Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cognitive and emotional control of pain and its disruption in chronic pain

Subjects

Key Points

  • Pain experience can be profoundly influenced by emotional states and attentional direction. Multiple brain regions involved in pain processing are also crucial for emotion and attention.

  • Emotional modulation of pain seems to be controlled by a fronto–periaqueductal grey–brainstem circuit that can increase or decrease pain experience depending on the emotion being experienced: for example, empathy for another's pain can increase an individual's own pain sensation. Attention can reduce pain via distraction and is purported to depend on insula–parietal–somatosensory corticocortical pathways.

  • Both emotional and attentional modulation of pain can be harnessed by non-pharmacological interventions such as yoga, meditation and the placebo effect. Indeed, even expectation of relief activates descending endogenous opioidergic circuitry.

  • When pain becomes chronic, structural changes are seen in multiple brain regions involved in emotional and attentional aspects of pain modulation, possibly leading to a diminished ability in pain regulation.

  • There is also evidence that disruption of endogenous pain modulatory systems by chronic pain alters cognitive and emotional processing in patients with pain, leading to impairments in performance on decision-making and learning tasks.

  • The neurochemical bases for these changes are not yet well understood, although evidence suggests possible roles for excitotoxicity and neuroinflammation in impaired neuronal integrity and firing properties.

  • However, successful treatment of chronic pain — such as by hip replacement or back surgery — can reverse the pain-related reductions in grey matter. There are tantalizing hints that psychology-based treatments such as meditation may also act in a neuroprotective manner to prevent or reverse these pain-related changes in brain structure and function.

Abstract

Chronic pain is one of the most prevalent health problems in our modern world, with millions of people debilitated by conditions such as back pain, headache and arthritis. To address this growing problem, many people are turning to mind–body therapies, including meditation, yoga and cognitive behavioural therapy. This article will review the neural mechanisms underlying the modulation of pain by cognitive and emotional states — important components of mind–body therapies. It will also examine the accumulating evidence that chronic pain itself alters brain circuitry, including that involved in endogenous pain control, suggesting that controlling pain becomes increasingly difficult as pain becomes chronic.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Feedback loops between pain, emotions and cognition.
Figure 2: Afferent pain pathways include multiple brain regions.
Figure 3: Attentional and emotional factors modulate pain perception via different pathways.
Figure 4: Consistently identified changes in the brains of patients with chronic pain.

References

  1. 1

    Bingel, U. et al. The effect of treatment expectation on drug efficacy: imaging the analgesic benefit of the opioid remifentanil. Sci. Transl. Med. 3, 70ra14 (2011).

    PubMed  Google Scholar 

  2. 2

    Benedetti, F., Mayberg, H. S., Wager, T. D., Stohler, C. S. & Zubieta, J. K. Neurobiological mechanisms of the placebo effect. J. Neurosci. 25, 10390–10402 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Villemure, C. & Bushnell, M. C. Cognitive modulation of pain: how do attention and emotion influence pain processing? Pain 95, 195–199 (2002).

    PubMed  Google Scholar 

  4. 4

    Villemure, C. & Bushnell, M. C. Mood influences supraspinal pain processing separately from attention. J. Neurosci. 29, 705–715 (2009). This is the first study to dissociate the circuitry involved in emotional and attentional modulation of pain.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Loggia, M. L., Mogil, J. S. & Bushnell, M. C. Empathy hurts: compassion for another increases both sensory and affective components of pain perception. Pain 136, 168–176 (2008).

    PubMed  Google Scholar 

  6. 6

    Schweinhardt, P. & Bushnell, M. C. Pain imaging in health and disease — how far have we come? J. Clin. Invest. 120, 3788–3797 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Hölzel, B. K. et al. Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Res. 191, 36–43 (2011).

    PubMed  Google Scholar 

  8. 8

    Grant, J. A., Courtemanche, J., Duerden, E. G., Duncan, G. H. & Rainville, P. Cortical thickness and pain sensitivity in zen meditators. Emotion 10, 43–53 (2010).

    PubMed  Google Scholar 

  9. 9

    Pagnoni, G. & Cekic, M. Age effects on gray matter volume and attentional performance in Zen meditation. Neurobiol. Aging 28, 1623–1627 (2007).

    PubMed  Google Scholar 

  10. 10

    Mackey, A. P., Whitaker, K. J. & Bunge, S. A. Experience-dependent plasticity in white matter microstructure: reasoning training alters structural connectivity. Front. Neuroanat. 6, 32 (2012).

    PubMed  PubMed Central  Google Scholar 

  11. 11

    Luders, E. et al. Bridging the hemispheres in meditation: thicker callosal regions and enhanced fractional anisotropy (FA) in long-term practitioners. Neuroimage 61, 181–187 (2012).

    PubMed  PubMed Central  Google Scholar 

  12. 12

    Lutz, A., McFarlin, D. R., Perlman, D. M., Salomons, T. V. & Davidson, R. J. Altered anterior insula activation during anticipation and experience of painful stimuli in expert meditators. Neuroimage 64, 538–546 (2013).

    PubMed  Google Scholar 

  13. 13

    Apkarian, A. V., Bushnell, M. C., Treede, R. D. & Zubieta, J. K. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain 9, 463–484 (2005).

    Google Scholar 

  14. 14

    Friedman, D. P., Murray, E. A., O'Neill, J. B. & Mishkin, M. Cortical connections of the somatosensory fields of the lateral sulcus of macaques: evidence for a corticolimbic pathway for touch. J. Comp. Neurol. 252, 323–347 (1986).

    CAS  PubMed  Google Scholar 

  15. 15

    Rausell, E. & Jones, E. G. Histochemical and immunocytochemical compartments of the thalamic VPM nucleus in monkeys and their relationship to the representational map. J. Neurosci. 11, 210–225 (1991).

    CAS  PubMed  Google Scholar 

  16. 16

    Apkarian, A. V. & Shi, T. in Pain Mechanisms and Management (eds Ayrapetyan, S. N. & Apkarian, A. V.) 212–220 (IOS Press, 1998).

    Google Scholar 

  17. 17

    Craig, A. D. & Dostrovsky, J. O. Thermoreceptive lamina I trigeminothalamic neurons project to the nucleus submedius in the cat. Exp. Brain Res. 85, 470–474 (1991).

    CAS  PubMed  Google Scholar 

  18. 18

    Dum, R. P., Levinthal, D. J. & Strick, P. L. The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. J. Neurosci. 29, 14223–14235 (2009). This is the first paper to show all of the cortical targets of the spinothalamic system.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Saab, C. Y. & Willis, W. D. The cerebellum: organization, functions and its role in nociception. Brain Res. Brain Res. Rev. 42, 85–95 (2003).

    PubMed  Google Scholar 

  20. 20

    Monconduit, L. & Villanueva, L. The lateral ventromedial thalamic nucleus spreads nociceptive signals from the whole body surface to layer I of the frontal cortex. Eur. J. Neurosci. 21, 3395–3402 (2005).

    PubMed  Google Scholar 

  21. 21

    Becerra, L., Breiter, H. C., Wise, R., Gonzalez, R. G. & Borsook, D. Reward circuitry activation by noxious thermal stimuli. Neuron 32, 927–946 (2001).

    CAS  PubMed  Google Scholar 

  22. 22

    Baliki, M. N., Geha, P. Y., Fields, H. L. & Apkarian, A. V. Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron 66, 149–160 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Bernard, J. F., Bester, H. & Besson, J. M. Involvement of the spino-parabrachio -amygdaloid and -hypothalamic pathways in the autonomic and affective emotional aspects of pain. Prog. Brain Res. 107, 243–255 (1996).

    CAS  PubMed  Google Scholar 

  24. 24

    Dunckley, P. et al. A comparison of visceral and somatic pain processing in the human brainstem using functional magnetic resonance imaging. J. Neurosci. 25, 7333–7341 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Basbaum, A. I. & Fields, H. L. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu. Rev. Neurosci. 7, 309–338 (1984).

    CAS  PubMed  Google Scholar 

  26. 26

    Kenshalo, D. R. Jr & Isensee, O. Responses of primate SI cortical neurons to noxious stimuli. J. Neurophysiol. 50, 1479–1496 (1983).

    PubMed  Google Scholar 

  27. 27

    Kenshalo, D. R. Jr, Chudler, E. H., Anton, F. & Dubner, R. SI nociceptive neurons participate in the encoding process by which monkeys perceive the intensity of noxious thermal stimulation. Brain Res. 454, 378–382 (1988).

    PubMed  Google Scholar 

  28. 28

    Chudler, E. H., Anton, F., Dubner, R. & Kenshalo, D. R. Jr. Responses of nociceptive SI neurons in monkeys and pain sensation in humans elicited by noxious thermal stimulation: effect of interstimulus interval. J. Neurophysiol. 63, 559–569 (1990).

    CAS  PubMed  Google Scholar 

  29. 29

    Ploner, M., Freund, H. J. & Schnitzler, A. Pain affect without pain sensation in a patient with a postcentral lesion. Pain 81, 211–214 (1999).

    CAS  PubMed  Google Scholar 

  30. 30

    Greenspan, J. D., Lee, R. R. & Lenz, F. A. Pain sensitivity alterations as a function of lesion location in the parasylvian cortex. Pain 81, 273–282 (1999).

    CAS  PubMed  Google Scholar 

  31. 31

    Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937).

    Google Scholar 

  32. 32

    MacLean, P. D. Psychosomatic disease and the “visceral brain.” Recent developments bearing on the Papez theory of emotion. Psychosom. Med. 11, 338–353 (1949).

    CAS  PubMed  Google Scholar 

  33. 33

    Foltz, E. L. & Lowell, E. W. Pain “relief” by frontal cingulumotomy. J. Neurosurg. 19, 89–100 (1962).

    CAS  PubMed  Google Scholar 

  34. 34

    Foltz, E. L. & White, L. E. The role or rostral cingulumotomy in “pain” relief. Int. J. Neurol. 6, 353–373 (1968).

    CAS  PubMed  Google Scholar 

  35. 35

    Corkin, S. & Hebben, N. Subjective estimates of chronic pain before and after psychosurgery or treatment in a pain unit. Pain 1, S150 (1981).

    Google Scholar 

  36. 36

    Berthier, M., Starkstein, S. & Leiguarda, R. Asymbolia for pain: a sensory-limbic disconnection syndrome. Ann. Neurol. 24, 41–49 (1988).

    CAS  PubMed  Google Scholar 

  37. 37

    Rainville, P., Duncan, G. H., Price, D. D., Carrier, B. & Bushnell, M. C. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277, 968–971 (1997). This is the first study to demonstrate the separation of sensory and affective pain processing in the cerebral cortex.

    CAS  PubMed  Google Scholar 

  38. 38

    Tolle, T. R. et al. Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis. Ann. Neurol. 45, 40–47 (1999).

    CAS  PubMed  Google Scholar 

  39. 39

    Zubieta, J. K. et al. Regional μ opioid receptor regulation of sensory and affective dimensions of pain. Science 293, 311–315 (2001). This study provides the first demonstration of the relevance of forebrain opioid receptors to pain modulation.

    CAS  PubMed  Google Scholar 

  40. 40

    Ostrowsky, K. et al. Representation of pain and somatic sensation in the human insula: a study of responses to direct electrical cortical stimulation. Cereb. Cortex 12, 376–385 (2002).

    PubMed  Google Scholar 

  41. 41

    Craig, A. D. Significance of the insula for the evolution of human awareness of feelings from the body. Ann. NY Acad. Sci. 1225, 72–82 (2011).

    PubMed  Google Scholar 

  42. 42

    Baliki, M. N., Geha, P. Y. & Apkarian, A. V. Parsing pain perception between nociceptive representation and magnitude estimation. J. Neurophysiol. 101, 875–887 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Lamm, C., Decety, J. & Singer, T. Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. Neuroimage 54, 2492–2502 (2011).

    PubMed  PubMed Central  Google Scholar 

  44. 44

    Cheng, Y., Chen, C., Lin, C. P., Chou, K. H. & Decety, J. Love hurts: an fMRI study. Neuroimage 51, 923–929 (2010).

    PubMed  Google Scholar 

  45. 45

    Langford, D. J. et al. Social modulation of pain as evidence for empathy in mice. Science 312, 1967–1970 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Rosen, G., Willoch, F., Bartenstein, P., Berner, N. & Rosjo, S. Neurophysiological processes underlying the phantom limb pain experience and the use of hypnosis in its clinical management: an intensive examination of two patients. Int. J. Clin. Exp. Hypn. 49, 38–55 (2001).

    CAS  PubMed  Google Scholar 

  47. 47

    Porro, C. A. et al. Does anticipation of pain affect cortical nociceptive systems? J. Neurosci. 22, 3206–3214 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Jensen, J. et al. Direct activation of the ventral striatum in anticipation of aversive stimuli. Neuron 40, 1251–1257 (2003).

    CAS  PubMed  Google Scholar 

  49. 49

    Hsieh, J. C., Stone-Elander, S. & Ingvar, M. Anticipatory coping of pain expressed in the human anterior cingulate cortex: a positron emission tomography study. Neurosci. Lett. 262, 61–64 (1999).

    CAS  PubMed  Google Scholar 

  50. 50

    Ploghaus, A. et al. Dissociating pain from its anticipation in the human brain. Science 284, 1979–1981 (1999). This is the first study to examine the effect of pain anticipation on pain processing.

    CAS  PubMed  Google Scholar 

  51. 51

    Sawamoto, N. et al. Expectation of pain enhances responses to nonpainful somatosensory stimulation in the anterior cingulate cortex and parietal operculum/posterior insula: an event-related functional magnetic resonance imaging study. J. Neurosci. 20, 7438–7445 (2000).

    CAS  PubMed  Google Scholar 

  52. 52

    Lopez-Sola, M. et al. Dynamic assessment of the right lateral frontal cortex response to painful stimulation. Neuroimage 50, 1177–1187 (2010).

    PubMed  Google Scholar 

  53. 53

    Fairhurst, M., Wiech, K., Dunckley, P. & Tracey, I. Anticipatory brainstem activity predicts neural processing of pain in humans. Pain 128, 101–110 (2007).

    PubMed  Google Scholar 

  54. 54

    Beecher, H. K. Pain in men wounded in battle. Ann. Surg. 123, 96–105 (1946).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Morley, S. Efficacy and effectiveness of cognitive behaviour therapy for chronic pain: progress and some challenges. Pain 152, S99–S106 (2011).

    PubMed  Google Scholar 

  56. 56

    Zeidan, F., Grant, J. A., Brown, C. A., McHaffie, J. G. & Coghill, R. C. Mindfulness meditation-related pain relief: evidence for unique brain mechanisms in the regulation of pain. Neurosci. Lett. 520, 165–173 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Jensen, K. B. et al. The use of functional neuroimaging to evaluate psychological and other non-pharmacological treatments for clinical pain. Neurosci. Lett. 520, 156–164 (2012).

    CAS  PubMed  Google Scholar 

  58. 58

    Beydoun, A., Morrow, T. J., Shen, J. F. & Casey, K. L. Variability of laser-evoked potentials: attention, arousal and lateralized differences. Electroencephalogr. Clin. Neurophysiol. 88, 173–181 (1993).

    CAS  PubMed  Google Scholar 

  59. 59

    Roy, M., Peretz, I. & Rainville, P. Emotional valence contributes to music-induced analgesia. Pain 134, 140–147 (2008).

    PubMed  Google Scholar 

  60. 60

    Villemure, C., Slotnick, B. M. & Bushnell, M. C. Effects of odors on pain perception: deciphering the roles of emotion and attention. Pain 106, 101–108 (2003).

    PubMed  Google Scholar 

  61. 61

    Loggia, M. L., Mogil, J. S. & Bushnell, M. C. Experimentally induced mood changes preferentially affect pain unpleasantness. J. Pain 9, 784–791 (2008).

    PubMed  Google Scholar 

  62. 62

    Roy, M., Lebuis, A., Peretz, I. & Rainville, P. The modulation of pain by attention and emotion: a dissociation of perceptual and spinal nociceptive processes. Eur. J. Pain 15, 641–610 (2011).

    PubMed  Google Scholar 

  63. 63

    Bushnell, M. C. et al. Pain perception: is there a role for primary somatosensory cortex? Proc. Natl Acad. Sci. USA 96, 7705–7709 (1999).

    CAS  PubMed  Google Scholar 

  64. 64

    Longe, S. E. et al. Counter-stimulatory effects on pain perception and processing are significantly altered by attention: an fMRI study. Neuroreport 12, 2021–2025 (2001).

    CAS  PubMed  Google Scholar 

  65. 65

    Bantick, S. J. et al. Imaging how attention modulates pain in humans using functional MRI. Brain 125, 310–319 (2002).

    PubMed  Google Scholar 

  66. 66

    Brooks, J. C., Nurmikko, T. J., Bimson, W. E., Singh, K. D. & Roberts, N. fMRI of thermal pain: effects of stimulus laterality and attention. Neuroimage 15, 293–301 (2002).

    PubMed  Google Scholar 

  67. 67

    Valet, M. et al. Distraction modulates connectivity of the cingulo–frontal cortex and the midbrain during pain — an fMRI analysis. Pain 109, 399–408 (2004).

    PubMed  Google Scholar 

  68. 68

    Wiech, K. et al. Modulation of pain processing in hyperalgesia by cognitive demand. Neuroimage 27, 59–69 (2005).

    PubMed  Google Scholar 

  69. 69

    Ploner, M., Lee, M. C., Wiech, K., Bingel, U. & Tracey, I. Flexible cerebral connectivity patterns subserve contextual modulations of pain. Cereb. Cortex 21, 719–726 (2011).

    PubMed  Google Scholar 

  70. 70

    Dunckley, P. et al. Attentional modulation of visceral and somatic pain. Neurogastroenterol. Motil. 19, 569–577 (2007).

    CAS  PubMed  Google Scholar 

  71. 71

    Phillips, M. L. et al. The effect of negative emotional context on neural and behavioural responses to oesophageal stimulation. Brain 126, 669–684 (2003).

    PubMed  Google Scholar 

  72. 72

    Roy, M., Piche, M., Chen, J. I., Peretz, I. & Rainville, P. Cerebral and spinal modulation of pain by emotions. Proc. Natl Acad. Sci. USA 106, 20900–20905 (2009).

    CAS  PubMed  Google Scholar 

  73. 73

    Berna, C. et al. Induction of depressed mood disrupts emotion regulation neurocircuitry and enhances pain unpleasantness. Biol. Psychiatry 1083–1090 (2010).

    PubMed  Google Scholar 

  74. 74

    Basbaum, A. I. & Fields, H. L. Endogenous pain control mechanisms: review and hypothesis. Ann. Neurol. 4, 451–462 (1978). This article provides the first complete analysis of descending pain modulatory circuits.

    CAS  PubMed  Google Scholar 

  75. 75

    Ossipov, M. H., Dussor, G. O. & Porreca, F. Central modulation of pain. J. Clin. Invest. 120, 3779–3787 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Petrovic, P., Petersson, K. M., Ghatan, P. H., Stone-Elander, S. & Ingvar, M. Pain-related cerebral activation is altered by a distracting cognitive task. Pain 85, 19–30 (2000).

    CAS  PubMed  Google Scholar 

  77. 77

    Frankenstein, U. N., Richter, W., McIntyre, M. C. & Remy, F. Distraction modulates anterior cingulate gyrus activations during the cold pressor test. Neuroimage 14, 827–836 (2001).

    CAS  PubMed  Google Scholar 

  78. 78

    Tracey, I. et al. Imaging attentional modulation of pain in the periaqueductal gray in humans. J. Neurosci. 22, 2748–2752 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nature Rev. Neurosci. 3, 201–215 (2002).

    CAS  Google Scholar 

  80. 80

    Cavada, C. & Goldman-Rakic, P. S. Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J. Comp. Neurol. 287, 393–421 (1989).

    CAS  PubMed  Google Scholar 

  81. 81

    Cavada, C. & Goldman-Rakic, P. S. Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J. Comp. Neurol. 287, 422–445 (1989).

    CAS  PubMed  Google Scholar 

  82. 82

    Prevosto, V., Graf, W. & Ugolini, G. Proprioceptive pathways to posterior parietal areas MIP and LIPv from the dorsal column nuclei and the postcentral somatosensory cortex. Eur. J. Neurosci. 33, 444–460 (2011).

    PubMed  Google Scholar 

  83. 83

    Eippert, F. et al. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 63, 533–543 (2009).

    CAS  PubMed  Google Scholar 

  84. 84

    Wager, T. D. et al. Placebo-induced changes in fMRI in the anticipation and experience of pain. Science 303, 1162–1167 (2004). This study identifies the neural circuitry underlying placebo analgesia.

    CAS  PubMed  Google Scholar 

  85. 85

    Wager, T. D., Scott, D. J. & Zubieta, J. K. Placebo effects on human μ-opioid activity during pain. Proc. Natl Acad. Sci. USA 104, 11056–11061 (2007).

    CAS  PubMed  Google Scholar 

  86. 86

    Amanzio, M. & Benedetti, F. Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioning-activated specific subsystems. J. Neurosci. 19, 484–494 (1999).

    CAS  PubMed  Google Scholar 

  87. 87

    Zhang, R.-R., Zhang, W.-C., Wang, J.-Y. & Guo, J.-Y. The opioid placebo analgesia is mediated exclusively through μ-opioid receptor in rat. Int. J. Neuropsychopharmacol. 16, 849–856 (2013).

    CAS  PubMed  Google Scholar 

  88. 88

    Guo, J. Y., Wang, J. Y. & Luo, F. Dissection of placebo analgesia in mice: the conditions for activation of opioid and non-opioid systems. J. Psychopharmacol. 24, 1561–1567 (2010).

    CAS  PubMed  Google Scholar 

  89. 89

    Buhle, J. T., Stevens, B. L., Friedman, J. J. & Wager, T. D. Distraction and placebo: two separate routes to pain control. Psychol. Sci. 23, 246–253 (2012).

    PubMed  Google Scholar 

  90. 90

    Derbyshire, S. W. et al. Cerebral responses to noxious thermal stimulation in chronic low back pain patients and normal controls. Neuroimage 16, 158–168 (2002).

    CAS  PubMed  Google Scholar 

  91. 91

    Gracely, R. H., Petzke, F., Wolf, J. M. & Clauw, D. J. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum. 46, 1333–1343 (2002). This paper demonstrates enhanced pain processing in patients with chronic pain.

    PubMed  Google Scholar 

  92. 92

    Lawal, A., Kern, M., Sidhu, H., Hofmann, C. & Shaker, R. Novel evidence for hypersensitivity of visceral sensory neural circuitry in irritable bowel syndrome patients. Gastroenterology 130, 26–33 (2006).

    PubMed  Google Scholar 

  93. 93

    Naliboff, B. D. et al. Cerebral activation in patients with irritable bowel syndrome and control subjects during rectosigmoid stimulation. Psychosom. Med. 63, 365–375 (2001).

    CAS  PubMed  Google Scholar 

  94. 94

    Pukall, C. F. et al. Neural correlates of painful genital touch in women with vulvar vestibulitis syndrome. Pain 115, 118–127 (2005).

    PubMed  Google Scholar 

  95. 95

    Gwilym, S. E. et al. Psychophysical and functional imaging evidence supporting the presence of central sensitization in a cohort of osteoarthritis patients. Arthritis Rheum. 61, 1226–1234 (2009).

    PubMed  Google Scholar 

  96. 96

    Porreca, F., Ossipov, M. H. & Gebhart, G. F. Chronic pain and medullary descending facilitation. Trends Neurosci. 25, 319–325 (2002).

    CAS  PubMed  Google Scholar 

  97. 97

    Le Bars, D. The whole body receptive field of dorsal horn multireceptive neurones. Brain Res. Brain Res. Rev. 40, 29–44 (2002).

    PubMed  Google Scholar 

  98. 98

    Sprenger, C., Bingel, U. & Buchel, C. Treating pain with pain: supraspinal mechanisms of endogenous analgesia elicited by heterotopic noxious conditioning stimulation. Pain 152, 428–439 (2011).

    PubMed  Google Scholar 

  99. 99

    Lewis, G. N., Rice, D. A. & McNair, P. J. Conditioned pain modulation in populations with chronic pain: a systematic review and meta-analysis. J. Pain 13, 936–944 (2012).

    Google Scholar 

  100. 100

    Jensen, K. B. et al. Evidence of dysfunctional pain inhibition in Fibromyalgia reflected in rACC during provoked pain. Pain 144, 95–100 (2009).

    PubMed  Google Scholar 

  101. 101

    Burgmer, M. et al. Fibromyalgia unique temporal brain activation during experimental pain: a controlled fMRI study. J. Neural Transm. 117, 123–131 (2010).

    PubMed  Google Scholar 

  102. 102

    Berman, S. M. et al. Reduced brainstem inhibition during anticipated pelvic visceral pain correlates with enhanced brain response to the visceral stimulus in women with irritable bowel syndrome. J. Neurosci. 28, 349–359 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Baliki, M. N. et al. Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J. Neurosci. 26, 12165–12173 (2006). This study shows that chronic pain activates unique patterns of cortical activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Seminowicz, D. A. et al. Effective treatment of chronic low back pain in humans reverses abnormal brain anatomy and function. J. Neurosci. 31, 7540–7550 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Schmidt-Wilcke, T. et al. Affective components and intensity of pain correlate with structural differences in gray matter in chronic back pain patients. Pain 125, 89–97 (2006).

    CAS  PubMed  Google Scholar 

  106. 106

    Apkarian, A. V. et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J. Neurosci. 24, 10410–10415 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Davis, K. D. & Moayedi, M. Central mechanisms of pain revealed through functional and structural MRI. J. Neuroimmune Pharmacol. 24 Jul 2012 (doi:10.1007/s11481-012-9386-8).

    PubMed  Google Scholar 

  108. 108

    Geha, P. Y. et al. The brain in chronic CRPS pain: abnormal gray–white matter interactions in emotional and autonomic regions. Neuron 60, 570–581 (2008). This study links chronic pain with both grey and white matter changes.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Lutz, J. et al. White and gray matter abnormalities in the brain of patients with fibromyalgia: a diffusion-tensor and volumetric imaging study. Arthritis Rheum. 58, 3960–3969 (2008).

    PubMed  Google Scholar 

  110. 110

    Sundgren, P. C. et al. Diffusion-weighted and diffusion tensor imaging in fibromyalgia patients: a prospective study of whole brain diffusivity, apparent diffusion coefficient, and fraction anisotropy in different regions of the brain and correlation with symptom severity. Acad. Radiol. 14, 839–846 (2007).

    PubMed  Google Scholar 

  111. 111

    Gerstner, G., Ichesco, E., Quintero, A. & Schmidt-Wilcke, T. Changes in regional gray and white matter volume in patients with myofascial-type temporomandibular disorders: a voxel-based morphometry study. J. Orofac. Pain 25, 99–106 (2011).

    PubMed  Google Scholar 

  112. 112

    Granziera, C., DaSilva, A. F., Snyder, J., Tuch, D. S. & Hadjikhani, N. Anatomical alterations of the visual motion processing network in migraine with and without aura. PLoS. Med. 3, e402 (2006).

    PubMed  PubMed Central  Google Scholar 

  113. 113

    Szabo, N. et al. White matter microstructural alterations in migraine: a diffusion-weighted MRI study. Pain 153, 651–656 (2012).

    PubMed  Google Scholar 

  114. 114

    Moayedi, M. et al. White matter brain and trigeminal nerve abnormalities in temporomandibular disorder. Pain 153, 1467–1477 (2012).

    PubMed  Google Scholar 

  115. 115

    McEwen, B. S. The neurobiology of stress: from serendipity to clinical relevance. Brain Res. 886, 172–189 (2000).

    CAS  PubMed  Google Scholar 

  116. 116

    Apkarian, A. V. et al. Expression of IL-1β in supraspinal brain regions in rats with neuropathic pain. Neurosci. Lett. 407, 176–181 (2006).

    PubMed  Google Scholar 

  117. 117

    Norman, G. J. et al. Stress and IL-1β contribute to the development of depressive-like behavior following peripheral nerve injury. Mol. Psychiatry 15, 404–414 (2010).

    CAS  PubMed  Google Scholar 

  118. 118

    Xu, H. et al. Presynaptic and postsynaptic amplifications of neuropathic pain in the anterior cingulate cortex. J. Neurosci. 28, 7445–7453 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Metz, A. E., Yau, H. J., Centeno, M. V., Apkarian, A. V. & Martina, M. Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain. Proc. Natl Acad. Sci. USA 106, 2423–2428 (2009).

    CAS  Google Scholar 

  120. 120

    Grachev, I. D., Fredrickson, B. E. & Apkarian, A. V. Brain chemistry reflects dual states of pain and anxiety in chronic low back pain. J. Neural Transm. 109, 1309–1334 (2002).

    CAS  PubMed  Google Scholar 

  121. 121

    Harris, R. E. et al. Dynamic levels of glutamate within the insula are associated with improvements in multiple pain domains in fibromyalgia. Arthritis Rheum. 58, 903–907 (2008).

    CAS  PubMed  Google Scholar 

  122. 122

    Grachev, I. D., Fredrickson, B. E. & Apkarian, A. V. Abnormal brain chemistry in chronic back pain: an in vivo proton magnetic resonance spectroscopy study. Pain 89, 7–18 (2000).

    CAS  PubMed  Google Scholar 

  123. 123

    Harris, R. E. et al. Elevated insular glutamate in fibromyalgia is associated with experimental pain. Arthritis Rheum. 60, 3146–3152 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Gussew, A., Rzanny, R., Gullmar, D., Scholle, H. C. & Reichenbach, J. R. 1H-MR spectroscopic detection of metabolic changes in pain processing brain regions in the presence of non-specific chronic low back pain. Neuroimage 54, 1315–1323 (2011).

    PubMed  Google Scholar 

  125. 125

    Mhalla, A., de Andrade, D. C., Baudic, S., Perrot, S. & Bouhassira, D. Alteration of cortical excitability in patients with fibromyalgia. Pain 149, 495–500 (2010).

    PubMed  Google Scholar 

  126. 126

    Harris, R. E. et al. Decreased central μ-opioid receptor availability in fibromyalgia. J. Neurosci. 27, 10000–10006 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Jones, A. K. P. et al. Changes in central opioid receptor binding in relation to inflammation and pain in patients with rheumatoid arthritis. Br. J. Rheumatol. 33, 909–916 (1994).

    CAS  PubMed  Google Scholar 

  128. 128

    Jones, A. K., Watabe, H., Cunningham, V. J. & Jones, T. Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11C]diprenorphine binding and PET. Eur. J. Pain 8, 479–485 (2004).

    CAS  PubMed  Google Scholar 

  129. 129

    Maarrawi, J. et al. Differential brain opioid receptor availability in central and peripheral neuropathic pain. Pain 127, 183–194 (2007).

    CAS  PubMed  Google Scholar 

  130. 130

    Wood, P. B. et al. Fibromyalgia patients show an abnormal dopamine response to pain. Eur. J. Neurosci. 25, 3576–3582 (2007).

    PubMed  Google Scholar 

  131. 131

    Narita, M. et al. Chronic pain induces anxiety with concomitant changes in opioidergic function in the amygdala. Neuropsychopharmacology 31, 739–750 (2006).

    CAS  PubMed  Google Scholar 

  132. 132

    Narita, M. et al. Chronic pain-induced emotional dysfunction is associated with astrogliosis due to cortical δ-opioid receptor dysfunction. J. Neurochem. 97, 1369–1378 (2006).

    CAS  PubMed  Google Scholar 

  133. 133

    Moriarty, O., McGuire, B. E. & Finn, D. P. The effect of pain on cognitive function: a review of clinical and preclinical research. Prog. Neurobiol. 93, 385–404 (2011).

    PubMed  Google Scholar 

  134. 134

    Leavitt, F. & Katz, R. S. Distraction as a key determinant of impaired memory in patients with fibromyalgia. J. Rheumatol. 33, 127–132 (2006).

    PubMed  Google Scholar 

  135. 135

    Dick, B. D., Verrier, M. J., Harker, K. T. & Rashiq, S. Disruption of cognitive function in Fibromyalgia Syndrome. Pain 139, 610–616 (2008).

    PubMed  Google Scholar 

  136. 136

    Munguia-Izquierdo, D. & Legaz-Arrese, A. Assessment of the effects of aquatic therapy on global symptomatology in patients with fibromyalgia syndrome: a randomized controlled trial. Arch. Phys. Med. Rehabil. 89, 2250–2257 (2008).

    PubMed  Google Scholar 

  137. 137

    Verdejo-Garcia, A., Lopez-Torrecillas, F., Calandre, E. P., Delgado-Rodriguez, A. & Bechara, A. Executive function and decision-making in women with fibromyalgia. Arch. Clin. Neuropsychol. 24, 113–122 (2009).

    PubMed  Google Scholar 

  138. 138

    Walteros, C. et al. Altered associative learning and emotional decision making in fibromyalgia. J. Psychosom. Res. 70, 294–301 (2011).

    PubMed  Google Scholar 

  139. 139

    Apkarian, A. V. et al. Chronic pain patients are impaired on an emotional decision-making task. Pain 108, 129–136 (2004).

    PubMed  Google Scholar 

  140. 140

    Pais-Vieira, M., Mendes-Pinto, M. M., Lima, D. & Galhardo, V. Cognitive impairment of prefrontal-dependent decision-making in rats after the onset of chronic pain. Neuroscience 161, 671–679 (2009).

    CAS  PubMed  Google Scholar 

  141. 141

    Hattori, N. et al. Differential SPECT activation patterns associated with PASAT performance may indicate frontocerebellar functional dissociation in chronic mild traumatic brain injury. J. Nucl. Med. 50, 1054–1061 (2009).

    PubMed  Google Scholar 

  142. 142

    Yu, H. J. et al. Multiple white matter tract abnormalities underlie cognitive impairment in RRMS. Neuroimage 59, 3713–3722 (2012).

    PubMed  Google Scholar 

  143. 143

    Sigurdardottir, S., Jerstad, T., Andelic, N., Roe, C. & Schanke, A. K. Olfactory dysfunction, gambling task performance and intracranial lesions after traumatic brain injury. Neuropsychology 24, 504–513 (2010).

    PubMed  Google Scholar 

  144. 144

    van Noordt, S. & Good, D. Mild head injury and sympathetic arousal: investigating relationships with decision-making and neuropsychological performance in university students. Brain Inj. 25, 707–716 (2011).

    PubMed  Google Scholar 

  145. 145

    Roca, M. et al. Cognitive deficits in multiple sclerosis correlate with changes in fronto-subcortical tracts. Mult. Scler. 14, 364–369 (2008).

    CAS  PubMed  Google Scholar 

  146. 146

    Owen, A. M., McMillan, K. M., Laird, A. R. & Bullmore, E. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 25, 46–59 (2005).

    PubMed  Google Scholar 

  147. 147

    Bechara, A., Damasio, H. & Damasio, A. R. Emotion, decision making and the orbitofrontal cortex. Cereb. Cortex 10, 295–307 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148

    Elsenbruch, S. et al. Patients with irritable bowel syndrome have altered emotional modulation of neural responses to visceral stimuli. Gastroenterology 139, 1310–1319 (2010).

    PubMed  Google Scholar 

  149. 149

    Tiemann, L. et al. Behavioral and neuronal investigations of hypervigilance in patients with fibromyalgia syndrome. PLoS ONE 7, e35068 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150

    Arnold, B. S. et al. Affective pain modulation in fibromyalgia, somatoform pain disorder, back pain, and healthy controls. Eur. J. Pain 12, 329–338 (2008).

    PubMed  Google Scholar 

  151. 151

    Snijders, T. J., Ramsey, N. F., Koerselman, F. & van Gijn, J. Attentional modulation fails to attenuate the subjective pain experience in chronic, unexplained pain. Eur. J. Pain 14, 282.e1–282.e10 (2010).

    CAS  Google Scholar 

  152. 152

    Montoya, P., Pauli, P., Batra, A. & Wiedemann, G. Altered processing of pain-related information in patients with fibromyalgia. Eur. J. Pain 9, 293–303 (2005).

    PubMed  Google Scholar 

  153. 153

    Vase, L., Robinson, M. E., Verne, G. N. & Price, D. D. Increased placebo analgesia over time in irritable bowel syndrome (IBS) patients is associated with desire and expectation but not endogenous opioid mechanisms. Pain 115, 338–347 (2005).

    PubMed  Google Scholar 

  154. 154

    Obermann, M. et al. Gray matter changes related to chronic posttraumatic headache. Neurology 73, 978–983 (2009).

    PubMed  Google Scholar 

  155. 155

    Rodriguez-Raecke, R., Niemeier, A., Ihle, K., Ruether, W. & May, A. Brain gray matter decrease in chronic pain is the consequence and not the cause of pain. J. Neurosci. 29, 13746–13750 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156

    Gwilym, S. E., Filippini, N., Douaud, G., Carr, A. J. & Tracey, I. Thalamic atrophy associated with painful osteoarthritis of the hip is reversible after arthroplasty: a longitudinal voxel-based morphometric study. Arthritis Rheum. 62, 2930–2940 (2010).

    PubMed  Google Scholar 

  157. 157

    Zhao, M. G., Toyoda, H., Wang, Y. K. & Zhuo, M. Enhanced synaptic long-term potentiation in the anterior cingulate cortex of adult wild mice as compared with that in laboratory mice. Mol. Brain 2, 11 (2009).

    PubMed  PubMed Central  Google Scholar 

  158. 158

    Ikeda, H., Tsuda, M., Inoue, K. & Murase, K. Long-term potentiation of neuronal excitation by neuron-glia interactions in the rat spinal dorsal horn. Eur. J. Neurosci. 25, 1297–1306 (2007).

    PubMed  Google Scholar 

  159. 159

    Jensen, K. B. et al. Cognitive Behavioral Therapy increases pain-evoked activation of the prefrontal cortex in patients with fibromyalgia. Pain 153, 1495–1503 (2012).

    PubMed  Google Scholar 

  160. 160

    Grant, J. A., Courtemanche, J. & Rainville, P. A non-elaborative mental stance and decoupling of executive and pain-related cortices predicts low pain sensitivity in Zen meditators. Pain 152, 150–156 (2011).

    PubMed  Google Scholar 

  161. 161

    Gard, T. et al. Pain attenuation through mindfulness is associated with decreased cognitive control and increased sensory processing in the brain. Cereb. Cortex 22, 2692–2702 (2012).

    PubMed  Google Scholar 

  162. 162

    Zeidan, F. et al. Brain mechanisms supporting the modulation of pain by mindfulness meditation. J. Neurosci. 31, 5540–5548 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163

    Lazar, S. W. et al. Meditation experience is associated with increased cortical thickness. Neuroreport 16, 1893–1897 (2005).

    PubMed  PubMed Central  Google Scholar 

  164. 164

    Holzel, B. K. et al. Investigation of mindfulness meditation practitioners with voxel-based morphometry. Soc. Cogn. Affect. Neurosci. 3, 55–61 (2008).

    PubMed  PubMed Central  Google Scholar 

  165. 165

    Luders, E., Toga, A. W., Lepore, N. & Gaser, C. The underlying anatomical correlates of long-term meditation: larger hippocampal and frontal volumes of gray matter. Neuroimage 45, 672–678 (2009).

    PubMed  PubMed Central  Google Scholar 

  166. 166

    Pessoa, L. On the relationship between emotion and cognition. Nature Rev. Neurosci. 9, 148–158 (2008).

    CAS  Google Scholar 

  167. 167

    Seminowicz, D. A. et al. MRI structural brain changes associated with sensory and emotional function in a rat model of long-term neuropathic pain. Neuroimage 47, 1007–1014 (2009).

    PubMed  PubMed Central  Google Scholar 

  168. 168

    Low, L. A. et al. Nerve injury causes long-term attentional deficits in rats. Neurosci. Lett. 529, 103–107 (2012).

    CAS  PubMed  Google Scholar 

  169. 169

    deCharms, R. C. et al. Control over brain activation and pain learned by using real-time functional MRI. Proc. Natl Acad. Sci. USA 102, 18626–18631 (2005).

    CAS  PubMed  Google Scholar 

  170. 170

    Yoo, S. S. et al. Brain–computer interface using fMRI: spatial navigation by thoughts. Neuroreport 15, 1591–1595 (2004).

    Google Scholar 

  171. 171

    van Praag, H., Kempermann, G. & Gage, F. H. Neural consequences of enviromental enrichment. Nature Rev. Neurosci. 1, 191–198 (2000).

    CAS  Google Scholar 

  172. 172

    Gabriel, A. F. et al. Enriched environment and the recovery from inflammatory pain: social versus physical aspects and their interaction. Behav. Brain Res. 208, 90–95 (2010).

    PubMed  Google Scholar 

  173. 173

    Gabriel, A. F., Marcus, M. A. E., Honig, W. M. M. & Joosten, E. A. J. Preoperative housing in an enriched environment significantly reduces the duration of post-operative pain in a rat model of knee inflammation. Neurosci. Lett. 469, 219–223 (2010).

    CAS  PubMed  Google Scholar 

  174. 174

    Gabriel, A. F., Marcus, M. A., Honig, W. M., Helgers, N. & Joosten, E. A. Environmental housing affects the duration of mechanical allodynia and the spinal astroglial activation in a rat model of chronic inflammatory pain. Brain Res. 1276, 83–90 (2009).

    CAS  PubMed  Google Scholar 

  175. 175

    Abramov, U., Kurrikoff, K., Matsui, T. & Vasar, E. Environmental enrichment reduces mechanical hypersensitivity in neuropathic mice, but fails to abolish the phenotype of CCK2 receptor deficient mice. Neurosci. Lett. 467, 230–233 (2009).

    CAS  PubMed  Google Scholar 

  176. 176

    Shum, F. W. et al. Alteration of cingulate long-term plasticity and behavioral sensitization to inflammation by environmental enrichment. Learn. Mem. 14, 304–312 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. 177

    Stagg, N. J. et al. Regular exercise reverses sensory hypersensitivity in a rat neuropathic pain model: role of endogenous opioids. Anesthesiology 114, 940–948 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. 178

    Bakos, J. et al. Oxytocin levels in the posterior pituitary and in the heart are modified by voluntary wheel running. Regul. Pept. 139, 96–101 (2007).

    CAS  PubMed  Google Scholar 

  179. 179

    Boyette-Davis, J. A., Thompson, C. D. & Fuchs, P. N. Alterations in attentional mechanisms in response to acute inflammatory pain and morphine administration. Neuroscience 151, 558–563 (2008).

    CAS  PubMed  Google Scholar 

  180. 180

    Ford, G. K., Moriarty, O., McGuire, B. E. & Finn, D. P. Investigating the effects of distracting stimuli on nociceptive behaviour and associated alterations in brain monoamines in rats. Eur. J. Pain 12, 970–979 (2008).

    PubMed  Google Scholar 

  181. 181

    Ji, G. et al. Cognitive impairment in pain through amygdala-driven prefrontal cortical deactivation. J. Neurosci. 30, 5451–5464 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. 182

    Leite-Almeida, H. et al. The impact of age on emotional and cognitive behaviours triggered by experimental neuropathy in rats. Pain 144, 57–65 (2009).

    PubMed  Google Scholar 

  183. 183

    Hu, Y., Yang, J., Hu, Y., Wang, Y. & Li, W. Amitriptyline rather than lornoxicam ameliorates neuropathic pain-induced deficits in abilities of spatial learning and memory. Eur. J. Anaesthesiol. 27, 162–168 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Preparation of this manuscript was supported by the Intramural Research Program of the US National Institutes of Health, National Center for Complementary and Alternative Medicine.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Catherine Bushnell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Descending pain modulatory systems

Networks in the brain involving pathways from the cerebral cortex down to the spinal cord that can lead to inhibition or excitation of afferent pain signals at multiple levels of the brain.

Fibromyalgia

A disorder in which there is widespread pain in all four quadrants of the body for a minimum duration of 3 months. Additionally, at least 11 of 18 specified points on the neck, shoulder, chest, hip, knee and elbow regions show tenderness to pressure.

Vulvar vestibulitis

A disorder characterized by sensitivity around the vaginal orifice, with pain provoked by contact or pressure.

Ascending nociceptive pathways

Fibres travelling to the brain from receptors in body tissues that respond to tissue-damaging or potentially tissue-damaging stimuli (nociceptors). They make synapses with second-order neurons in the dorsal horn of the spinal cord, which send projections to the brainstem, thalamus or other brain regions. From there, third- and fourth-order neurons send projections to the cerebral cortex.

Complex regional pain syndrome

(CRPS). A chronic pain condition that can affect any part of the body but most frequently affects an arm or a leg. After what is often a minor injury, such as a sprained ankle, there is an intense burning pain that is much stronger than would be expected for the type of injury. The pain gets worse rather than better with time and is often accompanied by trophic changes, such as altered skin temperature and texture, faster growth of nails and hair and even loss of bone density.

Iowa gambling task

A psychological task used to investigate emotional decision-making. It involves playing with four card decks in order to win money. Playing with two of the decks leads to more wins than losses, whereas playing with the other decks leads to more losses than wins. Healthy people quickly gravitate to the 'good' decks. Patients with various types of frontal lobe lesions do not learn to preferentially use the 'good' decks.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bushnell, M., Čeko, M. & Low, L. Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci 14, 502–511 (2013). https://doi.org/10.1038/nrn3516

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing