Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Imaging structural co-variance between human brain regions

Key Points

  • Inter-individual differences in a local measure of brain structure — for example, cortical thickness — often co-vary with inter-individual differences in the structure of other brain regions.

  • Neuroimaging studies have demonstrated that complex networks of structural co-variance are an important aspect of large-scale human brain organization.

  • The mechanisms underlying structural co-variance are unclear, but they are likely to be related to coordinated rates of developmental change in co-varying regions.

  • Structural co-variance networks are influenced by genetic, cognitive and behavioural factors and partially recapitulate networks of white matter connections and networks of synchronized brain activity.

  • Imaging markers of structural co-variance change dynamically over the course of normal development and are altered by neurological and psychiatric disease.

Abstract

Brain structure varies between people in a markedly organized fashion. Communities of brain regions co-vary in their morphological properties. For example, cortical thickness in one region influences the thickness of structurally and functionally connected regions. Such networks of structural co-variance partially recapitulate the functional networks of healthy individuals and the foci of grey matter loss in neurodegenerative disease. This architecture is genetically heritable, is associated with behavioural and cognitive abilities and is changed systematically across the lifespan. The biological meaning of this structural co-variance remains controversial, but it appears to reflect developmental coordination or synchronized maturation between areas of the brain. This Review discusses the state of current research into brain structural co-variance, its underlying mechanisms and its potential value in the understanding of various neurological and psychiatric conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of network properties.
Figure 2: Co-variance may reflect connectivity.
Figure 3: Structural co-variance networks change across the human lifespan.
Figure 4: Structural co-variance networks are altered in disease.

Similar content being viewed by others

References

  1. Kennedy, D. N. et al. Gyri of the human neocortex: an MRI-based analysis of volume and variance. Cereb. Cortex 8, 372–384 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Lerch, J. P. et al. Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. Neuroimage 31, 993–1003 (2006). This is the first study to look at the co-variance of thickness across the cortex and the development of structural co-variance during childhood and adolescence, introducing several key methodological approaches.

    Article  PubMed  Google Scholar 

  3. Andrews, T. J., Halpern, S. D. & Purves, D. Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J. Neurosci. 17, 2859–2868 (1997). A post-mortem anatomical study showing correlations between the sizes of different areas of the visual system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. White, L. E. et al. Structure of the human sensorimotor system. II: Lateral symmetry. Cereb. Cortex 7, 31–47 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Bohbot, V. D., Lerch, J., Thorndycraft, B., Iaria, G. & Zijdenbos, A. P. Gray matter differences correlate with spontaneous strategies in a human virtual navigation task. J. Neurosci. 27, 10078–10083 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zielinski, B. A., Gennatas, E. D., Zhou, J. & Seeley, W. W. Network-level structural covariance in the developing brain. Proc. Natl Acad. Sci. USA 107, 18191–18196 (2010). This paper tracks the development of seed-based structural co-variance networks from 5 to18 years of age.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaiser, M., Hilgetag, C. C. & van Ooyen, A. A simple rule for axon outgrowth and synaptic competition generates realistic connection lengths and filling fractions. Cereb. Cortex 19, 3001–3010 (2009).

    Article  PubMed  Google Scholar 

  8. Kaiser, M. & Hilgetag, C. C. Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput. Biol. 2, e95 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106, 2035–2040 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Salvador, R., Suckling, J., Schwarzbauer, C. & Bullmore, E. Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Phil. Trans. R. Soc. B 360, 937–946 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Alexander-Bloch, A. F. et al. The anatomical distance of functional connections predicts brain network topology in health and schizophrenia. Cereb. Cortex 23, 127–138 (2013).

    Article  PubMed  Google Scholar 

  12. He, Y., Chen, Z. J. & Evans, A. C. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex 17, 2407–2419 (2007). This is the first graph analytic study of brain-wide structural co-variance, showing similar network properties to functional and white matter networks.

    Article  PubMed  Google Scholar 

  13. Chen, Z. J., He, Y., Rosa-Neto, P., Germann, J. & Evans, A. C. Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cereb. Cortex 18, 2374–2381 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vértes, P. E. et al. Simple models of human brain functional networks. Proc. Natl Acad. Sci. USA 109, 5868–5873 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bullmore, E. & Sporns, O. The economy of brain network organization. Nature Rev. Neurosci. 13, 336–349 (2012).

    Article  CAS  Google Scholar 

  16. Eyler, L. T. et al. Genetic patterns of correlation among subcortical volumes in humans: results from a magnetic resonance imaging twin study. Hum. Brain Mapp. 32, 641–653 (2011).

    Article  PubMed  Google Scholar 

  17. Mitelman, S. A. et al. Correlations between MRI-assessed volumes of the thalamus and cortical Brodmann's areas in schizophrenia. Schizophr. Res. 75, 265–281 (2005).

    Article  PubMed  Google Scholar 

  18. Mitelman, S. A. et al. Metabolic thalamocortical correlations during a verbal learning task and their comparison with correlations among regional volumes. Brain Res. 1114, 125–137 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Soriano-Mas, C. et al. Structural covariance of the neostriatum with regional gray matter volumes. Brain Struct. Funct. 11 May 2012 (doi:10.1007/s00429-012-0422-5).

    Article  PubMed  Google Scholar 

  20. Herbert, M. R. et al. Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain 126, 1182–1192 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Mechelli, A., Friston, K. J., Frackowiak, R. S. & Price, C. J. Structural covariance in the human cortex. J. Neurosci. 25, 8303–8310 (2005). This is one of the first comprehensive studies of grey matter co-variance between regions across the brain in healthy individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bassett, D. S. et al. Hierarchical organization of human cortical networks in health and schizophrenia. J. Neurosci. 28, 9239–9248 (2008). This is a study of structural co-variance network alterations in schizophrenia, which also explains permutation testing for comparisons between groups.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Segall, J. M. et al. Correspondence between structure and function in the human brain at rest. Front. Neuroinform. 6, 10 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Allen, J. S., Damasio, H. & Grabowski, T. J. Normal neuroanatomical variation in the human brain: an MRI-volumetric study. Am. J. Phys. Anthropol. 118, 341–358 (2002).

    Article  PubMed  Google Scholar 

  25. Achard, S., Salvador, R., Whitcher, B., Suckling, J. & Bullmore, E. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26, 63–72 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van den Heuvel, M. P. & Sporns, O. Rich-club organization of the human connectome. J. Neurosci. 31, 15775–15786 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burgoyne, R. D., Graham, M. E. & Cambray-Deakin, M. Neurotrophic effects of NMDA receptor activation on developing cerebellar granule cells. J. Neurocytol. 22, 689–695 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Bullmore, E. T., Frangou, S. & Murray, R. M. The dysplastic net hypothesis: an integration of developmental and dysconnectivity theories of schizophrenia. Schizophr. Res. 28, 143–156 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Bi, G. & Poo, M. Distributed synaptic modification in neural networks induced by patterned stimulation. Nature 401, 792–796 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Gong, G., He, Y., Chen, Z. J. & Evans, A. C. Convergence and divergence of thickness correlations with diffusion connections across the human cerebral cortex. Neuroimage 59, 1239–1248 (2012).

    Article  PubMed  Google Scholar 

  32. Alexander-Bloch, A. F., Raznahan, A., Giedd, J. & Bullmore, E. T. The convergence of maturational change and structural covariance in human cortical networks. J. Neurosci. 33, 2889–2899 (2013). This paper compares structural co-variance networks with functional connectivity networks and with networks of synchronized anatomical change during adolescence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Colibazzi, T. et al. Latent volumetric structure of the human brain: exploratory factor analysis and structural equation modeling of gray matter volumes in healthy children and adults. Hum. Brain Mapp. 29, 1302–1312 (2008).

    Article  PubMed  Google Scholar 

  34. Honey, C. J., Thivierge, J.-P. & Sporns, O. Can structure predict function in the human brain? Neuroimage 52, 766–776 (2010).

    Article  PubMed  Google Scholar 

  35. Adachi, Y. et al. Functional connectivity between anatomically unconnected areas is shaped by collective network-level effects in the macaque cortex. Cereb. Cortex 22, 1586–1592 (2012).

    Article  PubMed  Google Scholar 

  36. Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L. & Greicius, M. D. Neurodegenerative diseases target large-scale human brain networks. Neuron 62, 42–52 (2009). The authors of this article argue that grey matter loss in neurodegenerative disease recapitulates structural co-variance and functional connectivity networks in healthy individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, Z. et al. Resting-state brain organization revealed by functional covariance networks. PLoS ONE 6, e28817 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kelly, C. et al. A convergent functional architecture of the insula emerges across imaging modalities. Neuroimage 61, 1129–1142 (2012).

    Article  PubMed  Google Scholar 

  39. Jones, D. K., Knösche, T. R. & Turner, R. White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI. Neuroimage 73, 239–254 (2013).

    Article  PubMed  Google Scholar 

  40. Satterthwaite, T. D. et al. Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. Neuroimage 60, 623–632 (2012).

    Article  PubMed  Google Scholar 

  41. Olson, E. C. & Miller, R. L. Morphological Integration (Univ. Chicago Press, 1958).

    Google Scholar 

  42. Berg, R. L. The ecological significance of correlation pleiades. Evolution 14, 171–180 (1960).

    Article  Google Scholar 

  43. Clausen, J. & Hiesey, W. M. The balance between coherence and variation in evolution. Proc. Natl Acad. Sci. USA 46, 494–506 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gould, S. J. Evolutionary patterns in Pelycosaurian reptiles: a factor-analytic study. Evolution 21, 385–401 (1967).

    Article  PubMed  Google Scholar 

  45. Waitt, D. E. & Levin, D. A. Genetic and phenotypic correlations in plants: a botanical test of Cheverud's conjecture. Heredity 80, 310–319 (1998).

    Article  Google Scholar 

  46. Bastir, M. & Rosas, A. Hierarchical nature of morphological integration and modularity in the human posterior face. Am. J. Phys. Anthropol. 128, 26–34 (2005).

    Article  PubMed  Google Scholar 

  47. Bastir, M., Rosas, A. & O'higgins, P. Craniofacial levels and the morphological maturation of the human skull. J. Anat. 209, 637–654 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bruner, E. Cranial shape and size variation in human evolution: structural and functional perspectives. Childs Nerv. Syst. 23, 1357–1365 (2007).

    Article  PubMed  Google Scholar 

  49. Cheverud, J. M. A comparison of genetic and phenotypic correlations. Evolution 42, 958–968 (1988).

    Article  PubMed  Google Scholar 

  50. Magwene, P. M. New tools for studying integration and modularity. Evolution 55, 1734–1745 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Pigliucci, M. Phenotypic integration: studying the ecology and evolution of complex phenotypes. Ecol. Lett. 6, 265–272 (2003).

    Article  Google Scholar 

  52. Klingenberg, C. P. in Developmental Instability: Causes and Consequences (ed. Polak, M.) 427–442 (Oxford Univ. Press, 2003).

    Google Scholar 

  53. Breuker, C. J., Debat, V. & Klingenberg, C. P. Functional evo-devo. Trends Ecol. Evol. 21, 488–492 (2006).

    Article  PubMed  Google Scholar 

  54. Klingenberg, C. P. Morphological integration and developmental modularity. Annu. Rev. Ecol. Evol. Syst. 39, 115–132 (2008).

    Article  Google Scholar 

  55. Mitteroecker, P., Gunz, P., Neubauer, S. & Müller, G. How to explore morphological integration in human evolution and development? Evol. Biol. 39, 536–553 (2012).

    Article  Google Scholar 

  56. Riska, B. Some models for development, growth, and morphometric correlation. Evolution 40, 1303–1311 (1986).

    Article  PubMed  Google Scholar 

  57. Klingenberg, C. P. in Variation: A Central Concept in Biology (eds Hallgrimsson, B. & Hall, B. K.) 219–247 (Elsevier, 2005).

    Book  Google Scholar 

  58. Sinervo, B. & Svensson, E. Correlational selection and the evolution of genomic architecture. Heredity 89, 329–338 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Walsh, B. & Blows, M. W. Abundant genetic variation+ strong selection= multivariate genetic constraints: a geometric view of adaptation. Annu. Rev. Ecol. Evol. Syst. 40, 41–59 (2009).

    Article  Google Scholar 

  60. Roff, D. A. & Fairbairn, D. J. A test of the hypothesis that correlational selection generates genetic correlations. Evolution 66, 2953–2960 (2012).

    Article  PubMed  Google Scholar 

  61. Badyaev, A. V., Foresman, K. R. & Young, R. L. Evolution of morphological integration: developmental accommodation of stress-induced variation. Am. Nat. 166, 382–395 (2005).

    PubMed  Google Scholar 

  62. Kingsolver, J. G. & Huey, R. B. Introduction: the evolution of morphology, performance, and fitness. Integr. Comp. Biol. 43, 361–366 (2003).

    Article  PubMed  Google Scholar 

  63. Arnold, S. J. Performance surfaces and adaptive landscapes. Integr. Comp. Biol. 43, 367–375 (2003).

    Article  PubMed  Google Scholar 

  64. Albertson, R. C., Streelman, J. T., Kocher, T. D. & Yelick, P. C. Integration and evolution of the cichlid mandible: the molecular basis of alternate feeding strategies. Proc. Natl Acad. Sci. USA 102, 16287–16292 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kirschner, M. & Gerhart, J. Evolvability. Proc. Natl Acad. Sci. USA 95, 8420–8427 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Raz, N. et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb. Cortex 15, 1676–1689 (2005).

    Article  PubMed  Google Scholar 

  67. Raznahan, A. et al. Patterns of coordinated anatomical change in human cortical development: a longitudinal neuroimaging study of maturational coupling. Neuron 72, 873–884 (2011). This article introduces the concept of maturational coupling between brain regions that grow together during childhood and adolescence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jackson, M. O. Social and Economic Networks (Princeton Univ. Press, 2010).

    Book  Google Scholar 

  69. Pennington, B. F. et al. A twin MRI study of size variations in human brain. J. Cogn. Neurosci. 12, 223–232 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Baaré, W. F. et al. Quantitative genetic modeling of variation in human brain morphology. Cereb. Cortex 11, 816–824 (2001).

    Article  PubMed  Google Scholar 

  71. Posthuma, D. et al. Multivariate genetic analysis of brain structure in an extended twin design. Behav. Genet. 30, 311–319 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Gaitanis, J. N. & Walsh, C. A. Genetics of disorders of cortical development. Neuroimaging Clin. N. Am. 14, 219–229 (2004).

    Article  PubMed  Google Scholar 

  73. Guerrini, R. & Marini, C. Genetic malformations of cortical development. Exp. Brain Res. 173, 322–333 (2006).

    Article  PubMed  Google Scholar 

  74. Chae, T. H. & Walsh, C. A. in Cortical Development: Genes and Genetic Abnormalities (eds Bock, G. & Goode, J.) 79–95 (John Wiley & Sons, 2007).

    Google Scholar 

  75. Hulshoff Pol, H. E. et al. Genetic contributions to human brain morphology and intelligence. J. Neurosci. 26, 10235–10242 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schmitt, J. E. et al. Identification of genetically mediated cortical networks: a multivariate study of pediatric twins and siblings. Cereb. Cortex 18, 1737–1747 (2008). This paper demonstrates genetic influences on structural co-variance networks using structural equation modelling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pezawas, L. et al. 5-HTTLPR polymorphism impacts human cingulate–amygdala interactions: a genetic susceptibility mechanism for depression. Nature Neurosci. 8, 828–834 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Schmitt, J. E. et al. Variance decomposition of MRI-based covariance maps using genetically informative samples and structural equation modeling. Neuroimage 47, 56–64 (2009).

    Article  PubMed  Google Scholar 

  79. Schmitt, J. E. et al. A twin study of intracerebral volumetric relationships. Behav. Genet. 40, 114–124 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wright, I. C., Sham, P., Murray, R. M., Weinberger, D. R. & Bullmore, E. T. Genetic contributions to regional variability in human brain structure: methods and preliminary results. Neuroimage 17, 256–271 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Rimol, L. M. et al. Cortical thickness is influenced by regionally specific genetic factors. Biol. Psychiatry 67, 493–499 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Chen, C.-H. et al. Hierarchical genetic organization of human cortical surface area. Science 335, 1634–1636 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Thompson, P. M., Cannon, T. D. & Narr, K. L. Genetic influences on brain structure. Nature Neurosci. 4, 1253–1258 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Weniger, G., Lange, C. & Irle, E. Abnormal size of the amygdala predicts impaired emotional memory in major depressive disorder. J. Affect. Disord. 94, 219–229 (2006).

    Article  PubMed  Google Scholar 

  85. Irle, E. et al. Reduced amygdalar and hippocampal size in adults with generalized social phobia. J. Psychiatry Neurosci. 35, 126–131 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bickart, K. C., Wright, C. I., Dautoff, R. J., Dickerson, B. C. & Barrett, L. F. Amygdala volume and social network size in humans. Nature Neurosci. 14, 163–164 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Westlye, L. T., Grydeland, H., Walhovd, K. B. & Fjell, A. M. Associations between regional cortical thickness and attentional networks as measured by the attention network test. Cereb. Cortex 21, 345–356 (2011).

    Article  PubMed  Google Scholar 

  88. Matsuo, K. et al. A voxel-based morphometry study of frontal gray matter correlates of impulsivity. Hum. Brain Mapp. 30, 1188–1195 (2009).

    Article  PubMed  Google Scholar 

  89. Welborn, B. L. et al. Variation in orbitofrontal cortex volume: relation to sex, emotion regulation and affect. Soc. Cogn. Affect. Neurosci. 4, 328–339 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kanai, R., Bahrami, B. & Rees, G. Human parietal cortex structure predicts individual differences in perceptual rivalry. Curr. Biol. 20, 1626–1630 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schwarzkopf, D. S., Song, C. & Rees, G. The surface area of human V1 predicts the subjective experience of object size. Nature Neurosci. 14, 28–30 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Narr, K. L. et al. Relationships between IQ and regional cortical gray matter thickness in healthy adults. Cereb. Cortex 17, 2163–2171 (2006).

    Article  PubMed  Google Scholar 

  93. Karama, S. et al. Positive association between cognitive ability and cortical thickness in a representative US sample of healthy 6 to 18 year-olds. Intelligence 37, 145–155 (2009).

    Article  Google Scholar 

  94. Lv, Y.-T. et al. Correlations in spontaneous activity and gray matter density between left and right sensoritmotor areas of pianists. Neuroreport 19, 631–634 (2008).

    Article  PubMed  Google Scholar 

  95. Bermudez, P., Lerch, J. P., Evans, A. C. & Zatorre, R. J. Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cereb. Cortex 19, 1583–1596 (2009).

    Article  PubMed  Google Scholar 

  96. Jäncke, L., Langer, N. & Hänggi, J. Diminished whole-brain but enhanced peri-sylvian connectivity in absolute pitch musicians. J. Cogn. Neurosci. 24, 1447–1461 (2012).

    Article  PubMed  Google Scholar 

  97. Maguire, E. A. et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc. Natl Acad. Sci. USA 97, 4398–4403 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Maguire, E. A. et al. Navigation expertise and the human hippocampus: a structural brain imaging analysis. Hippocampus 13, 250–259 (2003).

    Article  PubMed  Google Scholar 

  99. Maguire, E. A., Woollett, K. & Spiers, H. J. London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus 16, 1091–1101 (2006).

    Article  PubMed  Google Scholar 

  100. Gaser, C. & Schlaug, G. Brain structures differ between musicians and non-musicians. J. Neurosci. 23, 9240–9245 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gaser, C. & Schlaug, G. Gray matter differences between musicians and nonmusicians. Ann. NY Acad. Sci. 999, 514–517 (2003).

    Article  PubMed  Google Scholar 

  102. Schneider, P., Scherg, M. & Dosch, H. G. Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neurosci. 5, 688–694 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Hyde, K. L. et al. Musical training shapes structural brain development. J. Neurosci. 29, 3019–3025 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Carreiras, M. et al. An anatomical signature for literacy. Nature 461, 983–986 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Dehaene, S. et al. How learning to read changes the cortical networks for vision and language. Science 330, 1359–1364 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Draganski, B. et al. Neuroplasticity: changes in grey matter induced by training. Nature 427, 311–312 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Driemeyer, J., Boyke, J., Gaser, C., Büchel, C. & May, A. Changes in gray matter induced by learning — revisited. PLoS ONE 3, e2669 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Knickmeyer, R. C. et al. A structural MRI study of human brain development from birth to 2 years. J. Neurosci. 28, 12176–12182 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Paus, T., Keshavan, M. & Giedd, J. N. Why do many psychiatric disorders emerge during adolescence? Nature Rev. Neurosci. 9, 947–957 (2008).

    Article  CAS  Google Scholar 

  110. Hill, J. et al. Similar patterns of cortical expansion during human development and evolution. Proc. Natl Acad. Sci. USA 107, 13135–13140 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sowell, E. R. et al. Longitudinal mapping of cortical thickness and brain growth in normal children. J. Neurosci. 24, 8223–8231 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shaw, P. et al. Neurodevelopmental trajectories of the human cerebral cortex. J. Neurosci. 28, 3586–3594 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gogtay, N. et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl Acad. Sci. USA 101, 8174–8179 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Giedd, J. N. et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neurosci. 2, 861–863 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Khundrakpam, B. S. et al. Developmental changes in organization of structural brain networks. Cereb. Cortex 10 Jul 2012 (doi:10.1093/cercor/bhs187).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Fan, Y. et al. Brain anatomical networks in early human brain development. Neuroimage 54, 1862–1871 (2011).

    Article  PubMed  Google Scholar 

  117. Bartzokis, G. et al. Age-related changes in frontal and temporal lobe volumes in men: a magnetic resonance imaging study. Arch. Gen. Psychiatry 58, 461–465 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Good, C. D. et al. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14, 21–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Tisserand, D. J. et al. Regional frontal cortical volumes decrease differentially in aging: an MRI study to compare volumetric approaches and voxel-based morphometry. Neuroimage 17, 657–669 (2002).

    Article  PubMed  Google Scholar 

  120. Buckner, R. L. Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44, 195–208 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Benedetti, B. et al. Influence of aging on brain gray and white matter changes assessed by conventional, MT, and DT MRI. Neurology 66, 535–539 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Pagani, E., Agosta, F., Rocca, M. A., Caputo, D. & Filippi, M. Voxel-based analysis derived from fractional anisotropy images of white matter volume changes with aging. Neuroimage 41, 657–667 (2008).

    Article  PubMed  Google Scholar 

  123. Brickman, A. M., Habeck, C., Ramos, M. A., Scarmeas, N. & Stern, Y. A forward application of age associated gray and white matter networks. Hum. Brain Mapp. 29, 1139–1146 (2008).

    Article  PubMed  Google Scholar 

  124. Brickman, A. M., Habeck, C., Zarahn, E., Flynn, J. & Stern, Y. Structural MRI covariance patterns associated with normal aging and neuropsychological functioning. Neurobiol. Aging 28, 284–295 (2007).

    Article  PubMed  Google Scholar 

  125. Alexander, G. E. et al. Regional network of magnetic resonance imaging gray matter volume in healthy aging. Neuroreport 17, 951–956 (2006).

    Article  PubMed  Google Scholar 

  126. Bergfield, K. L. et al. Age-related networks of regional covariance in MRI gray matter: reproducible multivariate patterns in healthy aging. Neuroimage 49, 1750–1759 (2010).

    Article  PubMed  Google Scholar 

  127. Steffener, J., Brickman, A. M., Habeck, C. G., Salthouse, T. A. & Stern, Y. Cerebral blood flow and gray matter volume covariance patterns of cognition in aging. Hum. Brain Mapp. 17 Jul 2012 (doi:10.1002/hbm.22142).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Montembeault, M. et al. The impact of aging on gray matter structural covariance networks. Neuroimage 63, 754–759 (2012).

    Article  PubMed  Google Scholar 

  129. Wu, K. et al. Age-related changes in topological organization of structural brain networks in healthy individuals. Hum. Brain Mapp. 33, 552–568 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Zhu, W. et al. Changing topological patterns in normal aging using large-scale structural networks. Neurobiol. Aging 33, 899–913 (2012).

    Article  PubMed  Google Scholar 

  131. Chen, Z. J., He, Y., Rosa-Neto, P., Gong, G. & Evans, A. C. Age-related alterations in the modular organization of structural cortical network by using cortical thickness from MRI. Neuroimage 56, 235–245 (2011).

    Article  PubMed  Google Scholar 

  132. Raichle, M. E. The restless brain. Brain Connect. 1, 3–12 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Buckner, R. L. et al. Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory. J. Neurosci. 25, 7709–7717 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhou, J., Gennatas, E. D., Kramer, J. H., Miller, B. L. & Seeley, W. W. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 73, 1216–1227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Raj, A., Kuceyeski, A. & Weiner, M. A network diffusion model of disease progression in dementia. Neuron 73, 1204–1215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. He, Y., Chen, Z. & Evans, A. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease. J. Neurosci. 28, 4756–4766 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Oh, H. et al. β-Amyloid affects frontal and posterior brain networks in normal aging. Neuroimage 54, 1887–1895 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Alexander, G. E. et al. Gray matter network associated with risk for Alzheimer's disease in young to middle-aged adults. Neurobiol. Aging 33, 2723–2732 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Yao, Z. et al. Abnormal cortical networks in mild cognitive impairment and Alzheimer's disease. PLoS Comput. Biol. 6, e1001006 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Desikan, R. S. et al. Selective disruption of the cerebral neocortex in Alzheimer's disease. PLoS ONE 5, e12853 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Mitelman, S. A., Byne, W., Kemether, E. M., Hazlett, E. A. & Buchsbaum, M. S. Correlations between volumes of the pulvinar, centromedian, and mediodorsal nuclei and cortical Brodmann's areas in schizophrenia. Neurosci. Lett. 392, 16–21 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Modinos, G. et al. Structural covariance in the hallucinating brain: a voxel-based morphometry study. J. Psychiatry Neurosci. 34, 465–469 (2009).

    PubMed  PubMed Central  Google Scholar 

  143. Wible, C. G. et al. Prefrontal cortex and schizophrenia: a quantitative magnetic resonance imaging study. Arch. Gen. Psychiatry 52, 279–288 (1995).

    Article  CAS  PubMed  Google Scholar 

  144. Breier, A. et al. Brain morphology and schizophrenia. A magnetic resonance imaging study of limbic, prefrontal cortex, and caudate structures. Arch. Gen. Psychiatry 49, 921–926 (1992).

    Article  CAS  PubMed  Google Scholar 

  145. Wible, C. G. et al. Prefrontal cortex, negative symptoms, and schizophrenia: an MRI study. Psychiatry Res. 108, 65–78 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Shenton, M. E. et al. Abnormalities of the left temporal lobe and thought disorder in schizophrenia. A quantitative magnetic resonance imaging study. N. Engl. J. Med. 327, 604–612 (1992).

    Article  CAS  PubMed  Google Scholar 

  147. Wright, I. C. et al. Supra-regional brain systems and the neuropathology of schizophrenia. Cereb. Cortex 9, 366–378 (1999).

    Article  CAS  PubMed  Google Scholar 

  148. Bullmore, E. T. et al. Does dysplasia cause anatomical dysconnectivity in schizophrenia? Schizophr. Res. 30, 127–135 (1998). This is an early principal component analysis study of grey matter co-variance in schizophrenia.

    Article  CAS  PubMed  Google Scholar 

  149. Woodruff, P. W. et al. Structural brain abnormalities in male schizophrenics reflect fronto-temporal dissociation. Psychol. Med. 27, 1257–1266 (1997).

    Article  CAS  PubMed  Google Scholar 

  150. Mitelman, S. A., Buchsbaum, M. S., Brickman, A. M. & Shihabuddin, L. Cortical intercorrelations of frontal area volumes in schizophrenia. Neuroimage 27, 753–770 (2005).

    Article  PubMed  Google Scholar 

  151. Mitelman, S. A., Shihabuddin, L., Brickman, A. M. & Buchsbaum, M. S. Cortical intercorrelations of temporal area volumes in schizophrenia. Schizophr. Res. 76, 207–229 (2005).

    Article  PubMed  Google Scholar 

  152. Abbs, B. et al. Covariance modeling of MRI brain volumes in memory circuitry in schizophrenia: sex differences are critical. Neuroimage 56, 1865–1874 (2011).

    Article  PubMed  Google Scholar 

  153. Buchanan, R. W. et al. Morphometric assessment of the heteromodal association cortex in schizophrenia. Am. J. Psychiatry 161, 322–331 (2004).

    Article  PubMed  Google Scholar 

  154. Niznikiewicz, M. et al. Abnormal angular gyrus asymmetry in schizophrenia. Am. J. Psychiatry 157, 428–437 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bhojraj, T. S. et al. Do inter-regional gray-matter volumetric correlations reflect altered functional connectivity in high-risk offspring of schizophrenia patients? Schizophr. Res. 118, 62–68 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Portas, C. M. et al. Volumetric evaluation of the thalamus in schizophrenic male patients using magnetic resonance imaging. Biol. Psychiatry 43, 649–659 (1998).

    Article  CAS  PubMed  Google Scholar 

  157. Collin, G. et al. Disturbed grey matter coupling in schizophrenia. Eur. Neuropsychopharmacol. 23, 46–54 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Zhang, Y. et al. Abnormal topological organization of structural brain networks in schizophrenia. Schizophr. Res. 141, 109–118 (2012).

    Article  PubMed  Google Scholar 

  159. Shi, F. et al. Altered structural connectivity in neonates at genetic risk for schizophrenia: a combined study using morphological and white matter networks. Neuroimage 62, 1622–1633 (2012).

    Article  PubMed  Google Scholar 

  160. Corradi-Dell'Acqua, C. et al. Thalamic-insular dysconnectivity in schizophrenia: evidence from structural equation modeling. Hum. Brain Mapp. 33, 740–752 (2012).

    Article  PubMed  Google Scholar 

  161. van den Heuvel, M. P., Mandl, R. C. W., Stam, C. J., Kahn, R. S. & Hulshoff Pol, H. E. Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. J. Neurosci. 30, 15915–15926 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zalesky, A. et al. Disrupted axonal fiber connectivity in schizophrenia. Biol. Psychiatry 69, 80–89 (2011).

    Article  PubMed  Google Scholar 

  163. Lynall, M.-E. et al. Functional connectivity and brain networks in schizophrenia. J. Neurosci. 30, 9477–9487 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Liu, Y. et al. Disrupted small-world networks in schizophrenia. Brain 131, 945–961 (2008).

    Article  PubMed  Google Scholar 

  165. Alexander-Bloch, A. F. et al. Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Front. Syst. Neurosci. 4, 147 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Gogtay, N., Vyas, N. S., Testa, R., Wood, S. J. & Pantelis, C. Age of onset of schizophrenia: perspectives from structural neuroimaging studies. Schizophr. Bull. 37, 504–513 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  167. McGlashan, T. H. & Hoffman, R. E. Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch. Gen. Psychiatry 57, 637–648 (2000).

    Article  CAS  PubMed  Google Scholar 

  168. Bernhardt, B. C. et al. Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations: insights on the relation between mesiotemporal connectivity and cortical atrophy. Neuroimage 42, 515–524 (2008).

    Article  PubMed  Google Scholar 

  169. Bernhardt, B. C., Chen, Z., He, Y., Evans, A. C. & Bernasconi, N. Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy. Cereb. Cortex 21, 2147–2157 (2011).

    Article  PubMed  Google Scholar 

  170. Dziobek, I., Bahnemann, M., Convit, A. & Heekeren, H. R. The role of the fusiform-amygdala system in the pathophysiology of autism. Arch. Gen. Psychiatry 67, 397–405 (2010).

    Article  PubMed  Google Scholar 

  171. McAlonan, G. M. et al. Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism. Brain 128, 268–276 (2005).

    Article  PubMed  Google Scholar 

  172. He, Y. et al. Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load. Brain 132, 3366–3379 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Baliki, M. N., Schnitzer, T. J., Bauer, W. R. & Apkarian, A. V. Brain morphological signatures for chronic pain. PLoS ONE 6, e26010 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Yeh, P.-H. et al. Structural equation modeling and principal component analysis of gray matter volumes in major depressive and bipolar disorders: differences in latent volumetric structure. Psychiatry Res. 184, 177–185 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Raznahan, A. et al. Cortical anatomy in human X monosomy. Neuroimage 49, 2915–2923 (2010).

    Article  PubMed  Google Scholar 

  176. Hosseini, S. M. H., Koovakkattu, D. & Kesler, S. R. Altered small-world properties of gray matter networks in breast cancer. BMC Neurol. 12, 28 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Nosarti, C. et al. Structural covariance in the cortex of very preterm adolescents: a voxel-based morphometry study. Hum. Brain Mapp. 32, 1615–1625 (2011).

    Article  PubMed  Google Scholar 

  178. Hänggi, J., Wotruba, D. & Jäncke, L. Globally altered structural brain network topology in grapheme-color synesthesia. J. Neurosci. 31, 5816–5828 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. de Winter, W. & Oxnard, C. E. Evolutionary radiations and convergences in the structural organization of mammalian brains. Nature 409, 710–714 (2001).

    Article  CAS  PubMed  Google Scholar 

  180. Shamy, J. L. et al. Volumetric correlates of spatiotemporal working and recognition memory impairment in aged rhesus monkeys. Cereb. Cortex 21, 1559–1573 (2011).

    Article  PubMed  Google Scholar 

  181. Spocter, M. A. et al. Wernicke's area homologue in chimpanzees (Pan troglodytes) and its relation to the appearance of modern human language. Proc. Biol. Sci. 277, 2165–2174 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Alexander, G. E. et al. Age-related regional network of magnetic resonance imaging gray matter in the rhesus macaque. J. Neurosci. 28, 2710–2718 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lerch, J. P. et al. Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning. Neuroimage 54, 2086–2095 (2011).

    Article  PubMed  Google Scholar 

  184. Whitwell, J. L. et al. Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics. Brain 135, 794–806 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Ziegler, G., Dahnke, R., Gaser, C & The Alzheimer's Disease Neuroimaging Initiative. Models of the aging brain structure and individual decline. Front. Neuroinform. 6, 3 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Su, L. et al. Sparse representation of brain aging: extracting covariance patterns from structural MRI. PLoS ONE 7, e36147 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Bushong, S. C. Magnetic Resonance Imaging (Mosby Inc., 2003).

    Google Scholar 

  188. Ashburner, J. & Friston, K. J. Voxel-based morphometry — the methods. Neuroimage 11, 805–821 (2000).

    Article  CAS  PubMed  Google Scholar 

  189. Mechelli, A., Price, C. J., Friston, K. J. & Ashburner, J. Voxel-based morphometry of the human brain: methods and applications. Curr. Med. Imaging Rev. 1, 105–113 (2005).

    Article  Google Scholar 

  190. Whitwell, J. L. Voxel-based morphometry: an automated technique for assessing structural changes in the brain. J. Neurosci. 29, 9661–9664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).

    Article  CAS  PubMed  Google Scholar 

  192. Fischl, B., Sereno, M. I. & Dale, A. M. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  193. Kim, J. S. et al. Automated 3D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 27, 210–221 (2005).

    Article  PubMed  Google Scholar 

  194. MacDonald, D., Kabani, N., Avis, D. & Evans, A. C. Automated 3D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12, 340–356 (2000).

    Article  CAS  PubMed  Google Scholar 

  195. Panizzon, M. S. et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb. Cortex 19, 2728–2735 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Raznahan, A. et al. How does your cortex grow? J. Neurosci. 31, 7174–7177 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Ronan, L. et al. Intrinsic curvature: a marker of millimeter-scale tangential cortico-cortical connectivity? Int. J. Neural Syst. 21, 351–366 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Wilcox, R. R. Introduction to Robust Estimation and Hypothesis Testing (Academic Press, 2012).

    Google Scholar 

  199. Cover, T. M. & Thomas, J. A. Elements of Information Theory (Wiley-Interscience, 2006).

    Google Scholar 

  200. Gould, S. J. Allometry in primates, with emphasis on scaling and the evolution of the brain. Contrib. Primatol. 5, 244–292 (1975).

    CAS  PubMed  Google Scholar 

  201. Toro, R. et al. Brain size and folding of the human cerebral cortex. Cereb. Cortex 18, 2352–2357 (2008).

    Article  PubMed  Google Scholar 

  202. Barkovich, A. J. & Raybaud, C. Pediatric Neuroimaging (Lippincott Williams & Wilkins, 2012).

    Google Scholar 

  203. Frisoni, G. B., Fox, N. C., Jack, C. R., Scheltens, P. & Thompson, P. M. The clinical use of structural MRI in Alzheimer disease. Nature Rev. Neurol. 6, 67–77 (2010).

    Article  Google Scholar 

  204. Sanabria-Diaz, G. et al. Surface area and cortical thickness descriptors reveal different attributes of the structural human brain networks. Neuroimage 50, 1497–1510 (2010).

    Article  PubMed  Google Scholar 

  205. Hulshoff Pol, H. E. et al. Focal white matter density changes in schizophrenia: reduced inter-hemispheric connectivity. Neuroimage 21, 27–35 (2004).

    Article  PubMed  Google Scholar 

  206. Avants, B. B., Cook, P. A., Ungar, L., Gee, J. C. & Grossman, M. Dementia induces correlated reductions in white matter integrity and cortical thickness: a multivariate neuroimaging study with sparse canonical correlation analysis. Neuroimage 50, 1004–1016 (2010).

    Article  PubMed  Google Scholar 

  207. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Rev. Neurosci. 10, 186–198 (2009).

    Article  CAS  Google Scholar 

  208. Romero-Garcia, R., Atienza, M., Clemmensen, L. H. & Cantero, J. L. Effects of network resolution on topological properties of human neocortex. Neuroimage 59, 3522–3532 (2012).

    Article  PubMed  Google Scholar 

  209. Bullmore, E. T. & Bassett, D. S. Brain graphs: graphical models of the human brain connectome. Annu. Rev. Clin. Psychol. 7, 113–140 (2011).

    Article  PubMed  Google Scholar 

  210. Tohka, J., He, Y. & Evans, A. C. The impact of sampling density upon cortical network analysis: regions or points. Magn. Reson. Imaging 30, 978–992 (2012).

    Article  PubMed  Google Scholar 

  211. Tijms, B. M., Seriès, P., Willshaw, D. J. & Lawrie, S. M. Similarity-based extraction of individual networks from gray matter MRI scans. Cereb. Cortex 22, 1530–1541 (2012).

    Article  PubMed  Google Scholar 

  212. Mesulam, M. The evolving landscape of human cortical connectivity: facts and inferences. Neuroimage 62, 2182–2189 (2011).

    Article  PubMed  Google Scholar 

  213. Van Essen, D. C. & Ugurbil, K. The future of the human connectome. Neuroimage 62, 1299–1310 (2012).

    Article  CAS  PubMed  Google Scholar 

  214. Jbabdi, S. & Johansen-Berg, H. Tractography: where do we go from here? Brain Connect. 1, 169–183 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    Article  CAS  PubMed  Google Scholar 

  216. Friston, K. J. Functional and effective connectivity: a review. Brain Connect. 1, 13–36 (2011).

    Article  PubMed  Google Scholar 

  217. Block, N. On a confusion about a function of consciousness. Behav. Brain Sci. 15, 227–247 (1995).

    Article  Google Scholar 

  218. Rykhlevskaia, E., Gratton, G. & Fabiani, M. Combining structural and functional neuroimaging data for studying brain connectivity: a review. Psychophysiology 45, 173–187 (2008).

    Article  PubMed  Google Scholar 

  219. Damoiseaux, J. S. & Greicius, M. D. Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct. Funct. 213, 525–533 (2009).

    Article  PubMed  Google Scholar 

  220. Watts, D. J. & Strogatz, S. H. Collective dynamics of 'small-world' networks. Nature 393, 440–442 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Child Psychiatry Branch, US National Institute of Mental Health, is supported by the US National Institutes of Health (NIH) Intramural Research Program. The Behavioural and Clinical Neuroscience Institute, University of Cambridge, is supported by the Wellcome Trust and the Medical Research Council (UK). A.A.-B. is supported by the NIH-Oxford-Cambridge Scholarship Program, the NIH MD/PhD Partnership Program and the UCLA Caltech Medical Scientist Training Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aaron Alexander-Bloch or Ed Bullmore.

Ethics declarations

Competing interests

E.B. is employed half-time by the University of Cambridge, UK, and half-time by GlaxoSmithKline (GSK); he holds stock in GSK.

Related links

Related links

FURTHER INFORMATION

Aaron Alexander-Bloch's homepage

Glossary

Correlation

When two sets of data are statistically inter-dependent or mutually predictive.

Topology

The pattern of connections or relations between nodes within a network.

Segregation

The existence, in the brain, of relatively distinct anatomical, physiological or functional units.

Modularity

The concept that a network has a community structure and can be decomposed into a set of modules, with each module comprising nodes (brain regions) that are densely connected to each other and sparsely connected to nodes in other modules.

Integration

The capacity of the brain to act as single, unified entity.

Hubs

Topologically important or central nodes.

Efficiency

A measure that is inversely proportional to the lengths of the shortest paths between nodes. In brain networks, the global efficiency is often used as a measure of the overall capacity for parallel information transfer and integrated processing.

Pleiotropy

When a single gene influences many phenotypic traits.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander-Bloch, A., Giedd, J. & Bullmore, E. Imaging structural co-variance between human brain regions. Nat Rev Neurosci 14, 322–336 (2013). https://doi.org/10.1038/nrn3465

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3465

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing