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology 28, 519–526 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Inzunza, O., Seron-Ferre, M. J., Bravo, H. & Torrealba, F. Tuberomammillary nucleus activation anticipates feeding under a restricted schedule in rats. Neurosci. Lett. 293, 139–142 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Angeles-Castellanos, M., Aguilar-Roblero, R. & Escobar, C. c-Fos expression in hypothalamic nuclei of food-entrained rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R158–R165 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Passani, M. B., Blandina, P. & Torrealba, F. The histamine H3 receptor and eating behavior. J. Pharmacol. Exp. Ther. 336, 24–29 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Elmquist, J. K., Bjorbaek, C., Ahima, R. S., Flier, J. S. & Saper, C. B. Distributions of leptin receptor mRNA isoforms in the rat brain. J. Comp. Neurol. 395, 535–547 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Morimoto, T. et al. Involvement of the histaminergic system in leptin-induced suppression of food intake. Physiol. Behav. 67, 679–683 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Sakata, T. et al. Modulation of neuronal histamine in control of food intake. Physiol. Behav. 44, 539–543 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Dhillon, H. et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49, 191–203 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Gotoh, K. et al. Glucagon-like peptide-1, corticotropin-releasing hormone, and hypothalamic neuronal histamine interact in the leptin-signaling pathway to regulate feeding behavior. FASEB J. 19, 1131–1133 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Elmquist, J. K., Ahima, R. S., Elias, C. F., Flier, J. S. & Saper, C. B. Leptin activates distinct projections from the dorsomedial and ventromedial hypothalamic nuclei. Proc. Natl Acad. Sci. USA 95, 741–746 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Sakurai, T. & Mieda, M. Connectomics of orexin-producing neurons: interface of systems of emotion, energy homeostasis and arousal. Trends Pharmacol. Sci. 32, 451–462 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Ishizuka, T. et al. A role of the histaminergic system for the control of feeding by orexigenic peptides. Physiol. Behav. 89, 295–300 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Zigman, J. M., Jones, J. E., Lee, C. E., Saper, C. B. & Elmquist, J. K. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J. Comp. Neurol. 494, 528–548 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Nishino, S. et al. Decreased CSF histamine in narcolepsy with and without low CSF hypocretin-1 in comparison to healthy controls. Sleep 32, 175–180 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91

    Kanbayashi, T. et al. CSF histamine contents in narcolepsy, idiopathic hypersomnia and obstructive sleep apnea syndrome. Sleep 32, 181–187 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    Lin, J. S. et al. An inverse agonist of the histamine H3 receptor improves wakefulness in narcolepsy: studies in orexin−/− mice and patients. Neurobiol. Dis. 30, 74–83 (2008). This was the first clinical study to show the positive effect of an H 3 R antagonist on excessive daytime sleepiness in patients with narcolepsy.

    Article  CAS  PubMed  Google Scholar 

  93. 93

    Peyron, C. et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nature Med. 6, 991–997 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. 94

    Scammell, T. E. & Mochizuki, T. Is low histamine a fundamental cause of sleepiness in narcolepsy and idiopathic hypersomnia? Sleep 32, 133–134 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  95. 95

    Sander, K., Kottke, T. & Stark, H. Histamine H3 receptor antagonists go to clinics. Biol. Pharm. Bull. 31, 2163–2181 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Esbenshade, T. A. et al. The histamine H3 receptor: an attractive target for the treatment of cognitive disorders. Br. J. Pharmacol. 154, 1166–1181 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Bonaventure, P. et al. Histamine H3 receptor antagonists: from target identification to drug leads. Biochem. Pharmacol. 73, 1084–1096 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Passani, M. B. & Blandina, P. Histamine receptors in the CNS as targets for therapeutic intervention. Trends Pharmacol. Sci. 32, 242–249 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Bardgett, M. E., Davis, N. N., Schultheis, P. J. & Griffith, M. S. Ciproxifan, an H3 receptor antagonist, alleviates hyperactivity and cognitive deficits in the APPTg2576 mouse model of Alzheimer's disease. Neurobiol. Learn. Mem. 95, 64–72 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Varaschin, R. K., Akers, K. G., Rosenberg, M. J., Hamilton, D. A. & Savage, D. D. Effects of the cognition-enhancing agent ABT-239 on fetal ethanol-induced deficits in dentate gyrus synaptic plasticity. J. Pharmacol. Exp. Ther. 334, 191–198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Galici, R. et al. JNJ-10181457, a selective non-imidazole histamine H3 receptor antagonist, normalizes acetylcholine neurotransmission and has efficacy in translational rat models of cognition. Neuropharmacology 56, 1131–1137 (2009).

    Article  CAS  Google Scholar 

  102. 102

    Brioni, J. D., Esbenshade, T. A., Garrison, T. R., Bitner, S. R. & Cowart, M. D. Discovery of histamine H3 antagonists for the treatment of cognitive disorders and Alzheimer's disease. J. Pharmacol. Exp. Ther. 336, 38–46 (2011).

    Article  CAS  Google Scholar 

  103. 103

    Welty, N. & Shoblock, J. R. The effects of thioperamide on extracellular levels of glutamate and GABA in the rat prefrontal cortex. Psychopharmacology (Berl.) 207, 433–438 (2009).

    Article  CAS  Google Scholar 

  104. 104

    Pascoli, V., Boer-Saccomani, C. & Hermant, J. F. H3 receptor antagonists reverse delay-dependent deficits in novel object discrimination by enhancing retrieval. Psychopharmacology (Berl.) 202, 141–152 (2009).

    Article  CAS  Google Scholar 

  105. 105

    Van Ruitenbeek, P., Vermeeren, A. & Riedel, W. J. Cognitive domains affected by histamine H1-antagonism in humans: a literature review. Brain Res. Rev. 64, 263–282 (2010).

    Article  CAS  Google Scholar 

  106. 106

    Kuhne, S., Wijtmans, M., Lim, H. D., Leurs, R. & de Esch, I. J. Several down, a few to go: histamine H3 receptor ligands making the final push towards the market? Expert Opin. Investig. Drugs 20, 1629–1648 (2011).

    Article  CAS  Google Scholar 

  107. 107

    Cho, W. et al. Additive effects of a cholinesterase inhibitor and a histamine inverse agonist on scopolamine deficits in humans. Psychopharmacology (Berl.) 218, 513–524 (2011).

    Article  CAS  Google Scholar 

  108. 108

    Weisler, R. H., Pandina, G. J., Daly, E. J., Cooper, K. & Gassmann-Mayer, C. Randomized clinical study of a histamine H3 receptor antagonist for the treatment of adults with attention-deficit hyperactivity disorder. CNS Drugs 26, 421–434 (2012).

    Article  CAS  Google Scholar 

  109. 109

    Rinne, J. O. et al. Increased brain histamine levels in Parkinson's disease but not in multiple system atrophy. J. Neurochem. 81, 954–960 (2002).

    Article  CAS  Google Scholar 

  110. 110

    Nakamura, S. et al. Large neurons in the tuberomammillary nucleus in patients with Parkinson's disease and multiple system atrophy. Neurology 46, 1693–1696 (1996).

    Article  CAS  Google Scholar 

  111. 111

    Nowak, P. et al. Histaminergic activity in a rodent model of Parkinson's disease. Neurotox. Res. 15, 246–251 (2009).

    Article  CAS  Google Scholar 

  112. 112

    Anichtchik, O. V., Peitsaro, N., Rinne, J. O., Kalimo, H. & Panula, P. Distribution and modulation of histamine H3 receptors in basal ganglia and frontal cortex of healthy controls and patients with Parkinson's disease. Neurobiol. Dis. 8, 707–716 (2001).

    Article  CAS  Google Scholar 

  113. 113

    Ryu, J. H., Yanai, K. & Watanabe, T. Marked increase in histamine H3 receptors in the striatum and substantia nigra after 6-hydroxydopamine-induced denervation of dopaminergic neurons: an autoradiographic study. Neurosci. Lett. 178, 19–22 (1994).

    Article  CAS  Google Scholar 

  114. 114

    Anichtchik, O. V. et al. Modulation of histamine H3 receptors in the brain of 6-hydroxydopamine-lesioned rats. Eur. J. Neurosci. 12, 3823–3832 (2000).

    Article  CAS  Google Scholar 

  115. 115

    Nowak, P. et al. Histamine H3 receptor ligands modulate L-dopa-evoked behavioral responses and L-dopa derived extracellular dopamine in dopamine-denervated rat striatum. Neurotox. Res. 13, 231–240 (2008).

    Article  CAS  Google Scholar 

  116. 116

    Sakumoto, T., Sakai, K., Jouvet, M., Kimura, H. & Maeda, T. 5-HT immunoreactive hypothalamic neurons in rat and cat after 5-HTP administration. Brain Res. Bull. 12, 721–733 (1984).

    Article  CAS  Google Scholar 

  117. 117

    Yanovsky, Y. et al. L-Dopa activates histaminergic neurons. J. Physiol. 589, 1349–1366 (2011). This study demonstrates the ability of the histaminergic neurons to take up and decarboxylate L-DOPA, a finding relevant for understanding the mechanisms of PD and L-DOPA-induced dyskinesia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Doreulee, N. et al. Histamine H3 receptors depress synaptic transmission in the corticostriatal pathway. Neuropharmacology 40, 106–113 (2001).

    Article  CAS  Google Scholar 

  119. 119

    Gomez-Ramirez, J., Johnston, T. H., Visanji, N. P., Fox, S. H. & Brotchie, J. M. Histamine H3 receptor agonists reduce L-dopa-induced chorea, but not dystonia, in the MPTP-lesioned nonhuman primate model of Parkinson's disease. Mov. Disord. 21, 839–846 (2006).

    Article  Google Scholar 

  120. 120

    Johnston, T. H., van der Meij, A., Brotchie, J. M. & Fox, S. H. Effect of histamine H2 receptor antagonism on levodopa-induced dyskinesia in the MPTP-macaque model of Parkinson's disease. Mov. Disord. 25, 1379–1390 (2010).

    Article  Google Scholar 

  121. 121

    Schwartz, J. C. The histamine H3 receptor: from discovery to clinical trials with pitolisant. Br. J. Pharmacol. 163, 713–721 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Fernandez, T. V. et al. Rare copy number variants in tourette syndrome disrupt genes in histaminergic pathways and overlap with autism. Biol. Psychiatry 71, 392–402 (2012).

    Article  CAS  Google Scholar 

  123. 123

    Kalanithi, P. S. et al. Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Proc. Natl Acad. Sci. USA 102, 13307–13312 (2005).

    Article  CAS  Google Scholar 

  124. 124

    Kataoka, Y. et al. Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J. Comp. Neurol. 518, 277–291 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  125. 125

    Turjanski, N. et al. PET studies of the presynaptic and postsynaptic dopaminergic system in Tourette's syndrome. J. Neurol. Neurosurg. Psychiatry 57, 688–692 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Singer, H. S. et al. Elevated intrasynaptic dopamine release in Tourette's syndrome measured by PET. Am. J. Psychiatry 159, 1329–1336 (2002).

    Article  Google Scholar 

  127. 127

    Humbert-Claude, M., Davenas, E., Gbahou, F., Vincent, L. & Arrang, J. M. Involvement of histamine receptors in the atypical antipsychotic profile of clozapine: a reassessment in vitro and in vivo. Psychopharmacology (Berl.) 220, 225–241 (2012).

    Article  CAS  Google Scholar 

  128. 128

    Prell, G. D. et al. Histamine metabolites in cerebrospinal fluid of patients with chronic schizophrenia: their relationships to levels of other aminergic transmitters and ratings of symptoms. Schizophr. Res. 14, 93–104 (1995).

    Article  CAS  Google Scholar 

  129. 129

    Jin, C. Y., Anichtchik, O. & Panula, P. Altered histamine H3 receptor radioligand binding in post-mortem brain samples from subjects with psychiatric diseases. Br. J. Pharmacol. 157, 118–129 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Iwabuchi, K. et al. Histamine H1 receptors in schizophrenic patients measured by positron emission tomography. Eur. Neuropsychopharmacol. 15, 185–191 (2005).

    Article  CAS  Google Scholar 

  131. 131

    Kaminsky, R., Moriarty, T. M., Bodine, J., Wolf, D. E. & Davidson, M. Effect of famotidine on deficit symptoms of schizophrenia. Lancet 335, 1351–1352 (1990).

    Article  CAS  Google Scholar 

  132. 132

    Rosse, R. B. et al. An open-label study of the therapeutic efficacy of high-dose famotidine adjuvant pharmacotherapy in schizophrenia: preliminary evidence for treatment efficacy. Clin. Neuropharmacol. 19, 341–348 (1996).

    Article  CAS  Google Scholar 

  133. 133

    Martinez, M. C. Famotidine in the management of schizophrenia. Ann. Pharmacother. 33, 742–747 (1999).

    Article  CAS  Google Scholar 

  134. 134

    Meskanen, K. et al. Antagonism of histamine H2 receptors as a novel approach to treat schizophrenia: a double-blind, randomized clinical trial. J. Clin. Psychopharmacol. (in the press).

  135. 135

    Arrang, J. M. Histamine and schizophrenia. Int. Rev. Neurobiol. 78, 247–287 (2007).

    Article  CAS  Google Scholar 

  136. 136

    Wagner, U., Segura-Torres, P., Weiler, T. & Huston, J. P. The tuberomammillary nucleus region as a reinforcement inhibiting substrate: facilitation of ipsihypothalamic self-stimulation by unilateral ibotenic acid lesions. Brain Res. 613, 269–274 (1993).

    Article  CAS  Google Scholar 

  137. 137

    Wagner, U., Weiler, H. T. & Huston, J. P. Amplification of rewarding hypothalamic stimulation following a unilateral lesion in the region of the tuberomammillary nucleus. Neuroscience 52, 927–932 (1993).

    Article  CAS  Google Scholar 

  138. 138

    Huston, J. P., Wagner, U. & Hasenohrl, R. U. The tuberomammillary nucleus projections in the control of learning, memory and reinforcement processes: evidence for an inhibitory role. Behav. Brain Res. 83, 97–105 (1997).

    Article  CAS  Google Scholar 

  139. 139

    Brabant, C. et al. The psychostimulant and rewarding effects of cocaine in histidine decarboxylase knockout mice do not support the hypothesis of an inhibitory function of histamine on reward. Psychopharmacology (Berl.) 190, 251–263 (2007).

    Article  CAS  Google Scholar 

  140. 140

    Lintunen, M. et al. Increased brain histamine in an alcohol-preferring rat line and modulation of ethanol consumption by H3 receptor mechanisms. FASEB J. 15, 1074–1076 (2001).

    Article  CAS  Google Scholar 

  141. 141

    Nuutinen, S. et al. Evidence for the role of histamine H3 receptor in alcohol consumption and alcohol reward in mice. Neuropsychopharmacology 36, 2030–2040 (2011). In this study, the histamine H 3 R is shown to have a key role in both alcohol consumption and alcohol-induced place preference in several mouse models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Nuutinen, S., Vanhanen, J., Pigni, M. C. & Panula, P. Effects of histamine H3 receptor ligands on the rewarding, stimulant and motor-impairing effects of ethanol in DBA/2J mice. Neuropharmacology 60, 1193–1199 (2011).

    Article  CAS  Google Scholar 

  143. 143

    Galici, R. et al. JNJ-39220675, a novel selective histamine H3 receptor antagonist, reduces the abuse-related effects of alcohol in rats. Psychopharmacology (Berl.) 214, 829–841 (2011).

    Article  CAS  Google Scholar 

  144. 144

    Nuutinen, S., Karlstedt, K., Aitta-Aho, T., Korpi, E. R. & Panula, P. Histamine and H3 receptor-dependent mechanisms regulate ethanol stimulation and conditioned place preference in mice. Psychopharmacology (Berl.) 208, 75–86 (2010).

    Article  CAS  Google Scholar 

  145. 145

    Alakarppa, K. et al. Effect of alcohol abuse on human brain histamine and tele-methylhistamine. Inflamm. Res. 51, S40–S41 (2002).

    CAS  PubMed  Google Scholar 

  146. 146

    Fogel, W. A. et al. Neuronal storage of histamine in the brain and tele-methylimidazoleacetic acid excretion in portocaval shunted rats. J. Neurochem. 80, 375–382 (2002).

    Article  CAS  Google Scholar 

  147. 147

    Lozeva, V., Tuomisto, L., Tarhanen, J. & Butterworth, R. F. Increased concentrations of histamine and its metabolite, tele-methylhistamine and down-regulation of histamine H3 receptor sites in autopsied brain tissue from cirrhotic patients who died in hepatic coma. J. Hepatol. 39, 522–527 (2003).

    Article  CAS  Google Scholar 

  148. 148

    Suzuki, T., Takamori, K., Misawa, M. & Onodera, K. Effects of the histaminergic system on the morphine-induced conditioned place preference in mice. Brain Res. 675, 195–202 (1995).

    Article  CAS  Google Scholar 

  149. 149

    Gong, Y. X., Zhang, W. P., Shou, W. T., Zhong, K. & Chen, Z. Morphine induces conditioned place preference behavior in histidine decarboxylase knockout mice. Neurosci. Lett. 468, 115–119 (2010).

    Article  CAS  Google Scholar 

  150. 150

    Munzar, P., Nosal, R. & Goldberg, S. R. Potentiation of the discriminative-stimulus effects of methamphetamine by the histamine H3 receptor antagonist thioperamide in rats. Eur. J. Pharmacol. 363, 93–101 (1998).

    Article  CAS  Google Scholar 

  151. 151

    Munzar, P., Tanda, G., Justinova, Z. & Goldberg, S. R. Histamine H3 receptor antagonists potentiate methamphetamine self-administration and methamphetamine-induced accumbal dopamine release. Neuropsychopharmacology 29, 705–717 (2004).

    Article  CAS  Google Scholar 

  152. 152

    Brabant, C., Charlier, Y., Quertemont, E. & Tirelli, E. The H3 antagonist thioperamide reveals conditioned preference for a context associated with an inactive small dose of cocaine in C57BL/6J mice. Behav. Brain Res. 160, 161–168 (2005).

    Article  CAS  Google Scholar 

  153. 153

    Handel, A. E., Giovannoni, G., Ebers, G. C. & Ramagopalan, S. V. Environmental factors and their timing in adult-onset multiple sclerosis. Nature Rev. Neurol. 6, 156–166 (2010).

    Article  Google Scholar 

  154. 154

    Tuomisto, L., Kilpelainen, H. & Riekkinen, P. Histamine and histamine-N-methyltransferase in the CSF of patients with multiple sclerosis. Agents Actions 13, 255–257 (1983).

    Article  CAS  Google Scholar 

  155. 155

    Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nature Med. 8, 500–508 (2002).

    Article  CAS  Google Scholar 

  156. 156

    Logothetis, L. et al. A pilot, open label, clinical trial using hydroxyzine in multiple sclerosis. Int. J. Immunopathol. Pharmacol. 18, 771–778 (2005).

    Article  CAS  Google Scholar 

  157. 157

    Alonso, A., Jick, S. S. & Hernan, M. A. Allergy, histamine 1 receptor blockers, and the risk of multiple sclerosis. Neurology 66, 572–575 (2006).

    Article  CAS  Google Scholar 

  158. 158

    Dimitriadou, V., Pang, X. & Theoharides, T. C. Hydroxyzine inhibits experimental allergic encephalomyelitis (EAE) and associated brain mast cell activation. Int. J. Immunopharmacol. 22, 673–684 (2000).

    Article  CAS  Google Scholar 

  159. 159

    Ma, R. Z. et al. Identification of Bphs, an autoimmune disease locus, as histamine receptor H1 . Science 297, 620–623 (2002). The first of several papers from the same research group that identify the role of histamine receptors in EAE, a mouse model of MS.

    Article  CAS  Google Scholar 

  160. 160

    Passani, M. B. & Ballerini, C. Histamine and neuroinflammation: insights from murine experimental autoimmune encephalomyelitis. Front. Syst. Neurosci. 6, 32 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Teuscher, C. et al. Attenuation of Th1 effector cell responses and susceptibility to experimental allergic encephalomyelitis in histamine H2 receptor knockout mice is due to dysregulation of cytokine production by antigen-presenting cells. Am. J. Pathol. 164, 883–892 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. 162

    Teuscher, C. et al. Central histamine H3 receptor signaling negatively regulates susceptibility to autoimmune inflammatory disease of the CNS. Proc. Natl Acad. Sci. USA 104, 10146–10151 (2007).

    Article  CAS  Google Scholar 

  163. 163

    del Rio, R. et al. Histamine H4 receptor optimizes T regulatory cell frequency and facilitates anti-inflammatory responses within the central nervous system. J. Immunol. 188, 541–547 (2012).

    Article  CAS  Google Scholar 

  164. 164

    Musio, S. et al. A key regulatory role for histamine in experimental autoimmune encephalomyelitis: disease exacerbation in histidine decarboxylase-deficient mice. J. Immunol. 176, 17–26 (2006).

    Article  CAS  Google Scholar 

  165. 165

    Karlstedt, K., Ahman, M. J., Anichtchik, O. V., Soinila, S. & Panula, P. Expression of the H3 receptor in the developing CNS and brown fat suggests novel roles for histamine. Mol. Cell. Neurosci. 24, 614–622 (2003).

    Article  CAS  Google Scholar 

  166. 166

    Kinnunen, A., Lintunen, M., Karlstedt, K., Fukui, H. & Panula, P. In situ detection of H1-receptor mRNA and absence of apoptosis in the transient histamine system of the embryonic rat brain. J. Comp. Neurol. 394, 127–137 (1998).

    Article  CAS  Google Scholar 

  167. 167

    Karlstedt, K., Senkas, A., Ahman, M. & Panula, P. Regional expression of the histamine H2 receptor in adult and developing rat brain. Neuroscience 102, 201–208 (2001).

    Article  CAS  Google Scholar 

  168. 168

    Prat, A. & Antel, J. Pathogenesis of multiple sclerosis. Curr. Opin. Neurol. 18, 225–230 (2005).

    Article  CAS  Google Scholar 

  169. 169

    Shimamura, T. et al. Structure of the human histamine H1 receptor complex with doxepin. Nature 475, 65–70 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. 170

    de Graaf, C. et al. Crystal structure-based virtual screening for fragment-like ligands of the human histamine H1 receptor. J. Med. Chem. 54, 8195–8206 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. 171

    Auvinen, S. & Panula, P. Development of histamine-immunoreactive neurons in the rat brain. J. Comp. Neurol. 276, 289–303 (1988).

    Article  CAS  Google Scholar 

  172. 172

    Vanhala, A., Yamatodani, A. & Panula, P. Distribution of histamine-, 5-hydroxytryptamine-, and tyrosine hydroxylase-immunoreactive neurons and nerve fibers in developing rat brain. J. Comp. Neurol. 347, 101–114 (1994).

    Article  CAS  Google Scholar 

  173. 173

    Reiner, P. B., Semba, K., Fibiger, H. C. & McGeer, E. G. Ontogeny of histidine-decarboxylase-immunoreactive neurons in the tuberomammillary nucleus of the rat hypothalamus: time of origin and development of transmitter phenotype. J. Comp. Neurol. 276, 304–311 (1988).

    Article  CAS  Google Scholar 

  174. 174

    Molina-Hernandez, A. & Velasco, I. Histamine induces neural stem cell proliferation and neuronal differentiation by activation of distinct histamine receptors. J. Neurochem. 106, 706–717 (2008).

    Article  CAS  Google Scholar 

  175. 175

    Kinnunen, A. & Panula, P. Histamine and tyrosine hydroxylase in developing rat brain. Agents Actions 33, 108–111 (1991).

    Article  CAS  PubMed  Google Scholar 

  176. 176

    Vincent, S. R., Hokfelt, T., Skirboll, L. R. & Wu, J. Y. Hypothalamic γ-aminobutyric acid neurons project to the neocortex. Science 220, 1309–1311 (1983).

    Article  CAS  PubMed  Google Scholar 

  177. 177

    Trueta, C. & De-Miguel, F. F. Extrasynaptic exocytosis and its mechanisms: a source of molecules mediating volume transmission in the nervous system. Front. Physiol. 3, 319 (2012).

    PubMed  PubMed Central  Google Scholar 

  178. 178

    Airaksinen, M. S., Alanen, S., Szabat, E., Visser, T. J. & Panula, P. Multiple neurotransmitters in the tuberomammillary nucleus: comparison of rat, mouse, and guinea pig. J. Comp. Neurol. 323, 103–116 (1992).

    Article  CAS  PubMed  Google Scholar 

  179. 179

    Sundvik, M. & Panula, P. The organization of the histaminergic system in adult zebrafish (Danio rerio) brain: neuron number, location and co-transmitters. J. Comp. Neurol. 520, 3827–3845 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. 180

    Trottier, S. et al. Co-localization of histamine with GABA but not with galanin in the human tuberomamillary nucleus. Brain Res. 939, 52–64 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. 181

    Clapham, J. & Kilpatrick, G. J. Thioperamide, the selective histamine H3 receptor antagonist, attenuates stimulant-induced locomotor activity in the mouse. Eur. J. Pharmacol. 259, 107–114 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. 182

    Morisset, S. et al. Acute and chronic effects of methamphetamine on Tele-methylhistamine levels in mouse brain: selective involvement of the D2 and not D3 receptor. J. Pharmacol. Exp. Ther. 300, 621–628 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. 183

    Brabant, C., Quertemont, E. & Tirelli, E. Effects of the H3-receptor inverse agonist thioperamide on the psychomotor effects induced by acutely and repeatedly given cocaine in C57BL/6J mice. Pharmacol. Biochem. Behav. 83, 561–569 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. 184

    Pillot, C. et al. Ciproxifan, a histamine H3-receptor antagonist/inverse agonist, potentiates neurochemical and behavioral effects of haloperidol in the rat. J. Neurosci. 22, 7272–7280 (2002). This study shows that neurons of the striatopallidal pathway express H 3 Rs and that ciproxifan can potentiate haloperidol-induced upregulation of proenkephalin expression, suggesting that dopamine D2Rs and H 3 Rs can directly interact with each other.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. 185

    Brabant, C. et al. Effects of the H3 receptor inverse agonist thioperamide on cocaine-induced locomotion in mice: role of the histaminergic system and potential pharmacokinetic interactions. Psychopharmacology (Berl.) 202, 673–687 (2009).

    Article  CAS  Google Scholar 

  186. 186

    Bongers, G. et al. The Akt/GSK-3β axis as a new signaling pathway of the histamine H3 receptor. J. Neurochem. 103, 248–258 (2007).

    CAS  PubMed  Google Scholar 

  187. 187

    Sanchez-Lemus, E. & Arias-Montano, J. A. Histamine H3 receptor activation inhibits dopamine D1 receptor-induced cAMP accumulation in rat striatal slices. Neurosci. Lett. 364, 179–184 (2004).

    Article  CAS  PubMed  Google Scholar 

  188. 188

    Pillot, C., Heron, A., Schwartz, J. C. & Arrang, J. M. Ciproxifan, a histamine H3-receptor antagonist/inverse agonist, modulates the effects of methamphetamine on neuropeptide mRNA expression in rat striatum. Eur. J. Neurosci. 17, 307–314 (2003).

    Article  PubMed  Google Scholar 

  189. 189

    Ferrada, C. et al. Marked changes in signal transduction upon heteromerization of dopamine D1 and histamine H3 receptors. Br. J. Pharmacol. 157, 64–75 (2009). This study identified that H 3 Rs and dopamine D1Rs can heteromerize, an essential finding for understanding striatal functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. 190

    Moreno, E. et al. Dopamine D1-histamine H3 receptor heteromers provide a selective link to MAPK signaling in GABAergic neurons of the direct striatal pathway. J. Biol. Chem. 286, 5846–5854 (2011).

    Article  CAS  PubMed  Google Scholar 

  191. 191

    Jin, C. Y. & Panula, P. The laminar histamine receptor system in human prefrontal cortex suggests multiple levels of histaminergic regulation. Neuroscience 132, 137–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  192. 192

    Jin, C. Y., Kalimo, H. & Panula, P. The histaminergic system in human thalamus: correlation of innervation to receptor expression. Eur. J. Neurosci. 15, 1125–1138 (2002).

    Article  CAS  PubMed  Google Scholar 

  193. 193

    Jin, C., Lintunen, M. & Panula, P. Histamine H1 and H3 receptors in the rat thalamus and their modulation after systemic kainic acid administration. Exp. Neurol. 194, 43–56 (2005).

    Article  CAS  PubMed  Google Scholar 

  194. 194

    Panula, P., Airaksinen, M. S., Pirvola, U. & Kotilainen, E. A histamine-containing neuronal system in human brain. Neuroscience 34, 127–132 (1990).

    Article  CAS  PubMed  Google Scholar 

  195. 195

    Karlstedt, K., Jin, C. & Panula, P. Expression of histamine receptor Hrh3 and Hrh4 in rat brain endothelial cells. Br. J. Pharmacol. 14 Mar 2013 (doi:10.1111/bph.12173).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. 196

    Karlstedt, K. et al. Lack of histamine synthesis and down-regulation of H1 and H2 receptor mRNA levels by dexamethasone in cerebral endothelial cells. J. Cereb. Blood Flow Metab. 19, 321–330 (1999).

    Article  CAS  PubMed  Google Scholar 

  197. 197

    Thurmond, R. L., Gelfand, E. W. & Dunford, P. J. The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines. Nature Rev. Drug Discov. 7, 41–53 (2008).

    Article  CAS  Google Scholar 

  198. 198

    Ariyasu, H. et al. Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J. Clin. Endocrinol. Metab. 86, 4753–4758 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. 199

    Tschop, M., Smiley, D. L. & Heiman, M. L. Ghrelin induces adiposity in rodents. Nature 407, 908–913 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. 200

    Masaki, T. & Yoshimatsu, H. The hypothalamic H1 receptor: a novel therapeutic target for disrupting diurnal feeding rhythm and obesity. Trends Pharmacol. Sci. 27, 279–284 (2006).

    Article  CAS  Google Scholar 

  201. 201

    Lintunen, M. et al. Postnatal expression of H1-receptor mRNA in the rat brain: correlation to L-histidine decarboxylase expression and local upregulation in limbic seizures. Eur. J. Neurosci. 10, 2287–2301 (1998).

    Article  CAS  Google Scholar 

  202. 202

    Masaki, T. et al. Involvement of hypothalamic histamine H1 receptor in the regulation of feeding rhythm and obesity. Diabetes 53, 2250–2260 (2004).

    Article  CAS  Google Scholar 

  203. 203

    Morimoto, T., Yamamoto, Y. & Yamatodani, A. Leptin facilitates histamine release from the hypothalamus in rats. Brain Res. 868, 367–369 (2000).

    Article  CAS  Google Scholar 

  204. 204

    Ericson, H., Blomqvist, A. & Kohler, C. Brainstem afferents to the tuberomammillary nucleus in the rat brain with special reference to monoaminergic innervation. J. Comp. Neurol. 281, 169–192 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank H. Haas, R. Leurs, P. Blandina and B. Passani for comments on the manuscript. The authors' research on histamine is supported by COST Action BM 0806 and grants from the Academy of Finland, the Sigrid Juselius Foundation, the Finnish Fund for Alcohol Research, Finska Läkaresällskapet and Magnus Ehrnrooth's Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pertti Panula.

Ethics declarations

Competing interests

P.P. has received research supplies from Johnson & Johnson and an honorarium for speaking from Abbott Laboratories, and has stock ownership in Delichon Ltd, a biotechnology company, and Orion Pharma, a drug company. S.N. declares no competing financial interests.

Related links

FURTHER INFORMATION

Pertti Panula's homepage

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Histamine H3 receptor-dependent neurotransmitter release in different brain areas (PDF 93 kb)

Glossary

Inverse agonists

Receptor ligands that have activity at a receptor that is independent of and opposite to the endogenous ligand; most classical receptor antagonists are in fact inverse agonists and true neutral antagonists that have no activity when bound to the receptor are rare.

Morpholino-oligonucleotide

An oligonucleotide that binds to mRNA and inhibits ribosome attachment. It is used to inhibit mRNA translation in zebrafish.

Cognition

This term refers to the mental processes involved in gaining knowledge and comprehension, including attention, learning, short-term memory, working memory and long-term memory.

Gilles de la Tourette syndrome

(GTS). This is a childhood-onset neuropsychiatric disorder with a prevalence close to 1% that is characterized by motor and vocal tics that usually diminish during later life. GTS is often associated one or several comorbidities, including attention-deficit hyperactivity disorder and obsessive-compulsive disorder.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Panula, P., Nuutinen, S. The histaminergic network in the brain: basic organization and role in disease. Nat Rev Neurosci 14, 472–487 (2013). https://doi.org/10.1038/nrn3526

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing