Key Points
-
Aquaporins (AQPs) are water channel proteins that increase cell membrane water permeability and assemble in cell membranes as tetramers.
-
AQP4, the main water channel in the CNS, is expressed in astrocytes and facilitates the formation and elimination of CNS oedema, modulates neuronal excitability and enhances astrocyte migration.
-
AQP4 also has a role in sensory perception, including vision, hearing and olfaction.
-
Autoantibodies against AQP4 cause neuromyelitis optica, an inflammatory demyelinating disease of the CNS.
-
Aquaporins are also expressed in the peripheral and enteric nervous systems, although their functions at these sites are not known.
Abstract
The aquaporins (AQPs) are plasma membrane water-transporting proteins. AQP4 is the principal member of this protein family in the CNS, where it is expressed in astrocytes and is involved in water movement, cell migration and neuroexcitation. AQP1 is expressed in the choroid plexus, where it facilitates cerebrospinal fluid secretion, and in dorsal root ganglion neurons, where it tunes pain perception. The AQPs are potential drug targets for several neurological conditions. Astrocytoma cells strongly express AQP4, which may facilitate their infiltration into the brain, and the neuroinflammatory disease neuromyelitis optica is caused by AQP4-specific autoantibodies that produce complement-mediated astrocytic damage.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Preston, G. M. & Agre, P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc. Natl Acad. Sci. USA 88, 11110–11114 (1991). This paper reports the discovery of water channel proteins.
Carbrey, J. M. & Agre, P. Discovery of the aquaporins and development of the field. Handb Exp. Pharmacol. 190, 3–28 (2009).
Verkman, A. S. Aquaporins in clinical medicine. Annu. Rev. Med. 63, 303–316 (2012).
Soveral, G., Prista, C., Moura, T. F. & Loureiro-Dias, M. C. Yeast water channels: an overview of orthodox aquaporins. Biol. Cell 103, 35–54 (2010).
Tanghe, A., Van Dijck, P. & Thevelein, J. M. Why do microorganisms have aquaporins? Trends Microbiol. 14, 78–85 (2006).
Wu, B. & Beitz, E. Aquaporins with selectivity for unconventional permeants. Cell. Mol. Life Sci. 64, 2413–2421 (2007).
Rojek, A., Praetorius, J., Frokiaer, J., Nielsen, S. & Fenton, R. A. A current view of the mammalian aquaglyceroporins. Annu. Rev. Physiol. 70, 301–327 (2008).
Herrera, M. & Garvin, J. L. Aquaporins as gas channels. Pflugers Arch. 462, 623–630 (2011).
Geers, C. & Gros, G. Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol. Rev. 80, 681–715 (2000).
Walz, T., Fujiyoshi, Y. & Engel, A. The AQP structure and functional implications. Handb Exp. Pharmacol. 190, 31–56 (2009).
Ho, J. D. et al. Crystal structure of human aquaporin 4 at 1.8 A and its mechanism of conductance. Proc. Natl Acad. Sci. USA 106, 7437–7442 (2009).
Cui, Y. & Bastien, D. A. Water transport in human aquaporin-4: molecular dynamics (MD) simulations. Biochem. Biophys. Res. Commun. 412, 654–659 (2011).
Hub, J. S., Grubmuller, H. & de Groot, B. L. Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations? Handb Exp. Pharmacol. 190, 57–76 (2009).
Yang, B., Brown, D. & Verkman, A. S. The mercurial insensitive water channel (AQP-4) forms orthogonal arrays in stably transfected Chinese hamster ovary cells. J. Biol. Chem. 271, 4577–4580 (1996).
Verbavatz, J. M., Ma, T., Gobin, R. & Verkman, A. S. Absence of orthogonal arrays in kidney, brain and muscle from transgenic knockout mice lacking water channel aquaporin-4. J. Cell Sci. 110, 2855–2860 (1997).
Wolburg, H., Wolburg-Buchholz, K., Fallier-Becker, P., Noell, S. & Mack, A. F. Structure and functions of aquaporin-4-based orthogonal arrays of particles. Int. Rev. Cell Mol. Biol. 287, 1–41 (2011).
Rash, J. E., Yasumura, T., Hudson, C. S., Agre, P. & Nielsen, S. Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc. Natl Acad. Sci. USA 95, 11981–11986 (1998). This paper provides one of the earliest descriptions of AQP4 expression in the brain.
Rossi, A., Moritz, T. J., Ratelade, J. & Verkman, A. S. Super-resolution imaging of aquaporin-4 orthogonal arrays of particles in cell membranes. J. Cell Sci. 125, 4405–4412 (2012).
Neely, J. D., Christensen, B. M., Nielsen, S. & Agre, P. Heterotetrameric composition of aquaporin-4 water channels. Biochemistry 38, 11156–11163 (1999).
Jin, B. J., Rossi, A. & Verkman, A. S. Model of aquaporin-4 supramolecular assembly in orthogonal arrays based on heterotetrameric association of M1-M23 isoforms. Biophys. J. 100, 2936–2945 (2011).
Crane, J. M. & Verkman, A. S. Determinants of aquaporin-4 assembly in orthogonal arrays revealed by live-cell single-molecule fluorescence imaging. J. Cell Sci. 122, 813–821 (2009).
Fenton, R. A. et al. Differential water permeability and regulation of three aquaporin 4 isoforms. Cell. Mol. Life Sci. 67, 829–840 (2010).
Hiroaki, Y. et al. Implications of the aquaporin-4 structure on array formation and cell adhesion. J. Mol. Biol. 355, 628–639 (2006).
Rossi, A., Ratelade, J., Papadopoulos, M. C., Bennett, J. L. & Verkman, A. S. Neuromyelitis optica IgG does not alter aquaporin-4 water permeability, plasma membrane M1/M23 isoform content, or supramolecular assembly. Glia 60, 2027–2039 (2013).
Zhang, H. & Verkman, A. S. Evidence against involvement of aquaporin-4 in cell–cell adhesion. J. Mol. Biol. 382, 1136–1143 (2008).
Furman, C. S. et al. Aquaporin-4 square array assembly: opposing actions of M1 and M23 isoforms. Proc. Natl Acad. Sci. USA 100, 13609–13614 (2003).
Papadopoulos, M. C., Manley, G. T., Krishna, S. & Verkman, A. S. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 18, 1291–1293 (2004).
Oshio, K. et al. Expression of aquaporin water channels in mouse spinal cord. Neuroscience 127, 685–693 (2004).
Nagelhus, E. A. et al. Aquaporin-4 water channel protein in the rat retina and optic nerve: polarized expression in Müller cells and fibrous astrocytes. J. Neurosci. 18, 2506–2519 (1998).
Nielsen, S. et al. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J. Neurosci. 17, 171–180 (1997).
Neely, J. D. et al. Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. Proc. Natl Acad. Sci. USA 98, 14108–14113 (2001).
Noell, S. et al. Effects of agrin on the expression and distribution of the water channel protein aquaporin-4 and volume regulation in cultured astrocytes. Eur. J. Neurosci. 26, 2109–2118 (2007).
Wolburg, H., Noell, S., Wolburg-Buchholz, K., Mack, A. & Fallier-Becker, P. Agrin, aquaporin-4, and astrocyte polarity as an important feature of the blood–brain barrier. Neuroscientist 15, 180–193 (2009).
Saadoun, S., Papadopoulos, M. C., Davies, D. C., Krishna, S. & Bell, B. A. Aquaporin-4 expression is increased in oedematous human brain tumours. J. Neurol. Neurosurg. Psychiatry 72, 262–265 (2002). This is the first demonstration of increased AQP expression in tumours.
Solenov, E., Watanabe, H., Manley, G. T. & Verkman, A. S. Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am. J. Physiol. Cell. Physiol. 286, C426–C432 (2004).
Nicchia, G. P. et al. Aquaporin-4-containing astrocytes sustain a temperature- and mercury-insensitive swelling in vitro. Glia 31, 29–38 (2000).
Hsu, M. S. et al. Laminar-specific and developmental expression of aquaporin-4 in the mouse hippocampus. Neuroscience 178, 21–32 (2011).
Binder, D. K. et al. Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. Glia 53, 631–636 (2006).
Padmawar, P., Yao, X., Bloch, O., Manley, G. T. & Verkman, A. S. K+ waves in brain cortex visualized using a long-wavelength K+-sensing fluorescent indicator. Nature Methods 2, 825–827 (2005).
Amiry-Moghaddam, M. et al. Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of α-syntrophin-null mice. Proc. Natl Acad. Sci. USA 100, 13615–13620 (2003).
Nielsen, S., Smith, B. L., Christensen, E. I. & Agre, P. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc. Natl Acad. Sci. USA 90, 7275–7279 (1993).
Oshio, K., Watanabe, H., Song, Y., Verkman, A. S. & Manley, G. T. Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J. 19, 76–78 (2005).
Wilson, A. J., Carati, C. J., Gannon, B. J., Haberberger, R. & Chataway, T. K. Aquaporin-1 in blood vessels of rat circumventricular organs. Cell Tissue Res. 340, 159–168 (2010).
Dolman, D., Drndarski, S., Abbott, N. J. & Rattray, M. Induction of aquaporin 1 but not aquaporin 4 messenger RNA in rat primary brain microvessel endothelial cells in culture. J. Neurochem. 93, 825–833 (2005).
Saadoun, S., Papadopoulos, M. C., Davies, D. C., Bell, B. A. & Krishna, S. Increased aquaporin 1 water channel expression in human brain tumours. Br. J. Cancer 87, 621–623 (2002).
Badaut, J. et al. Distribution of Aquaporin 9 in the adult rat brain: preferential expression in catecholaminergic neurons and in glial cells. Neuroscience 128, 27–38 (2004).
Shields, S. D., Mazario, J., Skinner, K. & Basbaum, A. I. Anatomical and functional analysis of aquaporin 1, a water channel in primary afferent neurons. Pain 131, 8–20 (2007).
Hofman, P., Hoyng, P., vanderWerf, F., Vrensen, G. F. & Schlingemann, R. O. Lack of blood–brain barrier properties in microvessels of the prelaminar optic nerve head. Invest. Ophthalmol. Vis. Sci. 42, 895–901 (2001).
Venero, J. L. et al. Detailed localization of aquaporin-4 messenger RNA in the CNS: preferential expression in periventricular organs. Neuroscience 94, 239–250 (1999).
Ma, T., Gao, H., Fang, X. & Yang, H. Water channel proteins in the peripheral nervous system in health and disease. Mol. Aspects Med. 33, 605–611 (2012).
Papadopoulos, M. C. & Verkman, A. S. Aquaporin 4 and neuromyelitis optica. Lancet Neurol. 11, 535–544 (2012).
Jarius, S. & Wildemann, B. AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance. Nature Rev. Neurol. 6, 383–392 (2010).
Oshio, K., Watanabe, H., Yan, D., Verkman, A. S. & Manley, G. T. Impaired pain sensation in mice lacking Aquaporin-1 water channels. Biochem. Biophys. Res. Commun. 341, 1022–1028 (2006).
Gao, H. et al. Localization of aquaporin-1 water channel in glial cells of the human peripheral nervous system. Glia 53, 783–787 (2006).
Nandasena, B. G. et al. Immunolocalization of aquaporin-1 in the mechanoreceptive Ruffini endings in the periodontal ligament. Brain Res. 1157, 32–40 (2007).
Li, J., Patil, R. V. & Verkman, A. S. Mildly abnormal retinal function in transgenic mice without Müller cell aquaporin-4 water channels. Invest. Ophthalmol. Vis. Sci. 43, 573–579 (2002).
Lu, D. C., Zhang, H., Zador, Z. & Verkman, A. S. Impaired olfaction in mice lacking aquaporin-4 water channels. FASEB J. 22, 3216–3223 (2008).
Li, J. & Verkman, A. S. Impaired hearing in mice lacking aquaporin-4 water channels. J. Biol. Chem. 276, 31233–31237 (2001). This is the first report showing that AQP4 has a role in sensory perception.
Verkman, A. S., Ruiz-Ederra, J. & Levin, M. H. Functions of aquaporins in the eye. Prog. Retin. Eye Res. 27, 420–433 (2008).
Nagahama, M., Ma, N., Semba, R. & Naruse, S. Aquaporin 1 immunoreactive enteric neurons in the rat ileum. Neurosci. Lett. 395, 206–210 (2006).
Arciszewski, M. B. Neurochemical properties of aquaporin 1-expressing sensory neurons from the ovine trigeminal ganglion. Anat. Histol. Embryol. 41, 184–189 (2012).
Thi, M. M., Spray, D. C. & Hanani, M. Aquaporin-4 water channels in enteric neurons. J. Neurosci. Res. 86, 448–456 (2008).
Ishihara, E. et al. Neuropathological alteration of aquaporin 1 immunoreactive enteric neurons in the streptozotocin-induced diabetic rats. Auton. Neurosci. 138, 31–40 (2008).
Richardson, S. M., Knowles, R., Marples, D., Hoyland, J. A. & Mobasheri, A. Aquaporin expression in the human intervertebral disc. J. Mol. Histol. 39, 303–309 (2008).
Aharon, R. & Bar-Shavit, Z. Involvement of aquaporin 9 in osteoclast differentiation. J. Biol. Chem. 281, 19305–19309 (2006).
Bass, N. H., Hess, H. H., Pope, A. & Thalheimer, C. Quantitative cytoarchitectonic distribution of neurons, glia, and DNa in rat cerebral cortex. J. Comp. Neurol. 143, 481–490 (1971).
Arcienega, I. I., Brunet, J. F., Bloch, J. & Badaut, J. Cell locations for AQP1, AQP4 and 9 in the non-human primate brain. Neuroscience 167, 1103–1114 (2010).
Fischbarg, J. et al. Glucose transporters serve as water channels. Proc. Natl Acad. Sci. USA 87, 3244–3247 (1990).
Iwamoto, M. & Oiki, S. Counting ion and water molecules in a streaming file through the open-filter structure of the K channel. J. Neurosci. 31, 12180–12188 (2011).
Papadopoulos, M. C. & Verkman, A. S. Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J. Biol. Chem. 280, 13906–13912 (2005).
Badaut, J. et al. Brain water mobility decreases after astrocytic aquaporin-4 inhibition using RNA interference. J. Cereb. Blood Flow Metab. 31, 819–831 (2011).
Haj-Yasein, N. N. et al. Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood–brain water uptake and confers barrier function on perivascular astrocyte endfeet. Proc. Natl Acad. Sci. USA 108, 17815–17820 (2011).
Marmarou, A. A review of progress in understanding the pathophysiology and treatment of brain edema. Neurosurg. Focus 22, e1 (2007).
Papadopoulos, M. C. & Verkman, A. S. Aquaporin-4 and brain edema. Pediatr. Nephrol. 22, 778–784 (2007).
Zador, Z., Stiver, S., Wang, V. & Manley, G. T. Role of aquaporin-4 in cerebral edema and stroke. Handb Exp. Pharmacol. 190, 159–170 (2009).
Sun, M. C., Honey, C. R., Berk, C., Wong, N. L. & Tsui, J. K. Regulation of aquaporin-4 in a traumatic brain injury model in rats. J. Neurosurg. 98, 565–569 (2003).
Saadoun, S., Papadopoulos, M. C. & Krishna, S. Water transport becomes uncoupled from K+ siphoning in brain contusion, bacterial meningitis, and brain tumours: immunohistochemical case review. J. Clin. Pathol. 56, 972–975 (2003).
Filippidis, A. S., Kalani, M. Y. & Rekate, H. L. Hydrocephalus and aquaporins: the role of aquaporin-4. Acta Neurochir. Suppl. 113, 55–58 (2012).
Manley, G. T. et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nature Med. 6, 159–163 (2000). This study provides the first direct evidence that AQP4 plays a part in brain oedema.
Amiry-Moghaddam, M. et al. An α-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc. Natl Acad. Sci. USA 100, 2106–2111 (2003).
Vajda, Z. et al. Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice. Proc. Natl Acad. Sci. USA 99, 13131–13136 (2002).
Nico, B. et al. Severe alterations of endothelial and glial cells in the blood–brain barrier of dystrophic mdx mice. Glia 42, 235–251 (2003).
Saadoun, S., Bell, B. A., Verkman, A. S. & Papadopoulos, M. C. Greatly improved neurological outcome after spinal cord compression injury in AQP4-deficient mice. Brain 131, 1087–1098 (2008).
Thrane, A. S. et al. Critical role of aquaporin-4 (AQP4) in astrocytic Ca2+ signaling events elicited by cerebral edema. Proc. Natl Acad. Sci. USA 108, 846–851 (2011).
Yang, B., Zador, Z. & Verkman, A. S. Glial cell aquaporin-4 overexpression in transgenic mice accelerates cytotoxic brain swelling. J. Biol. Chem. 283, 15280–15286 (2008).
Bloch, O., Papadopoulos, M. C., Manley, G. T. & Verkman, A. S. Aquaporin-4 gene deletion in mice increases focal edema associated with staphylococcal brain abscess. J. Neurochem. 95, 254–262 (2005).
Tait, M. J., Saadoun, S., Bell, B. A., Verkman, A. S. & Papadopoulos, M. C. Increased brain edema in aqp4-null mice in an experimental model of subarachnoid hemorrhage. Neuroscience 167, 60–67 (2010).
Lee, D. J. et al. Aquaporin-4-dependent edema clearance following status epilepticus. Epilepsy Res. 98, 264–268 (2012).
Kimura, A. et al. Protective role of aquaporin-4 water channels after contusion spinal cord injury. Ann. Neurol. 67, 794–801 (2010).
Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl. Med 4, 147ra111 (2012).
Feng, X. et al. Sporadic obstructive hydrocephalus in Aqp4 null mice. J. Neurosci. Res. 87, 1150–1155 (2009).
Bloch, O., Auguste, K. I., Manley, G. T. & Verkman, A. S. Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J. Cereb. Blood Flow Metab. 26, 1527–1537 (2006).
Loitto, V. M. & Magnusson, K. E. Hg2+ and small-sized polyethylene glycols have inverse effects on membrane permeability, while both impair neutrophil cell motility. Biochem. Biophys. Res. Commun. 316, 370–378 (2004).
Saadoun, S., Papadopoulos, M. C., Hara-Chikuma, M. & Verkman, A. S. Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434, 786–792 (2005). This study demonstrates that AQPs facilitate cell migration.
Papadopoulos, M. C., Saadoun, S. & Verkman, A. S. Aquaporins and cell migration. Pflugers Arch. 456, 693–700 (2008).
Hu, J. & Verkman, A. S. Increased migration and metastatic potential of tumor cells expressing aquaporin water channels. FASEB J. 20, 1892–1894 (2006).
Saadoun, S. et al. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J. Cell Sci. 118, 5691–5698 (2005).
Auguste, K. I. et al. Greatly impaired migration of implanted aquaporin-4-deficient astroglial cells in mouse brain toward a site of injury. FASEB J. 21, 108–116 (2007).
Charras, G. T., Yarrow, J. C., Horton, M. A., Mahadevan, L. & Mitchison, T. J. Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435, 365–369 (2005).
Rabinovitch, M. & DeStefano, M. J. Spontaneous migration of normal human polymorphonuclear neutrophils under agarose: enhancement by media of lowered pH or osmolality. J. Reticuloendothel. Soc. 29, 329–339 (1981).
Nicchia, G. P. et al. New possible roles for aquaporin-4 in astrocytes: cell cytoskeleton and functional relationship with connexin43. FASEB J. 19, 1674–1676 (2005).
Binder, D. K., Oshio, K., Ma, T., Verkman, A. S. & Manley, G. T. Increased seizure threshold in mice lacking aquaporin-4 water channels. Neuroreport 15, 259–262 (2004).
Lee, D. J., Hsu, M. S., Seldin, M. M., Arellano, J. L. & Binder, D. K. Decreased expression of the glial water channel aquaporin-4 in the intrahippocampal kainic acid model of epileptogenesis. Exp. Neurol. 235, 246–255 (2012).
Binder, D. K., Nagelhus, E. A. & Ottersen, O. P. Aquaporin-4 and epilepsy. Glia 60, 1203–1214 (2012).
Strohschein, S. et al. Impact of aquaporin-4 channels on K+ buffering and gap junction coupling in the hippocampus. Glia 59, 973–980 (2011).
Nicholson, C. & Sykova, E. Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 21, 207–215 (1998).
Nagelhus, E. A. et al. Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Müller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia 26, 47–54 (1999).
Ruiz-Ederra, J., Zhang, H. & Verkman, A. S. Evidence against functional interaction between aquaporin-4 water channels and Kir4.1 potassium channels in retinal Müller cells. J. Biol. Chem. 282, 21866–21872 (2007).
Jin, B. J., Zhang, B., Binder, D. K. & Verkman, A. S. Aquaporin-4-dependent K+ and water transport modeled in brain extracellular space following neuroexcitation. J. Gen. Physiol. 141, 261–272 (2013).
Zhang, H. & Verkman, A. S. Aquaporin-1 tunes pain perception by interaction with Nav1.8 Na+ channels in dorsal root ganglion neurons. J. Biol. Chem. 285, 5896–5906 (2010).
Wingerchuk, D. M., Lennon, V. A., Lucchinetti, C. F., Pittock, S. J. & Weinshenker, B. G. The spectrum of neuromyelitis optica. Lancet Neurol. 6, 805–815 (2007).
Lennon, V. A. et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364, 2106–2112 (2004).
Lennon, V. A., Kryzer, T. J., Pittock, S. J., Verkman, A. S. & Hinson, S. R. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J. Exp. Med. 202, 473–477 (2005). This study identifies AQP4 as the target of NMO autoantibodies.
Pisani, F. et al. Identification of two major conformational aquaporin-4 epitopes for neuromyelitis optica autoantibody binding. J. Biol. Chem. 286, 9216–9224 (2011).
Tani, T. et al. Identification of binding sites for anti-aquaporin 4 antibodies in patients with neuromyelitis optica. J. Neuroimmunol. 211, 110–113 (2009).
Yu, X. et al. Identification of peptide targets in neuromyelitis optica. J. Neuroimmunol. 236, 65–71 (2011).
Nicchia, G. P. et al. Aquaporin-4 orthogonal arrays of particles are the target for neuromyelitis optica autoantibodies. Glia 57, 1363–1373 (2009).
Hinson, S. R. et al. Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proc. Natl Acad. Sci. USA 109, 1245–1250 (2012).
Crane, J. M. et al. Binding affinity and specificity of neuromyelitis optica autoantibodies to aquaporin-4 M1/M23 isoforms and orthogonal arrays. J. Biol. Chem. 286, 16516–16524 (2011).
Phuan, P. W., Ratelade, J., Rossi, A., Tradtrantip, L. & Verkman, A. S. Complement-dependent cytotoxicity in neuromyelitis optica requires aquaporin-4 protein assembly in orthogonal arrays. J. Biol. Chem. 287, 13829–13839 (2012).
Ratelade, J., Bennett, J. L. & Verkman, A. S. Evidence against cellular internalization in vivo of NMO-IgG, aquaporin-4, and excitatory amino acid transporter 2 in neuromyelitis optica. J. Biol. Chem. 286, 45156–45164 (2011).
Saadoun, S. et al. Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain 133, 349–361 (2010).
Johnson, D. R. & O'Neill, B. P. Glioblastoma survival in the United States before and during the temozolomide era. J. Neurooncol. 107, 359–364 (2012).
Ikota, H., Kinjo, S., Yokoo, H. & Nakazato, Y. Systematic immunohistochemical profiling of 378 brain tumors with 37 antibodies using tissue microarray technology. Acta Neuropathol. 111, 475–482 (2006).
Warth, A. et al. Expression pattern of the water channel aquaporin-4 in human gliomas is associated with blood–brain barrier disturbance but not with patient survival. J. Neurosci. Res. 85, 1336–1346 (2007).
Badaut, J. Aquaglyceroporin 9 in brain pathologies. Neuroscience 168, 1047–1057 (2010).
Nico, B. et al. Aquaporin-4 contributes to the resolution of peritumoural brain oedema in human glioblastoma multiforme after combined chemotherapy and radiotherapy. Eur. J. Cancer 45, 3315–3325 (2009).
Verkman, A. S., Hara-Chikuma, M. & Papadopoulos, M. C. Aquaporins — new players in cancer biology. J. Mol. Med. 86, 523–529 (2008).
Frigeri, A., Nicchia, G. P. & Svelto, M. Aquaporins as targets for drug discovery. Curr. Pharm. Des. 13, 2421–2427 (2007).
Yool, A. J., Brown, E. A. & Flynn, G. A. Roles for novel pharmacological blockers of aquaporins in the treatment of brain oedema and cancer. Clin. Exp. Pharmacol. Physiol. 37, 403–409 (2010).
Niemietz, C. M. & Tyerman, S. D. New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. FEBS Lett. 531, 443–447 (2002).
Huber, V. J., Tsujita, M., Kwee, I. L. & Nakada, T. Inhibition of aquaporin 4 by antiepileptic drugs. Bioorg. Med. Chem. 17, 418–424 (2009).
Huber, V. J., Tsujita, M., Yamazaki, M., Sakimura, K. & Nakada, T. Identification of arylsulfonamides as Aquaporin 4 inhibitors. Bioorg. Med. Chem. Lett. 17, 1270–1273 (2007).
Migliati, E. et al. Inhibition of aquaporin-1 and aquaporin-4 water permeability by a derivative of the loop diuretic bumetanide acting at an internal pore-occluding binding site. Mol. Pharmacol. 76, 105–112 (2009).
Ozu, M., Dorr, R. A., Teresa Politi, M., Parisi, M. & Toriano, R. Water flux through human aquaporin 1: inhibition by intracellular furosemide and maximal response with high osmotic gradients. Eur. Biophys. J. 40, 737–746 (2011).
Yukutake, Y., Hirano, Y., Suematsu, M. & Yasui, M. Rapid and reversible inhibition of aquaporin-4 by zinc. Biochemistry 48, 12059–12061 (2009).
Mola, M. G., Nicchia, G. P., Svelto, M., Spray, D. C. & Frigeri, A. Automated cell-based assay for screening of aquaporin inhibitors. Anal. Chem. 81, 8219–8229 (2009).
Yang, B., Zhang, H. & Verkman, A. S. Lack of aquaporin-4 water transport inhibition by antiepileptics and arylsulfonamides. Bioorg. Med. Chem. 16, 7489–7493 (2008).
Tradtrantip, L. et al. Anti-aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica. Ann. Neurol. 71, 314–322 (2012).
Tradtrantip, L. et al. Small-molecule inhibitors of NMO-IgG binding to aquaporin-4 reduce astrocyte cytotoxicity in neuromyelitis optica. FASEB J. 26, 2197–2208 (2012).
Tradtrantip, L., Ratelade, J., Zhang, H. & Verkman, A. S. Enzymatic deglycosylation converts pathogenic neuromyelitis optica anti-aquaporin-4 IgG into therapeutic antibody. Ann. Neurol. 73, 77–85 (2013).
Matiello, M. et al. Genetic analysis of aquaporin-4 in neuromyelitis optica. Neurology 77, 1149–1155 (2011).
Kleffner, I. et al. The role of aquaporin-4 polymorphisms in the development of brain edema after middle cerebral artery occlusion. Stroke 39, 1333–1335 (2008).
Heuser, K. et al. Variants of the genes encoding AQP4 and Kir4.1 are associated with subgroups of patients with temporal lobe epilepsy. Epilepsy Res. 88, 55–64 (2010).
Ma, T. et al. Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J. Clin. Invest. 100, 957–962 (1997).
Fan, Y. et al. Sex- and region-specific alterations of basal amino acid and monoamine metabolism in the brain of aquaporin-4 knockout mice. J. Neurosci. Res. 82, 458–464 (2005).
Saadoun, S. et al. AQP4 gene deletion in mice does not alter blood-brain barrier integrity or brain morphology. Neuroscience 161, 764–772 (2009).
Binder, D. K., Papadopoulos, M. C., Haggie, P. M. & Verkman, A. S. In vivo measurement of brain extracellular space diffusion by cortical surface photobleaching. J. Neurosci. 24, 8049–8056 (2004).
Zhang, H. & Verkman, A. S. Microfiberoptic measurement of extracellular space volume in brain and tumor slices based on fluorescent dye partitioning. Biophys. J. 99, 1284–1291 (2010).
Yao, X., Hrabetova, S., Nicholson, C. & Manley, G. T. Aquaporin-4-deficient mice have increased extracellular space without tortuosity change. J. Neurosci. 28, 5460–5464 (2008).
Eilert-Olsen, M. et al. Deletion of aquaporin-4 changes the perivascular glial protein scaffold without disrupting the brain endothelial barrier. Glia 60, 432–440 (2012).
Zeng, X. N. et al. Aquaporin-4 deficiency down-regulates glutamate uptake and GLT-1 expression in astrocytes. Mol. Cell. Neurosci. 34, 34–39 (2007).
Li, L., Zhang, H., Varrin-Doyer, M., Zamvil, S. S. & Verkman, A. S. Proinflammatory role of aquaporin-4 in autoimmune neuroinflammation. FASEB J. 25, 1556–1566 (2011).
Skucas, V. A. et al. Impairment of select forms of spatial memory and neurotrophin-dependent synaptic plasticity by deletion of glial aquaporin-4. J. Neurosci. 31, 6392–6397 (2011).
Benfenati, V. et al. An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc. Natl Acad. Sci. USA 108, 2563–2568 (2011).
Li, Z. et al. Aquaporin-4 knockout regulated cocaine-induced behavior and neurochemical changes in mice. Neurosci. Lett. 403, 294–298 (2006).
Fan, Y. et al. Aquaporin-4 promotes memory consolidation in Morris water maze. Brain Struct. Funct. 218, 39–50 (2013).
Yang, W. et al. Aquaporin-4 mediates astrocyte response to β-amyloid. Mol. Cell. Neurosci. 49, 406–414 (2012).
Amiry-Moghaddam, M. et al. Brain mitochondria contain aquaporin water channels: evidence for the expression of a short AQP9 isoform in the inner mitochondrial membrane. FASEB J. 19, 1459–1467 (2005).
Bennett, J. L. et al. Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann. Neurol. 66, 617–629 (2009).
Acknowledgements
Our research is funded by the US National Institutes of Health and the Guthy-Jackson Charitable Foundation. We thank S. Saadoun for providing helpful criticism of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Glossary
- α-syntrophin
-
An intracellular protein that may form a complex with aquaporin 4.
- Agrin
-
A proteoglycan attached to extracellular matrix that may anchor aquaporin 4 in the membrane.
- Glial-limiting membrane
-
This is the interface between the brain and the surrounding cerebrospinal fluid, and comprises astrocyte processes.
- Circumventricular organs
-
These are regions of the brain near ventricles that lack the blood–brain barrier.
- Choroid plexus
-
An intraventricular epithelial structure that secretes cerebrospinal fluid.
- Tanycytes
-
These are elongated cells that project from the third ventricle to the hypothalamus.
- Ruffini mechanoreceptors
-
These are skin mechanoreceptors.
- Müller cells
-
These are aquaporin 4-expressing retinal glial cells.
- Claudius cells
-
These are supporting cells (non-excitable cells) in the inner ear.
- Hensen cells
-
These are supporting cells (non-excitable cells) in the inner ear.
- Inner sulcus cells
-
These are supporting cells (non-excitable cells) in the inner ear.
- Cytotoxic oedema
-
This is the intracellular accumulation of excess water (cell-swelling oedema).
- Vasogenic oedema
-
This is the interstitial accumulation of excess brain water (leaky-vessel oedema).
- Ependyma
-
A membrane of epithelial cells lining the ventricles.
- Kaolin
-
This is aluminium silicate that causes obstructive hydrocephalus when injected into the cisterna magna of rodents.
- Lamellipodia
-
Projections at the front end of a migrating cell.
- Glioblastoma multiforme
-
This is a highly infiltrative, malignant tumour of astrocytes.
- C5b–C9 complexes
-
Cell plasma membrane pores composed of the complement proteins C5b, C6, C7, C8 and C9. Deposition of enough pores causes cell lysis.
- Plasma blast
-
Upon activation by T helper cells, B cells differentiate into plasma cells that secrete high levels of antibody. Plasma blasts are the most immature plasma cells.
Rights and permissions
About this article
Cite this article
Papadopoulos, M., Verkman, A. Aquaporin water channels in the nervous system. Nat Rev Neurosci 14, 265–277 (2013). https://doi.org/10.1038/nrn3468
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrn3468
This article is cited by
-
The role of Aquaporins in tumorigenesis: implications for therapeutic development
Cell Communication and Signaling (2024)
-
Aquaporin 4 Mediates the Effect of Iron Overload on Hydrocephalus After Intraventricular Hemorrhage
Neurocritical Care (2024)
-
Pathophysiology and probable etiology of cerebral small vessel disease in vascular dementia and Alzheimer’s disease
Molecular Neurodegeneration (2023)
-
Aquaporin-4 IgG antibodies: predictors of positivity and their relationship with neuropsychiatric disorders and white matter lesions in Juvenile systemic lupus erythematosus
Pediatric Rheumatology (2023)
-
Relationship between brain iron dynamics and blood-brain barrier function during childhood: a quantitative magnetic resonance imaging study
Fluids and Barriers of the CNS (2023)