Abstract
The social and neural sciences share a common interest in understanding the mechanisms that underlie human behaviour. However, interactions between neuroscience and social science disciplines remain strikingly narrow and tenuous. We illustrate the scope and challenges for such interactions using the paradigmatic example of neuroeconomics. Using quantitative analyses of both its scientific literature and the social networks in its intellectual community, we show that neuroeconomics now reflects a true disciplinary integration, such that research topics and scientific communities with interdisciplinary span exert greater influence on the field. However, our analyses also reveal key structural and intellectual challenges in balancing the goals of neuroscience with those of the social sciences. To address these challenges, we offer a set of prescriptive recommendations for directing future research in neuroeconomics.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Geschwind, D. H. & Konopka, G. Neuroscience in the era of functional genomics and systems biology. Nature 461, 908–915 (2009).
Shonkoff, J. P., Boyce, W. T. & McEwen, B. S. Neuroscience, molecular biology, and the childhood roots of health disparities: building a new framework for health promotion and disease prevention. JAMA 301, 2252–2259 (2009).
Ariely, D. & Berns, G. S. Neuromarketing: the hope and hype of neuroimaging in business. Nature Rev. Neurosci. 11, 284–292 (2010).
O'Connor, C., Rees, G. & Joffe, H. Neuroscience in the public sphere. Neuron 74, 220–226 (2012).
Farah, M. J. Neuroethics: the practical and the philosophical. Trends Cogn. Sci. 9, 34–40 (2005).
Zeki, S. Essays on science and society. Artistic creativity and the brain. Science 293, 51–52 (2001).
Clithero, J. A., Tankersley, D. & Huettel, S. A. Foundations of neuroeconomics: from philosophy to practice. PLoS Biol. 6, e298 (2008).
Glimcher, P. W. & Rustichini, A. Neuroeconomics: the consilience of brain and decision. Science 306, 447–452 (2004).
Loewenstein, G., Rick, S. & Cohen, J. D. Neuroeconomics. Annu. Rev. Psychol. 59, 647–672 (2008).
Sanfey, A. G., Loewenstein, G., McClure, S. M. & Cohen, J. D. Neuroeconomics: cross-currents in research on decision-making. Trends Cogn. Sci. 10, 108–116 (2006).
Fehr, E. & Rangel, A. Neuroeconomic foundations of economic choice - recent advances. J. Econ. Perspect. 25, 3–30 (2011).
Rushworth, M. F., Noonan, M. P., Boorman, E. D., Walton, M. E. & Behrens, T. E. Frontal cortex and reward-guided learning and decision-making. Neuron 70, 1054–1069 (2011).
Montague, P. R. & Berns, G. S. Neural economics and the biological substrates of valuation. Neuron 36, 265–284 (2002).
Rangel, A., Camerer, C. & Montague, P. R. A framework for studying the neurobiology of value-based decision making. Nature Rev. Neurosci. 9, 545–556 (2008).
Glimcher, P. W. Foundations of Neuroeconomic Analysis (Oxford Univ. Press, 2011).
Camerer, C., Loewenstein, G. & Prelec, D. Neuroeconomics: how neuroscience can inform economics. J. Econ. Lit. 43, 9–64 (2005).
Glimcher, P. W. Decisions, Uncertainty, And The Brain: The Science Of Neuroeconomics (MIT Press, 2003).
Mirowski, P. More Heat Than Light: Economics As Social Physics, Physics As Nature's Economics (Cambridge Univ. Press, 1989).
Hodgson, G. M. Economics And Evolution: Bringing Life Back Into Economics (Univ. of Michigan Press, 1993).
Wasserman, S. & Faust, K. Social Network Analysis: Methods And Applications (Cambridge Univ. Press, 1994).
Borner, K. & Scharnhorst, A. Visual conceptualizations and models of science. J. Informetrics 3, 161–172 (2009).
Klavans, R. & Boyack, K. W. Toward a consensus map of science. J. Am. Soc. Inf. Sci. Technol. 60, 455–476 (2009).
Rosvall, M. & Bergstrom, C. T. Maps of random walks on complex networks reveal community structure. Proc. Natl Acad. Sci. USA 105, 1118–1123 (2008).
Rafols, I., Porter, A. L. & Leydesdorff, L. Science overlay maps: a new tool for research policy and library management. J. Am. Soc. Inf. Sci. Technol. 61, 1871–1887 (2010).
Porter, A. L. & Rafols, I. Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics 81, 719–745 (2009).
Bernheim, B. D. On the potential of neuroeconomics: a critical (but hopeful) appraisal. Am. Econ. J. Microecon. 1, 1–41 (2009).
Gul, F. & Pesendorfer, W. in The Foundations Of Positive And Normative Economics (eds Caplin, A. & Schotter, A.) 3–39 (Oxford Univ. Press, 2008).
Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).
Daw, N. D. & Shohamy, D. The cognitive neuroscience of motivation and learning. Soc. Cogn. 26, 593–620 (2008).
Schweber, S. S. Darwin and the political economists: divergence of character. J. Hist. Biol. 13, 195–289 (1980).
Camerer, C. Behavioral Game Theory: Experiments In Strategic Interaction (Russell Sage Foundation, 2003).
Lee, D. Game theory and neural basis of social decision making. Nature Neurosci. 11, 404–409 (2008).
Currie, J. Healthy, wealthy, and wise: socioeconomic status, poor health in childhood, and human capital development. J. Econ. Lit. 47, 87–122 (2009).
Glimcher, P., Camerer, C., Poldrack, R. & Fehr, E. (eds) Neuroeconomics: Decision Making And The Brain (Academic Press, 2008).
Becker, G. S. Altruism, egoism, and genetic fitness — economics and sociobiology. J. Econ. Lit. 14, 817–826 (1976).
Robson, A. J. The biological basis of economic behavior. J. Econ. Lit. 39, 11–33 (2001).
Rangel, A. & Hare, T. Neural computations associated with goal-directed choice. Curr. Opin. Neurobiol. 20, 262–270 (2010).
O'Doherty, J. P. Contributions of the ventromedial prefrontal cortex to goal-directed action selection. Ann. NY Acad. Sci. 1239, 118–129 (2011).
Montague, P. R., Dolan, R. J., Friston, K. J. & Dayan, P. Computational psychiatry. Trends Cogn. Sci. 16, 72–80 (2012).
Crockett, M. J., Clark, L. & Robbins, T. W. Reconciling the role of serotonin in behavioral inhibition and aversion: acute tryptophan depletion abolishes punishment-induced inhibition in humans. J. Neurosci. 29, 11993–11999 (2009).
Venkatraman, V., Huettel, S. A., Chuah, L. Y., Payne, J. W. & Chee, M. W. Sleep deprivation biases the neural mechanisms underlying economic preferences. J. Neurosci. 31, 3712–3718 (2011).
Samanez-Larkin, G. R. et al. Anticipation of monetary gain but not loss in healthy older adults. Nature Neurosci. 10, 787–791 (2007).
Winecoff, A., Labar, K. S., Madden, D. J., Cabeza, R. & Huettel, S. A. Cognitive and neural contributors to emotion regulation in aging. Soc. Cogn. Affect. Neurosci. 6, 165–176 (2011).
Kanai, R. & Rees, G. The structural basis of inter-individual differences in human behaviour and cognition. Nature Rev. Neurosci. 12, 231–242 (2011).
Cohen, M. X., Schoene-Bake, J. C., Elger, C. E. & Weber, B. Connectivity-based segregation of the human striatum predicts personality characteristics. Nature Neurosci. 12, 32–34 (2009).
Locke, H. S. & Braver, T. S. Motivational influences on cognitive control: behavior, brain activation, and individual differences. Cogn. Affect. Behav. Neurosci. 8, 99–112 (2008).
Venkatraman, V., Payne, J. W., Bettman, J. R., Luce, M. F. & Huettel, S. A. Separate neural mechanisms underlie choices and strategic preferences in risky decision making. Neuron 62, 593–602 (2009).
De Martino, B., Kumaran, D., Seymour, B. & Dolan, R. J. Frames, biases, and rational decision-making in the human brain. Science 313, 684–687 (2006).
Hariri, A. R. The neurobiology of individual differences in complex behavioral traits. Annu. Rev. Neurosci. 32, 225–247 (2009).
Bogacz, R., Brown, E., Moehlis, J., Holmes, P. & Cohen, J. D. The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 113, 700–765 (2006).
Busemeyer, J. R. & Townsend, J. T. Decision field-theory — a dynamic cognitive approach to decision-making in an uncertain environment. Psychol. Rev. 100, 432–459 (1993).
Ratcliff, R. & McKoon, G. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 20, 873–922 (2008).
Dekel, E., Lipman, B. L. & Rustichini, A. Temptation-driven preferences. Rev. Econ. Stud. 76, 937–971 (2009).
Gul, F. & Pesendorfer, W. Temptation and self-control. Econometrica 69, 1403–1435 (2001).
Hare, T. A., Camerer, C. F. & Rangel, A. Self-control in decision-making involves modulation of the vmPFC valuation system. Science 324, 646–648 (2009).
Hyman, S. E., Malenka, R. C. & Nestler, E. J. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev. Neurosci. 29, 565–598 (2006).
Brass, M. & Haggard, P. To do or not to do: the neural signature of self-control. J. Neurosci. 27, 9141–9145 (2007).
Heatherton, T. F. & Wagner, D. D. Cognitive neuroscience of self-regulation failure. Trends Cogn. Sci. 15, 132–139 (2011).
Chen, E., Cohen, S. & Miller, G. E. How low socioeconomic status affects 2-year hormonal trajectories in children. Psychol. Sci. 21, 31–37 (2010).
Hackman, D. A. & Farah, M. J. Socioeconomic status and the developing brain. Trends Cogn. Sci. 13, 65–73 (2009).
Hackman, D. A., Farah, M. J. & Meaney, M. J. Socioeconomic status and the brain: mechanistic insights from human and animal research. Nature Rev. Neurosci. 11, 651–659 (2010).
Bossert, J. M. et al. Ventral medial prefrontal cortex neuronal ensembles mediate context-induced relapse to heroin. Nature Neurosci. 14, 420–422 (2011).
Kober, H. et al. Prefrontal-striatal pathway underlies cognitive regulation of craving. Proc. Natl Acad. Sci. USA 107, 14811–14816 (2010).
Harrison, G. W. Neuroeconomics: a critical reconsideration. Econ. Philos. 24, 303–344 (2008).
Wilson, E. O. Consilience: The Unity Of Knowledge (Knopf, Random House, 1998).
Falk, A. & Heckman, J. J. Lab experiments are a major source of knowledge in the social sciences. Science 326, 535–538 (2009).
DellaVigna, S. Psychology and economics: evidence from the field. J. Econ. Lit. 47, 315–372 (2009).
Smith, V. L. Experimental economics: induced value theory. Am. Econ. Rev. 66, 274–279 (1976).
Ashraf, N., Karlan, D. & Yin, W. Tying Odysseus to the mast: evidence from a commitment savings product in the Philippines. Q. J. Econ. 121, 635–672 (2006).
Karlan, D. S. Using experimental economics to measure social capital and predict financial decisions. Am. Econ. Rev. 95, 1688–1699 (2005).
Ochsner, K. N. & Gross, J. J. The cognitive control of emotion. Trends Cogn. Sci. 9, 242–249 (2005).
Plott, C. R. & Smith, V. L. Experimental examination of 2 exchange institutions. Rev. Econ. Stud. 45, 133–153 (1978).
Bossaerts, P., Plott, C. & Zame, W. R. Prices and portfolio choices in financial markets: theory, econometrics, experiments. Econometrica 75, 993–1038 (2007).
Benjamin, D. J. et al. The genetic architecture of economic and political preferences. Proc. Natl Acad. Sci. USA 109, 8026–8031 (2012).
Peters, J. & Büchel, C. Episodic future thinking reduces reward delay discounting through an enhancement of prefrontal–mediotemporal interactions. Neuron 66, 138–148 (2010).
Fehr, E. & Tyran, J. R. Individual irrationality and aggregate outcomes. J. Econ. Perspect. 19, 43–66 (2005).
Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nature Methods 8, 665–670 (2011).
Yarkoni, T., Poldrack, R. A., Van Essen, D. C. & Wager, T. D. Cognitive neuroscience 2.0: building a cumulative science of human brain function. Trends Cogn. Sci. 14, 489–496 (2010).
Smith, K. Brain imaging: fMRI 2.0. Nature 484, 24–26 (2012).
Wallis, J. D. Cross-species studies of orbitofrontal cortex and value-based decision-making. Nature Neurosci. 15, 13–19 (2012).
Kennerley, S. W., Behrens, T. E. & Wallis, J. D. Double dissociation of value computations in orbitofrontal and anterior cingulate neurons. Nature Neurosci. 14, 1581–1589 (2011).
Hayden, B. Y., Pearson, J. M. & Platt, M. L. Neuronal basis of sequential foraging decisions in a patchy environment. Nature Neurosci. 14, 933–939 (2011).
Chang, L. J., Smith, A., Dufwenberg, M. & Sanfey, A. G. Triangulating the neural, psychological, and economic bases of guilt aversion. Neuron 70, 560–572 (2011).
Hare, T. A., Schultz, W., Camerer, C. F., O'Doherty, J. P. & Rangel, A. Transformation of stimulus value signals into motor commands during simple choice. Proc. Natl Acad. Sci. USA 108, 18120–18125 (2011).
Huettel, S. A., Song, A. W. & McCarthy, G. Functional Magnetic Resonance Imaging (Sinauer Associates, 2008).
Woolrich, M. W., Ripley, B. D., Brady, M. & Smith, S. M. Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage 14, 1370–1386 (2001).
Ashby, F. G. Statistical Analysis Of fMRI Data (MIT Press, 2011).
Ely, J. C. Kludged. Am. Econ. J. Microecon. 3, 210–231 (2011).
Bordalo, P., Gennaioli, N. & Shleifer, A. Salience theory of choice under risk. Q. J. Econ. 127, 1243–1285 (2012).
Sarver, T. Anticipating regret: why fewer options may be better. Econometrica 76, 263–305 (2008).
Boulding, K. E. Economics as a moral science. Am. Econ. Rev. 59, 1–12 (1969).
Simon, H. A. Reason In Human Affairs (Stanford Univ. Press, 1983).
Barabasi, A. L. et al. Evolution of the social network of scientific collaborations. Physica A 311, 590–614 (2002).
Bulik-Sullivan, B. K. & Sullivan, P. F. The authorship network of genome-wide association studies. Nature Genet. 44, 113–113 (2012).
Roth, C. & Cointet, J. P. Social and semantic coevolution in knowledge networks. Social Networks 32, 16–29 (2010).
Blondel, V. D., Guillaume, J. L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. 2008, 1–12 (2008).
Acknowledgements
We thank M. Fan and H. Gold for assistance in data collection. For comments and discussions, we thank A. Beaulieu, M. Carter, L. Harris, L. Leydesdorff, P. Mehta, I. Rafols, C. Reeck, M. van Overveld, participants in the annual meetings of the Society for Neuroeconomics and anonymous reviewers. Funding for this research comes from an Incubator Award from the Duke Institute for Brain Sciences (S.A.H), a US National Institutes of Mental Health National Research Service Award F31-086255 (J.A.C.), the Erasmus Research Institute of Management (C.L. and A.S.), and the Open Research Area programme from the European Science Foundation (NESSHI 464-10-029; C.L., A.S. and P.W.).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information S1 (box)
Method for the overlay of neuroeconomics publications on the map of science (PDF 104 kb)
Supplementary information S2 (box)
Choice of two interdisciplinary fields for comparison with neuroeconomics (PDF 160 kb)
Supplementary information S3 (figure)
Overlay maps of science for two reference fields (PDF 761 kb)
Supplementary information S4 (figure)
Literature usage of “neuroeconomic*” and “decision neuroscience” on ISI Web of Knowledge (PDF 271 kb)
Supplementary information S5 (box)
Literature search in neuroeconomics review articles (PDF 196 kb)
Supplementary information S6 (table)
Neuroeconomics review articles (PDF 141 kb)
Supplementary information S7 (box)
Literature search in economics articles (PDF 154 kb)
Supplementary information S8 (box)
Steps for the semantic network analysis of abstracts (PDF 161 kb)
Supplementary information S9 (figure)
Term map of economic articles making reference to biology (PDF 418 kb)
Supplementary information S10 (box)
Survey of the social network of neuroeconomists (PDF 173 kb)
Supplementary information S11 (box)
Identification of communities in the social network of neuroeconomists (PDF 153 kb)
Related links
Related links
FURTHER INFORMATION
Duke Center for Interdisciplinary Decision Sciences
Glossary
- Community detection
-
(Also known as cluster analysis). The identification of groups of relatively tightly connected nodes in a network on the basis of an algorithmic analysis of the graph formed by the nodes and edges.
- Connected component
-
In a network, a group of nodes that are all connected either directly or through other nodes.
- Expected value
-
The weighted, probabilistic average of all possible values for an uncertain reward.
- Natural language processing
-
A set of methods from computational linguistics to extract meaningful features (such as the language or the topic) of a corpus.
- Out-of-sample predictive power
-
When fitting a model to data, the predictive power — or generalizability — of that model can be tested on data not used to estimate the model (that is, out-of-sample data).
- Semantic network analytic
-
Application of the methods and tools of network analysis to textual data; it creates networks based on semantic relationships or co-occurrences of terms in a text corpus.
- Temporal discounting
-
(Also known as delay discounting).The tendency to reduce the subjective value associated with rewards as the delay until their receipt increases.
Rights and permissions
About this article
Cite this article
Levallois, C., Clithero, J., Wouters, P. et al. Translating upwards: linking the neural and social sciences via neuroeconomics. Nat Rev Neurosci 13, 789–797 (2012). https://doi.org/10.1038/nrn3354
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrn3354
This article is cited by
-
Challenges in smart tourism: a media content analysis of digital barriers for senior tourists in China
Information Technology & Tourism (2023)
-
Motivated control as a bridge between neuroeconomics and cognitive neuroscience
Nature Human Behaviour (2020)
-
Neuromarketing: Ethical Implications of its Use and Potential Misuse
Journal of Business Ethics (2017)
-
A longitudinal study of intellectual cohesion in digital humanities using bibliometric analyses
Scientometrics (2017)