Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Myosin motors at neuronal synapses: drivers of membrane transport and actin dynamics

Key Points

  • Neuronal synapses are highly dynamic and undergo molecular and structural changes linked to the regulation of synaptic plasticity. Myosins make essential contributions to these processes by mediating actin cytoskeleton rearrangement and cargo transport.

  • Non-muscle myosin IIb drives actin cytoskeleton dynamics in dendritic spines in response to synaptic stimulation, promotes the maintenance of hippocampal long-term potentiation and is important for memory consolidation.

  • Myosin Va transports the endoplasmic reticulum into the spines of Purkinje neurons, thereby allowing cerebellar long-term depression. To achieve long-term potentiation, myosin Vb delivers AMPA receptor-carrying recycling endosomes into hippocampal spines upon synaptic stimulation.

  • Myosin VI associates with membranes, walks towards the actin filament's minus end and functions in AMPA receptor and type A GABA receptor trafficking. Myosin VI is required for basal synaptic transmission and brain-derived neurotrophic factor-dependent hippocampal long-term potentiation.

  • Synaptic myosins might be linked to psychiatric disease (non-muscle myosin IIa and myosin Vb) and neurodegenerative disease (myosin VI). Mutations in myosin Va cause severe neurological defects including ataxia and seizures. Non-muscle myosin IIb is required for normal nervous system development.

Abstract

Myosins are a large family of actin-based cytoskeletal motors that use energy derived from ATP hydrolysis to generate movement and force. Myosins of classes II, V and VI have specific pre- and postsynaptic roles that are required for synapse function. They also facilitate several forms of synaptic plasticity. Interestingly, the myosins of these classes differ markedly in important aspects of their molecular mechanisms of function. Accordingly, their major roles at synapses are diverse and include the regulation of actin cytoskeleton dynamics in dendritic spines and powering of synaptic cargo transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Actin and myosin at the CNS synapse.
Figure 2: Domain structure of synaptic myosins.
Figure 3: Mechanisms of function of synaptic myosins.
Figure 4: Integrated model of the function of synaptic myosins.

Similar content being viewed by others

References

  1. Yuste, R. & Bonhoeffer, T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu. Rev. Neurosci. 24, 1071–1089 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Sudhof, T. C. & Malenka, R. C. Understanding synapses: past, present, and future. Neuron 60, 469–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stevens, C. F. Presynaptic function. Curr. Opin. Neurobiol. 14, 341–345 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Kasai, H., Fukuda, M., Watanabe, S., Hayashi-Takagi, A. & Noguchi, J. Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci. 33, 121–129 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Newpher, T. M. & Ehlers, M. D. Spine microdomains for postsynaptic signaling and plasticity. Trends Cell Biol. 19, 218–227 (2009).

    Article  PubMed  Google Scholar 

  6. Cingolani, L. A. & Goda, Y. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nature Rev. Neurosci. 9, 344–356 (2008).

    Article  CAS  Google Scholar 

  7. Frost, N. A., Kerr, J. M., Lu, H. E. & Blanpied, T. A. A network of networks: cytoskeletal control of compartmentalized function within dendritic spines. Curr. Opin. Neurobiol. 20, 578–587 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hotulainen, P. & Hoogenraad, C. C. Actin in dendritic spines: connecting dynamics to function. J. Cell Biol. 189, 619–629 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Racz, B. & Weinberg, R. J. Microdomains in forebrain spines: an ultrastructural perspective. Mol. Neurobiol. 47, 77–89 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Korobova, F. & Svitkina, T. Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. Mol. Biol. Cell 21, 165–176 (2010). This paper is a detailed platinum replica electron microscopy study that characterizes the organization of the subsynaptic actin cytoskeleton in dendritic spines and dendritic filopodia using dissociated neuron cultures.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hotulainen, P. et al. Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J. Cell Biol. 185, 323–339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Honkura, N., Matsuzaki, M., Noguchi, J., Ellis-Davies, G. C. & Kasai, H. The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57, 719–729 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kneussel, M. & Loebrich, S. Trafficking and synaptic anchoring of ionotropic inhibitory neurotransmitter receptors. Biol. Cell 99, 297–309 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. El-Mezgueldi, M. & Bagshaw, C. in Myosins Vol. 7 (ed. Coluccio, L. M.) 55–93 (Springer, 2008).

    Google Scholar 

  16. Reggiani, C. & Bottinelli, R. in Myosins Vol. 7 (ed. Coluccio, L. M.) 125–169 (Springer, 2008).

    Google Scholar 

  17. Cremo, C. & Hartshorne, D. in Myosins Vol. 7 (ed. Coluccio,L. M.) 171–222 (Springer, 2008).

    Google Scholar 

  18. Conti, M., Kawamoto, S. & Adelstein, R. in Myosins Vol. 7 (ed. Coluccio, L. M.) 223–264 (Springer, 2008).

    Google Scholar 

  19. Vicente-Manzanares, M., Ma, X., Adelstein, R. S. & Horwitz, A. R. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nature Rev. Mol. Cell Biol. 10, 778–790 (2009).

    Article  CAS  Google Scholar 

  20. Hammer, J. A. & Sellers, J. R. Walking to work: roles for class V myosins as cargo transporters. Nature Rev. Mol. Cell Biol. 13, 13–26 (2012).

    Article  CAS  Google Scholar 

  21. Sweeney, H. L. & Houdusse, A. Myosin VI rewrites the rules for myosin motors. Cell 141, 573–582 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Spudich, J. A. & Sivaramakrishnan, S. Myosin VI: an innovative motor that challenged the swinging lever arm hypothesis. Nature Rev. Mol. Cell Biol. 11, 128–137 (2010).

    Article  CAS  Google Scholar 

  23. Buss, F. & Kendrick-Jones, J. in Myosins Vol. 7 (ed. Coluccio, L. M.) 325–352 (Springer, 2008).

    Google Scholar 

  24. Woolner, S. & Bement, W. M. Unconventional myosins acting unconventionally. Trends Cell Biol. 19, 245–252 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hartman, M. A., Finan, D., Sivaramakrishnan, S. & Spudich, J. A. Principles of unconventional myosin function and targeting. Annu. Rev. Cell Dev. Biol. 27, 133–155 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Odronitz, F. & Kollmar, M. Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biol. 8, R196 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Craig, R., Smith, R. & Kendrick-Jones, J. Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules. Nature 302, 436–439 (1983).

    Article  CAS  PubMed  Google Scholar 

  28. Medeiros, N. A., Burnette, D. T. & Forscher, P. Myosin II functions in actin-bundle turnover in neuronal growth cones. Nature Cell Biol. 8, 215–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Pasapera, A. M., Schneider, I. C., Rericha, E., Schlaepfer, D. D. & Waterman, C. M. Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J. Cell Biol. 188, 877–890 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma, X. et al. Nonmuscle myosin II exerts tension but does not translocate actin in vertebrate cytokinesis. Proc. Natl Acad. Sci. USA 109, 4509–4514 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Straight, A. F. et al. Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science 299, 1743–1747 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Eves, P. T., Jin, Y., Brunner, M. & Weisman, L. S. Overlap of cargo binding sites on myosin V coordinates the inheritance of diverse cargoes. J. Cell Biol. 198, 69–85 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao, L. P. et al. Cloning and characterization of myr 6, an unconventional myosin of the dilute/myosin-V family. Proc. Natl Acad. Sci. USA 93, 10826–10831 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mercer, J. A., Seperack, P. K., Strobel, M. C., Copeland, N. G. & Jenkins, N. A. Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature 349, 709–713 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Rodriguez, O. C. & Cheney, R. E. Human myosin-Vc is a novel class V myosin expressed in epithelial cells. J. Cell Sci. 115, 991–1004 (2002).

    CAS  PubMed  Google Scholar 

  36. Purcell, T. J., Morris, C., Spudich, J. A. & Sweeney, H. L. Role of the lever arm in the processive stepping of myosin V. Proc. Natl Acad. Sci. USA 99, 14159–14164 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sakamoto, T., Yildez, A., Selvin, P. R. & Sellers, J. R. Step-size is determined by neck length in myosin V. Biochemistry 44, 16203–16210 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Sakamoto, T., Webb, M. R., Forgacs, E., White, H. D. & Sellers, J. R. Direct observation of the mechanochemical coupling in myosin Va during processive movement. Nature 455, 128–132 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mehta, A. D. et al. Myosin-V is a processive actin-based motor. Nature 400, 590–593 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Watanabe, S., Mabuchi, K., Ikebe, R. & Ikebe, M. Mechanoenzymatic characterization of human myosin Vb. Biochemistry 45, 2729–2738 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Wu, X. S. et al. Identification of an organelle receptor for myosin-Va. Nature Cell Biol. 4, 271–278 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Thirumurugan, K., Sakamoto, T., Hammer, J. A., Sellers, J. R. & Knight, P. J. The cargo-binding domain regulates structure and activity of myosin 5. Nature 442, 212–215 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, J., Taylor, D. W., Krementsova, E. B., Trybus, K. M. & Taylor, K. A. Three-dimensional structure of the myosin V inhibited state by cryoelectron tomography. Nature 442, 208–211 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Li, X. D., Ikebe, R. & Ikebe, M. Activation of myosin Va function by melanophilin, a specific docking partner of myosin Va. J. Biol. Chem. 280, 17815–17822 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Sellers, J. R. et al. Calcium and cargoes as regulators of myosin 5a activity. Biochem. Biophys. Res. Commun. 369, 176–181 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Wells, A. L. et al. Myosin VI is an actin-based motor that moves backwards. Nature 401, 505–508 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Dance, A. L. et al. Regulation of myosin-VI targeting to endocytic compartments. Traffic 5, 798–813 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Lister, I. et al. A monomeric myosin VI with a large working stroke. EMBO J. 23, 1729–1738 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Spink, B. J., Sivaramakrishnan, S., Lipfert, J., Doniach, S. & Spudich, J. A. Long single α-helical tail domains bridge the gap between structure and function of myosin VI. Nature Struct. Mol. Biol. 15, 591–597 (2008).

    Article  CAS  Google Scholar 

  50. Song, C. F., Sader, K., White, H., Kendrick-Jones, J. & Trinick, J. Nucleotide-dependent shape changes in the reverse direction motor, myosin VI. Biophys. J. 99, 3336–3344 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu, C. et al. Myosin VI undergoes cargo-mediated dimerization. Cell 138, 537–548 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Phichith, D. et al. Cargo binding induces dimerization of myosin VI. Proc. Natl Acad. Sci. USA 106, 17320–17324 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chuan, P., Spudich, J. A. & Dunn, A. R. Robust mechanosensing and tension generation by myosin VI. J. Mol. Biol. 405, 105–112 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Morris, S. M. et al. Myosin VI binds to and localises with Dab2, potentially linking receptor-mediated endocytosis and the actin cytoskeleton. Traffic 3, 331–341 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Spudich, G. et al. Myosin VI targeting to clathrin-coated structures and dimerization is mediated by binding to Disabled-2 and PtdIns(4,5)P2. Nature Cell Biol. 9, 176–183 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Reed, B. C. et al. GLUT1CBP(TIP2/GIPC1) interactions with GLUT1 and myosin VI: evidence supporting an adapter function for GLUT1CBP. Mol. Biol. Cell 16, 4183–4201 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Naccache, S. N., Hasson, T. & Horowitz, A. Binding of internalized receptors to the PDZ domain of GIPC/synectin recruits myosin VI to endocytic vesicles. Proc. Natl Acad. Sci. USA 103, 12735–12740 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aschenbrenner, L., Lee, T. & Hasson, T. Myo6 facilitates the translocation of endocytic vesicles from cell peripheries. Mol. Biol. Cell 14, 2728–2743 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sahlender, D. A. et al. Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J. Cell Biol. 169, 285–295 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chibalina, M. V., Poliakov, A., Kendrick-Jones, J. & Buss, F. Myosin VI and optineurin are required for polarized EGFR delivery and directed migration. Traffic 11, 1290–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bond, L. M., Peden, A. A., Kendrick-Jones, J., Sellers, J. R. & Buss, F. Myosin VI and its binding partner optineurin are involved in secretory vesicle fusion at the plasma membrane. Mol. Biol. Cell 22, 54–65 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tumbarello, D. A. et al. Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nature Cell Biol. 14, 1 024–1035 (2012).

    Article  CAS  Google Scholar 

  63. Collaco, A., Jakab, R., Hegan, P., Mooseker, M. & Ameen, N. α-AP-2 directs myosin VI-dependent endocytosis of cystic fibrosis transmembrane conductance regulator chloride channels in the intestine. J. Biol. Chem. 285, 17177–17187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Maddugoda, M. P., Crampton, M. S., Shewan, A. M. & Yap, A. S. Myosin VI and vinculin cooperate during the morphogenesis of cadherin cell–cell contacts in mammalian epithelial cells. J. Cell Biol. 178, 529–540 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Geisbrecht, E. R. & Montell, D. J. Myosin VI is required for E-cadherin-mediated border cell migration. Nature Cell Biol. 4, 616–620 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Self, T. et al. Role of myosin VI in the differentiation of cochlear hair cells. Dev. Biol. 214, 331–341 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Avraham, K. B. et al. The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nature Genet. 11, 369–375 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Morrison, J. K. & Miller, K. G. Genetic characterization of the Drosophila jaguar322 mutant reveals that complete myosin VI loss of function is not lethal. Genetics 179, 711–716 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Deol, M. S. & Green, M. C. Snell's waltzer, a new mutation affecting behaviour and the inner ear in the mouse. Genet. Res. 8, 339–345 (1966).

    Article  CAS  PubMed  Google Scholar 

  70. Golomb, E. et al. Identification and characterization of nonmuscle myosin II-C, a new member of the myosin II family. J. Biol. Chem. 279, 2800–2808 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Kawamoto, S. & Adelstein, R. S. Chicken nonmuscle myosin heavy chains: differential expression of two mRNAs and evidence for two different polypeptides. J. Cell Biol. 112, 915–924 (1991).

    Article  CAS  PubMed  Google Scholar 

  72. Murakami, N. & Elzinga, M. Immunohistochemical studies on the distribution of cellular myosin II isoforms in brain and aorta. Cell Motil. Cytoskeleton 22, 281–295 (1992).

    Article  CAS  PubMed  Google Scholar 

  73. Cheng, X. T., Hayashi, K. & Shirao, T. Non-muscle myosin IIB-like immunoreactivity is present at the drebrin-binding cytoskeleton in neurons. Neurosci. Res. 36, 167–173 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Ma, X., Kawamoto, S., Hara, Y. & Adelstein, R. S. A point mutation in the motor domain of nonmuscle myosin II-B impairs migration of distinct groups of neurons. Mol. Biol. Cell 15, 2568–2579 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim, K. Y., Kawamoto, S., Bao, J., Sellers, J. R. & Adelstein, R. S. The B2 alternatively spliced isoform of nonmuscle myosin II-B lacks actin-activated MgATPase activity and in vitro motility. Biochem. Biophys. Res. Commun. 369, 124–134 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Ma, X., Kawamoto, S., Uribe, J. & Adelstein, R. S. Function of the neuron-specific alternatively spliced isoforms of nonmuscle myosin II-B during mouse brain development. Mol. Biol. Cell 17, 2138–2149 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jana, S. S. et al. An alternatively spliced isoform of non-muscle myosin II-C is not regulated by myosin light chain phosphorylation. J. Biol. Chem. 284, 11563–11571 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim, K. Y., Kovacs, M., Kawamoto, S., Sellers, J. R. & Adelstein, R. S. Disease-associated mutations and alternative splicing alter the enzymatic and motile activity of nonmuscle myosins II-B and II-C. J. Biol. Chem. 280, 22769–22775 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Miyazaki, T., Watanabe, M., Yamagishi, A. & Takahashi, M. B2 exon splicing of nonmuscle myosin heavy chain IIB is differently regulated in developing and adult rat brain. Neurosci. Res. 37, 299–306 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Takagishi, Y. et al. Localization of myosin II and V isoforms in cultured rat sympathetic neurones and their potential involvement in presynaptic function. J. Physiol. 569, 195–208 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vega-Riveroll, L. J., Wylie, S. R., Loughna, P. T., Parson, S. H. & Chantler, P. D. Nonmuscle myosins IIA and IIB are present in adult motor nerve terminals. Neuroreport 16, 1143–1146 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Hodges, J. L., Newell-Litwa, K., Asmussen, H., Vicente-Manzanares, M. & Horwitz, A. R. Myosin IIb activity and phosphorylation status determines dendritic spine and post-synaptic density morphology. PLoS ONE 6, e24149 (2011). This paper provides insight into the mechanism of non-muscle myosin IIb and shows that the myosin's phosphorylation state determines whether dendritic spines persist as filopodia-like spine precursors or mature into a mushroom shape.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ryu, J. et al. A critical role for myosin IIb in dendritic spine morphology and synaptic function. Neuron 49, 175–182 (2006). This study is the first to identify a class II myosin (non-muscle myosin IIb) that critically regulates the morphological integrity of dendritic spines and the maintenance of synaptic transmission.

    Article  CAS  PubMed  Google Scholar 

  84. Peng, J. et al. Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J. Biol. Chem. 279, 21003–21011 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Ishmael, J. E. et al. Nonmuscle myosins II-B and Va are components of detergent-resistant membrane skeletons derived from mouse forebrain. Brain Res. 1143, 46–59 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Cheng, D. et al. Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol. Cell Proteom. 5, 1158–1170 (2006).

    Article  CAS  Google Scholar 

  87. Limouze, J., Straight, A. F., Mitchison, T. & Sellers, J. R. Specificity of blebbistatin, an inhibitor of myosin II. J. Muscle Res. Cell. Motil. 25, 337–341 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Kovacs, M., Toth, J., Hetenyi, C., Malnasi-Csizmadia, A. & Sellers, J. R. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem. 279, 35557–35563 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Shu, S., Liu, X. & Korn, E. D. Blebbistatin and blebbistatin-inactivated myosin II inhibit myosin II-independent processes in Dictyostelium. Proc. Natl Acad. Sci. USA 102, 1472–1477 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rubio, M. D., Johnson, R., Miller, C. A., Huganir, R. L. & Rumbaugh, G. Regulation of synapse structure and function by distinct myosin II motors. J. Neurosci. 31, 1448–1460 (2011). This study shows that a sarcomeric class II myosin heavy chain (MYH7B) controls dendritic spine structure and synapse function in a manner that is distinct from that of non-muscle myosin IIb.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kovacs, M., Thirumurugan, K., Knight, P. J. & Sellers, J. R. Load-dependent mechanism of nonmuscle myosin 2. Proc. Natl Acad. Sci. USA 104, 9994–9999 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Heath, K. E. et al. Nonmuscle myosin heavy chain IIA mutations define a spectrum of autosomal dominant macrothrombocytopenias: May-Hegglin anomaly and Fechtner, Sebastian, Epstein, and Alport-like syndromes. Am. J. Hum. Genet. 69, 1033–1045 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Choi, C. K. et al. Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nature Cell Biol. 10, 1039–1050 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Rex, C. S. et al. Myosin IIb regulates actin dynamics during synaptic plasticity and memory formation. Neuron 67, 603–617 (2010). This is the first study to demonstrate that a class II myosin (non-muscle myosin IIb) regulates an early phase of LTP and critically contributes to memory consolidation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Peng, A., Rotman, Z., Deng, P. Y. & Klyachko, V. A. Differential motion dynamics of synaptic vesicles undergoing spontaneous and activity-evoked endocytosis. Neuron 73, 1108–1115 (2012). This study provides evidence for a role of myosin II in presynaptic vesicle motility. It shows that vesicles generated during stimulated endocytosis move in a directional, myosin II-dependent manner.

    Article  CAS  PubMed  Google Scholar 

  96. Yang, Q., Zhang, X. F., Pollard, T. D. & Forscher, P. Arp2/3 complex-dependent actin networks constrain myosin II function in driving retrograde actin flow. J. Cell Biol. 197, 939–956 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wiggan, O., Shaw, A. E., DeLuca, J. G. & Bamburg, J. R. ADF/cofilin regulates actomyosin assembly through competitive inhibition of myosin II binding to F-actin. Dev. Cell 22, 530–543 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nadif Kasri, N. & Van Aelst, L. Rho-linked genes and neurological disorders. Pflugers Arch. 455, 787–797 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Zhang, H., Webb, D. J., Asmussen, H., Niu, S. & Horwitz, A. F. A. GIT1/PIX/Rac/PAK signaling module regulates spine morphogenesis and synapse formation through MLC. J. Neurosci. 25, 3379–3388 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gavin, C. F., Rubio, M. D., Young, E., Miller, C. & Rumbaugh, G. Myosin II motor activity in the lateral amygdala is required for fear memory consolidation. Learn. Mem. 19, 9–14 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mochida, S. et al. Myosin II is involved in transmitter release at synapses formed between rat sympathetic neurons in culture. Neuron 13, 1131–1142 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. Seabrooke, S. & Stewart, B. A. Synaptic transmission and plasticity are modulated by nonmuscle myosin II at the neuromuscular junction of Drosophila. J. Neurophysiol. 105, 1966–1976 (2011).

    Article  PubMed  Google Scholar 

  103. Seabrooke, S., Qiu, X. & Stewart, B. A. Nonmuscle Myosin II helps regulate synaptic vesicle mobility at the Drosophila neuromuscular junction. BMC Neurosci. 11, 37 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Semenova, I. et al. Actin dynamics is essential for myosin-based transport of membrane organelles. Curr. Biol. 18, 1581–1586 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Espreafico, E. M. et al. Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains. J. Cell Biol. 119, 1541–1557 (1992).

    Article  CAS  PubMed  Google Scholar 

  107. Lise, M. F. et al. Involvement of myosin Vb in glutamate receptor trafficking. J. Biol. Chem. 281, 3669–3678 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Tilelli, C. Q., Martins, A. R., Larson, R. E. & Garcia-Cairasco, N. Immunohistochemical localization of myosin Va in the adult rat brain. Neuroscience 121, 573–586 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Cheney, R. E. et al. Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 75, 13–23 (1993).

    Article  CAS  PubMed  Google Scholar 

  110. Petralia, R. S. et al. Glutamate receptor targeting in the postsynaptic spine involves mechanisms that are independent of myosin Va. Eur. J. Neurosci. 13, 1722–1732 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Naisbitt, S. et al. Interaction of the postsynaptic density-95/guanylate kinase domain-associated protein complex with a light chain of myosin-V and dynein. J. Neurosci. 20, 4524–4534 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wagner, W., Fodor, E., Ginsburg, A. & Hammer, J. A. The binding of DYNLL2 to myosin Va requires alternatively spliced exon B and stabilizes a portion of the myosin's coiled-coil domain. Biochemistry 45, 11564–11577 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Hodi, Z. et al. Alternatively spliced exon B of myosin Va is essential for binding the tail-associated light chain shared by dynein. Biochemistry 45, 12582–12595 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Roland, J. T., Lapierre, L. A. & Goldenring, J. R. Alternative splicing in class V myosins determines association with Rab10. J. Biol. Chem. 284, 1213–1223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang, Z. et al. Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell 135, 535–548 (2008). This study demonstrates that myosin Vb links LTP induction and expression. Myosin Vb is activated via NMDAR-mediated Ca2+ influx, thereby triggering exocytosis of AMPAR-containing recycling endosomes in spines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Provance, D. W. Jr et al. Myosin-Vb functions as a dynamic tether for peripheral endocytic compartments during transferrin trafficking. BMC Cell Biol. 9, 44 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Henley, J. M., Barker, E. A. & Glebov, O. O. Routes, destinations and delays: recent advances in AMPA receptor trafficking. Trends Neurosci. 34, 258–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Malenka, R. C. & Bear, M. F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Hales, C. M., Vaerman, J. P. & Goldenring, J. R. Rab11 family interacting protein 2 associates with Myosin Vb and regulates plasma membrane recycling. J. Biol. Chem. 277, 50415–50421 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Roland, J. T. et al. Rab GTPase-Myo5B complexes control membrane recycling and epithelial polarization. Proc. Natl Acad. Sci. USA 108, 2789–2794 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Correia, S. S. et al. Motor protein-dependent transport of AMPA receptors into spines during long-term potentiation. Nature Neurosci. 11, 457–466 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Schnell, E. & Nicoll, R. A. Hippocampal synaptic transmission and plasticity are preserved in myosin Va mutant mice. J. Neurophysiol. 85, 1498–1501 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. van Diepen, M. T. et al. MyosinV controls PTEN function and neuronal cell size. Nature Cell Biol. 11, 1191–1196 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Terasaki, M., Slater, N. T., Fein, A., Schmidek, A. & Reese, T. S. Continuous network of endoplasmic reticulum in cerebellar Purkinje neurons. Proc. Natl Acad. Sci. USA 91, 7510–7514 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Harris, K. M. & Stevens, J. K. Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 8, 4455–4469 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Takagishi, Y. et al. The dilute-lethal (dl) gene attacks a Ca2+ store in the dendritic spine of Purkinje cells in mice. Neurosci. Lett. 215, 169–172 (1996).

    Article  CAS  PubMed  Google Scholar 

  127. Jones, J. M. et al. The mouse neurological mutant flailer expresses a novel hybrid gene derived by exon shuffling between Gnb5 and Myo5a. Hum. Mol. Genet. 9, 821–828 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Dekker-Ohno, K. et al. Endoplasmic reticulum is missing in dendritic spines of Purkinje cells of the ataxic mutant rat. Brain Res. 714, 226–230 (1996).

    Article  CAS  PubMed  Google Scholar 

  129. Miyata, M. et al. Local calcium release in dendritic spines required for long-term synaptic depression. Neuron 28, 233–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Wagner, W., Brenowitz, S. D. & Hammer, J. A. Myosin-Va transports the endoplasmic reticulum into the dendritic spines of Purkinje neurons. Nature Cell Biol. 13, 40–48 (2011). This paper provides direct evidence that myosin Va is an organelle transporter by showing that the myosin transports endoplasmic reticulum tubules into the spines of Purkinje neurons.

    Article  CAS  PubMed  Google Scholar 

  131. Steinberg, J. P., Huganir, R. L. & Linden, D. J. N-ethylmaleimide-sensitive factor is required for the synaptic incorporation and removal of AMPA receptors during cerebellar long-term depression. Proc. Natl Acad. Sci. USA 101, 18212–18216 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gao, Z., van Beugen, B. J. & De Zeeuw, C. I. Distributed synergistic plasticity and cerebellar learning. Nature Rev. Neurosci. 13, 619–635 (2012).

    Article  CAS  Google Scholar 

  133. Wu, X., Bowers, B., Rao, K., Wei, Q. & Hammer, J. A. Visualization of melanosome dynamics within wild-type and dilute melanocytes suggests a paradigm for myosin V function in vivo. J. Cell Biol. 143, 1899–1918 (1998). Using myosin Va-deficient melanocytes, this study provides the first evidence for myosin Va regulating the peripheral accumulation of melanosomes by a mechanism known as the 'cooperative capture model'.

  134. Schonewille, M. et al. Reevaluating the role of LTD in cerebellar motor learning. Neuron 70, 43–50 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Roder, I. V. et al. Role of Myosin Va in the plasticity of the vertebrate neuromuscular junction in vivo. PLoS ONE 3, e3871 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Roder, I. V. et al. Myosin Va cooperates with PKA RIα to mediate maintenance of the endplate in vivo. Proc. Natl Acad. Sci. USA 107, 2031–2036 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Libby, R. T., Lillo, C., Kitamoto, J., Williams, D. S. & Steel, K. P. Myosin Va is required for normal photoreceptor synaptic activity. J. Cell Sci. 117, 4509–4515 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Bridgman, P. C. Myosin Va movements in normal and dilute-lethal axons provide support for a dual filament motor complex. J. Cell Biol. 146, 1045–1060 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rudolf, R., Bittins, C. M. & Gerdes, H. H. The role of myosin V in exocytosis and synaptic plasticity. J. Neurochem. 116, 177–191 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Osterweil, E., Wells, D. G. & Mooseker, M. S. A role for myosin VI in postsynaptic structure and glutamate receptor endocytosis. J. Cell Biol. 168, 329–338 (2005). This study shows that myosin VI forms a complex with AMPARs and that the myosin is important for stimulated AMPAR endocytosis and normal synapse numbers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tamaki, K., Kamakura, M., Nakamichi, N., Taniura, H. & Yoneda, Y. Upregulation of Myo6 expression after traumatic stress in mouse hippocampus. Neurosci. Lett. 433, 183–187 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Nash, J. E. et al. Disruption of the interaction between myosin VI and SAP97 is associated with a reduction in the number of AMPARs at hippocampal synapses. J. Neurochem. 112, 677–690 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Yano, H. et al. BDNF-mediated neurotransmission relies upon a myosin VI motor complex. Nature Neurosci. 9, 1009–1018 (2006). This paper shows that a myosin VI–GIPC1 motor complex is involved in presynaptic functions by regulating BDNF–TRKB-mediated facilitation of LTP.

    Article  CAS  PubMed  Google Scholar 

  144. Gottmann, K., Mittmann, T. & Lessmann, V. BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses. Exp. Brain Res. 199, 203–234 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Yoshii, A. & Constantine-Paton, M. Postsynaptic BDNF–TrkB signaling in synapse maturation, plasticity, and disease. Dev. Neurobiol. 70, 304–322 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Lou, X., Yano, H., Lee, F., Chao, M. V. & Farquhar, M. G. GIPC and GAIP form a complex with TrkA: a putative link between G protein and receptor tyrosine kinase pathways. Mol. Biol. Cell 12, 615–627 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Roux, I. et al. Myosin VI is required for the proper maturation and function of inner hair cell ribbon synapses. Hum. Mol. Genet. 18, 4615–4628 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Heidrych, P. et al. Otoferlin interacts with myosin VI: implications for maintenance of the basolateral synaptic structure of the inner hair cell. Hum. Mol. Genet. 18, 2779–2790 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Kisiel, M., Majumdar, D., Campbell, S. & Stewart, B. A. Myosin VI contributes to synaptic transmission and development at the Drosophila neuromuscular junction. BMC Neurosci. 12, 65 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Wu, H., Nash, J. E., Zamorano, P. & Garner, C. C. Interaction of SAP97 with minus-end-directed actin motor myosin VI. Implications for AMPA receptor trafficking. J. Biol. Chem. 277, 30928–30934 (2002).

    Article  CAS  PubMed  Google Scholar 

  151. Waites, C. L. et al. Synaptic SAP97 isoforms regulate AMPA receptor dynamics and access to presynaptic glutamate. J. Neurosci. 29, 4332–4345 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Heisler, F. F. et al. Muskelin regulates actin filament- and microtubule-based GABAA receptor transport in neurons. Neuron 70, 66–81 (2011). This is one of the first demonstrations that specific trafficking factors accompany cargo transport in consecutive steps to traverse both actin filament and microtubule compartments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tagnaouti, N. et al. Neuronal expression of muskelin in the rodent central nervous system. BMC Neurosci. 8, 28 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Prag, S., Collett, G. D. & Adams, J. C. Molecular analysis of muskelin identifies a conserved discoidin-like domain that contributes to protein self-association. Biochem. J. 381, 547–559 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Malnasi-Csizmadia, A. & Kovacs, M. Emerging complex pathways of the actomyosin powerstroke. Trends Biochem. Sci. 35, 684–690 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. De La Cruz, E. M. & Ostap, E. M. Relating biochemistry and function in the myosin superfamily. Curr. Opin. Cell Biol. 16, 61–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Pashkova, N., Jin, Y., Ramaswamy, S. & Weisman, L. S. Structural basis for myosin V discrimination between distinct cargoes. EMBO J. 25, 693–700 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ramamurthy, B., Cao, W., De la Cruz, E. M. & Mooseker, M. S. Plus-end directed myosins accelerate actin filament sliding by single-headed myosin VI. Cytoskeleton 69, 59–69 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Ali, M. Y. et al. Myosin Va and myosin VI coordinate their steps while engaged in an in vitro tug of war during cargo transport. Proc. Natl Acad. Sci. USA 108, e535–e541 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Feuillette, S. et al. Filamin-A and Myosin VI colocalize with fibrillary Tau protein in Alzheimer's disease and FTDP-17 brains. Brain Res. 1345, 182–189 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Blard, O. et al. Cytoskeleton proteins are modulators of mutant tau-induced neurodegeneration in Drosophila. Hum. Mol. Genet. 16, 555–566 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Heissler, S. M. et al. Kinetic properties and small-molecule inhibition of human myosin-6. FEBS Lett. 586, 3208–3214 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Benesh, A. E., Fleming, J. T., Chiang, C., Carter, B. D. & Tyska, M. J. Expression and localization of myosin-1d in the developing nervous system. Brain Res. 1440, 9–22 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Schrimpf, S. P. et al. Proteomic analysis of synaptosomes using isotope-coded affinity tags and mass spectrometry. Proteomics 5, 2531–2541 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Murphy, C. T., Rock, R. S. & Spudich, J. A. A myosin II mutation uncouples ATPase activity from motility and shortens step size. Nature Cell Biol. 3, 311–315 (2001).

    Article  CAS  PubMed  Google Scholar 

  166. Kodera, N., Yamamoto, D., Ishikawa, R. & Ando, T. Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468, 72–76 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Nishikawa, S. et al. Switch between large hand-over-hand and small inchworm-like steps in myosin VI. Cell 142, 879–888 (2010).

    Article  CAS  PubMed  Google Scholar 

  168. Veigel, C., Schmitz, S., Wang, F. & Sellers, J. R. Load-dependent kinetics of myosin-V can explain its high processivity. Nature Cell Biol. 7, 861–869 (2005).

    Article  CAS  PubMed  Google Scholar 

  169. Elting, M. W., Bryant, Z., Liao, J. C. & Spudich, J. A. Detailed tuning of structure and intramolecular communication are dispensable for processive motion of myosin VI. Biophys. J. 100, 430–439 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sivaramakrishnan, S. & Spudich, J. A. Coupled myosin VI motors facilitate unidirectional movement on an F-actin network. J. Cell Biol. 187, 53–60 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Liu, Y. L. et al. RASD2, MYH9, and CACNG2 genes at chromosome 22q12 associated with the subgroup of schizophrenia with non-deficit in sustained attention and executive function. Biol. Psychiatry 64, 789–796 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. Amagane, H. et al. Failure to find an association between myosin heavy chain 9, non-muscle (MYH9) and schizophrenia: a three-stage case-control association study. Schizophr. Res. 118, 106–112 (2010).

    Google Scholar 

  173. Pastural, E. et al. Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene. Nature Genet. 16, 289–292 (1997).

    Article  CAS  PubMed  Google Scholar 

  174. Pastural, E. et al. Two genes are responsible for Griscelli syndrome at the same 15q21 locus. Genomics 63, 299–306 (2000).

    Article  CAS  PubMed  Google Scholar 

  175. Thomas, E. R. et al. Griscelli syndrome type 1: a report of two cases and review of the literature. Clin. Dysmorphol. 18, 145–148 (2009).

    Article  PubMed  Google Scholar 

  176. Sawada, K. et al. Purkinje cell loss in the cerebellum of ataxic mutant mouse, dilute-lethal: a fractionator study. Congenit. Anom. 44, 189–195 (2004).

    Article  Google Scholar 

  177. Noguchi, T., Sugisaki, T. & Tsukada, Y. Poor myelination in the central nervous system of “dilute-lethal mutant mice” (d1/d1). Exp. Neurol. 79, 278–282 (1983).

    Article  CAS  PubMed  Google Scholar 

  178. Miyata, M. et al. A role for myosin Va in cerebellar plasticity and motor learning: a possible mechanism underlying neurological disorder in myosin Va disease. J. Neurosci. 31, 6067–6078 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Brooks, S. A. et al. Whole-genome SNP association in the horse: identification of a deletion in myosin Va responsible for Lavender Foal Syndrome. PLoS Genet. 6, e1000909 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sklar, P. et al. Whole-genome association study of bipolar disorder. Mol. Psychiatry 13, 558–569 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Muller, T. et al. MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nature Genet. 40, 1163–1165 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Melchionda, S. et al. MYO6, the human homologue of the gene responsible for deafness in Snell's waltzer mice, is mutated in autosomal dominant nonsyndromic hearing loss. Am. J. Hum. Genet. 69, 635–640 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Maruyama, H. et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465, 223–226 (2010).

    Article  CAS  PubMed  Google Scholar 

  184. Vance, C. et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208–1211 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kubota, H. et al. Modulation of the mechano-chemical properties of myosin V by drebrin-E. Biochem. Biophys. Res. Commun. 400, 643–648 (2010).

    Article  CAS  PubMed  Google Scholar 

  186. Ishikawa, R. et al. Drebrin attenuates the interaction between actin and myosin-V. Biochem. Biophys. Res. Commun. 359, 398–401 (2007).

    Article  CAS  PubMed  Google Scholar 

  187. Costa, M. C. et al. Brain myosin-V, a calmodulin-carrying myosin, binds to calmodulin-dependent protein kinase II and activates its kinase activity. J. Biol. Chem. 274, 15811–15819 (1999).

    Article  CAS  PubMed  Google Scholar 

  188. Lisman, J., Yasuda, R. & Raghavachari, S. Mechanisms of CaMKII action in long-term potentiation. Nature Rev. Neurosci. 13, 169–182 (2012).

    Article  CAS  Google Scholar 

  189. Shin, S. M. et al. GKAP orchestrates activity-dependent postsynaptic protein remodeling and homeostatic scaling. Nature Neurosci. 15, 1655–1666 (2012).

    Article  CAS  PubMed  Google Scholar 

  190. Jurado, S. et al. PTEN is recruited to the postsynaptic terminal for NMDA receptor-dependent long-term depression. EMBO J. 29, 2827–2840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lise, M. F. et al. Myosin-Va-interacting protein, RILPL2, controls cell shape and neuronal morphogenesis via Rac signaling. J. Cell Sci. 122, 3810–3821 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Yoshimura, A. et al. Myosin-Va facilitates the accumulation of mRNA/protein complex in dendritic spines. Curr. Biol. 16, 2345–2351 (2006).

    Article  CAS  PubMed  Google Scholar 

  193. Fujii, R. et al. The RNA binding protein TLS is translocated to dendritic spines by mGluR5 activation and regulates spine morphology. Curr. Biol. 15, 587–593 (2005).

    Article  CAS  PubMed  Google Scholar 

  194. El-Husseini, A. E. & Vincent, S. R. Cloning and characterization of a novel RING finger protein that interacts with class V myosins. J. Biol. Chem. 274, 19771–19777 (1999).

    Article  CAS  PubMed  Google Scholar 

  195. Ohkawa, N. et al. Molecular cloning and characterization of neural activity-related RING finger protein (NARF): a new member of the RBCC family is a candidate for the partner of myosin V. J. Neurochem. 78, 75–87 (2001).

    Article  CAS  PubMed  Google Scholar 

  196. Yan, Q. et al. CART: an Hrs/actinin-4/BERP/myosin V protein complex required for efficient receptor recycling. Mol. Biol. Cell 16, 2470–2482 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Hung, A. Y., Sung, C. C., Brito, I. L. & Sheng, M. Degradation of postsynaptic scaffold GKAP and regulation of dendritic spine morphology by the TRIM3 ubiquitin ligase in rat hippocampal neurons. PLoS ONE 5, e9842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Anborgh, P. H. et al. Inhibition of metabotropic glutamate receptor signaling by the huntingtin-binding protein optineurin. J. Biol. Chem. 280, 34840–34848 (2005).

    Article  CAS  PubMed  Google Scholar 

  199. Takarada, T. et al. A protein-protein interaction of stress-responsive myosin VI endowed to inhibit neural progenitor self-replication with RNA binding protein, TLS, in murine hippocampus. J. Neurochem. 110, 1457–1468 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. A. Hammer III for his comments on the manuscript. The authors are supported by University Medical Center Hamburg-Eppendorf, German Research Foundation (DFG) grants KN556/4-2, KN556/6-1, GRK1459and the Hamburg excellence programme “neurodapt!” to M.K., and by a Marie Curie Career Integration Grant (PCIG11-GA-2012-321905) to W.W.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthias Kneussel or Wolfgang Wagner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Matthias Kneussel's homepage

CyMoBase

Glossary

Active zones

These are presynaptic specializations at which docking, priming and fusion of synaptic vesicles occur. They organize neurotransmitter release and are crucial for presynaptic plasticity.

Dendritic spines

Small, actin-rich protrusions from a neuronal dendrite. Spines are postsynaptic compartments that receive input from presynaptic terminals.

Long-term potentiation

(LTP). An activity-dependent, long-lasting increase in the strength of a neuronal synapse.

Readily releasable pool

Synaptic vesicles that are docked and primed in the active zone and are immediately ready for fusion with the plasma membrane to release neurotransmitter.

Retrograde flow

A phenomenon in which the actin subunits present within dynamic actin filaments travel away from the cell surface owing to the incorporation of new actin subunits at barbed ends located near the cell surface and owing to myosin II pulling the peripheral actin filament meshwork inwards.

Focal adhesions

Integrin-based, complex protein assemblies that mediate cell-to-extracellular matrix contact and that are found at the termini of stress fibres.

Myosin motor domain

A conserved, globular domain that binds actin, hydrolyses ATP and produces force. It is also known as the myosin head.

RAB GTPases

A family of small GTPases that are anchored in diverse membranes via geranylgeranyl moieties. When bound to GTP, RAB GTPases bind effector proteins to recruit them to membranes.

Lever arm

A rod-like element attached to the myosin motor domain that acts as a lever that amplifies the conformational changes generated in the motor domain.

Postsynaptic density

(PSD). An electron-dense submembrane compartment in dendritic spines. It is directly opposed to the active zone and harbours neurotransmitter receptors, scaffold proteins and signalling molecules.

Blebbistatin

An inhibitor that blocks the ATPase activity of myosin II by slowing down phosphate release, thereby locking the myosin motor domain in a state of low actin affinity.

AMPA receptor

A tetrameric glutamate receptor that mediates fast, excitatory synaptic transmission and that is composed of diverse combinations of the subunits GluA1–GluA4.

Recycling endosomes

Membrane compartments via which endocytosed membrane receptors are recycled back to the plasma membrane.

Long-term depression

(LTD). A long-lasting reduction in the strength of a neuronal synapse following certain stimuli.

Endoplasmic reticulum

A cellular organelle that forms an interconnected network of tubules and cisternae and that is crucial for protein secretion, membrane protein translation and lipid synthesis. Furthermore, it serves as an intracellular Ca2+ store involved in regulating cytosolic Ca2+ concentration.

Opisthotonus

A state of severe hyperextension and spasticity caused by spasm of the axial muscles along the spinal column.

Astrogliosis

A proliferation of astrocytes that can be a consequence of neurodegenerative processes or epilepsy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kneussel, M., Wagner, W. Myosin motors at neuronal synapses: drivers of membrane transport and actin dynamics. Nat Rev Neurosci 14, 233–247 (2013). https://doi.org/10.1038/nrn3445

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3445

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing