Abstract
Thirty years have passed since the publication of Elie Bienenstock, Leon Cooper and Paul Munro's 'Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex', known as the BCM theory of synaptic plasticity. This theory has guided experimentalists to discover some fundamental properties of synaptic plasticity and has provided a mathematical structure that bridges molecular mechanisms and systems-level consequences of learning and memory storage.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Mammalian-brain-inspired neuromorphic motion-cognition nerve achieves cross-modal perceptual enhancement
Nature Communications Open Access 11 March 2023
-
Synaptic plasticity in self-powered artificial striate cortex for binocular orientation selectivity
Nature Communications Open Access 23 September 2022
-
Weight dependence in BCM leads to adjustable synaptic competition
Journal of Computational Neuroscience Open Access 29 June 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Bienenstock, E. L., Cooper, L. N. & Munro, P. W. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982).
von der Malsburg, C. Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14, 85–100 (1973).
Nass, M. M. & Cooper, L. N. A theory for the development of feature detecting cells in visual cortex. Biol. Cybern. 19, 1–18 (1975).
Cooper, L. N., Liberman, F. & Oja, E. A theory for the acquisition and loss of neuron specificity in visual cortex. Biol. Cybern. 33, 9–28 (1979).
Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory (Wiley, 1949).
Lowel, S. & Singer, W. Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. Science 255, 209–212 (1992).
Shatz, C. J. The developing brain. Sci. Am. 267, 60–67 (1992).
Cooper, L. N. in Proceedings of the Nobel Symposium on Collective Properties of Physical Systems (eds Lundqvist, B., Lundqvist, S. & Runnstrom-Reio, V.) 252–264 (Aspen Garden: Nobel, 1973).
Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160, 106–154 (1962).
Wiesel, T. N. & Hubel, D. H. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017 (1963).
Mioche, L. & Singer, W. Chronic recordings from single sites of kitten striate cortex during experience-dependent modifications of receptive-field properties. J. Neurophysiol. 62, 185–197 (1989).
Intrator, N. & Cooper, L. N. Objective function formulation of the BCM theory of visual cortical plasticity: statistical connections, stability conditions. Neural Networks 5, 3–17 (1992).
Clothiaux, E. E., Bear, M. F. & Cooper, L. N. Synaptic plasticity in visual cortex: comparison of theory with experiment. J. Neurophysiol. 66, 1785–1804 (1991).
Blais, B. S., Intrator, N., Shouval, H. Z. & Cooper, L. N. Receptive field formation in natural scene environments. comparison of single-cell learning rules. Neural Comput. 10, 1797–1813 (1998).
Blais, B. S., Shouval, H. Z. & Cooper, L. N. The role of presynaptic activity in monocular deprivation: comparison of homosynaptic and heterosynaptic mechanisms. Proc. Natl Acad. Sci. USA 96, 1083–1087 (1999).
Blais, B., Cooper, L. N. & Shouval, H. Formation of direction selectivity in natural scene environments. Neural Comput. 12, 1057–1066 (2000).
Blais, B. S. et al. Recovery from monocular deprivation using binocular deprivation. J. Neurophysiol. 100, 2217–2224 (2008).
Frenkel, M. Y. & Bear, M. F. How monocular deprivation shifts ocular dominance in visual cortex of young mice. Neuron 44, 917–923 (2004).
Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).
Ramoa, A. S., Paradiso, M. A. & Freeman, R. D. Blockade of intracortical inhibition in kitten striate cortex: effects on receptive field properties and associated loss of ocular dominance plasticity. Exp. Brain Res. 73, 285–296 (1988).
Cruikshank, S. J. & Weinberger, N. M. Receptive-field plasticity in the adult auditory cortex induced by Hebbian covariance. J. Neurosci. 16, 861–875 (1996).
Fregnac, Y. & Shulz, D. E. Activity-dependent regulation of receptive field properties of cat area 17 by supervised Hebbian learning. J. Neurobiol. 41, 69–82 (1999).
Abraham, W. C., Logan, B., Wolff, A. & Benuskova, L. “Heterosynaptic” LTD in the dentate gyrus of anesthetized rat requires homosynaptic activity. J. Neurophysiol. 98, 1048–1051 (2007).
Newman, E. L. & Norman, K. A. Moderate excitation leads to weakening of perceptual representations. Cereb. Cortex 20, 2760–2770 (2010).
Rittenhouse, C. D., Shouval, H. Z., Paradiso, M. A. & Bear, M. F. Monocular deprivation induces homosynaptic long-term depression in visual cortex. Nature 397, 347–350 (1999).
Coleman, J. E. et al. Rapid structural remodeling of thalamocortical synapses parallels experience-dependent functional plasticity in mouse primary visual cortex. J. Neurosci. 30, 9670–9682 (2010).
Rittenhouse, C. D. et al. Stimulus for rapid ocular dominance plasticity in visual cortex. J. Neurophysiol. 95, 2947–2950 (2006).
Linden, M. L., Heynen, A. J., Haslinger, R. H. & Bear, M. F. Thalamic activity that drives visual cortical plasticity. Nature Neurosci. 12, 390–392 (2009).
Blais, B. S., Cooper, L. N. & Shouval, H. Z. Effect of correlated lateral geniculate nucleus firing rates on predictions for monocular eye closure versus monocular retinal inactivation. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80, 061915 (2009).
Bear, M. F. Bidirectional synaptic plasticity: from theory to reality. Phil. Trans. R. Soc. Lond. B. 358, 649–655 (2003).
Wiesel, T. N. & Hubel, D. H. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J. Neurophysiol. 28, 1029–1040 (1965).
Stent, G. S. A physiological mechanism for Hebb's postulate of learning. Proc. Natl Acad. Sci. USA 70, 997–1001 (1973).
Oja, E. A. A simplified neuron model as a principal component analyzer. J. Math. Biol. 15, 267–273 (1982).
Kind, P. C. Cortical plasticity: is it time for a change? Curr. Biol. 9, R640–R643 (1999).
McNaughton, B. L., Douglas, R. M. & Goddard, G. V. Synaptic enhancement in fascia dentata: cooperativity among coactive afferents. Brain Res. 157, 277–293 (1978).
Kelso, S. R., Ganong, A. H. & Brown, T. H. Hebbian synapses in hippocampus. Proc. Natl Acad. Sci. USA 83, 5326–5330 (1986).
Dudek, S. M. & Bear, M. F. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc. Natl Acad. Sci. USA 89, 4363–4367 (1992).
Stevens, C. F. Neurobiology. A depression long awaited. Nature 347, 16 (1990).
Stevens, C. F. Going down the way you came up. Curr. Biol. 3, 891–892 (1993).
Stevens, C. F. Strengths and weaknesses in memory. Nature 381, 471–472 (1996).
Ezzell, C. Neuroscientists manic about long-term depression studies. J. NIH Res. 5, 27–29 (1993).
Malenka, R. C. & Bear, M. F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004).
O'Connor, D. H., Wittenberg, G. M. & Wang, S. S. Graded bidirectional synaptic plasticity is composed of switch-like unitary events. Proc. Natl Acad. Sci. USA 102, 9679–9684 (2005).
Luscher, C. & Huber, K. M. Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease. Neuron 65, 445–459 (2010).
Bear, M. F., Cooper, L. N. & Ebner, F. F. A physiological basis for a theory of synapse modification. Science 237, 42–48 (1987).
Lisman, J. A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc. Natl Acad. Sci. USA 86, 9574–9578 (1989).
Mulkey, R. M. & Malenka, R. C. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9, 967–975 (1992).
Mulkey, R. M., Endo, S., Shenolikar, S. & Malenka, R. C. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369, 486–488 (1994).
Cummings, J. A., Mulkey, R. M., Nicoll, R. A. & Malenka, R. C. Ca2+ signaling requirements for long-term depression in the hippocampus. Neuron 16, 825–833 (1996).
Yang, S. N., Tang, Y. G. & Zucker, R. S. Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. J. Neurophysiol. 81, 781–787 (1999).
Dudek, S. M. & Bear, M. F. Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J. Neurosci. 13, 2910–2918 (1993).
Heynen, A. J., Abraham, W. C. & Bear, M. F. Bidirectional modification of CA1 synapses in the adult hippocampus in vivo. Nature 381, 163–166 (1996).
Bear, M. F. A synaptic basis for memory storage in the cerebral cortex. Proc. Natl Acad. Sci. USA 93, 13453–13459 (1996).
Debanne, D. & Thompson, S. M. Associative long-term depression in the hippocampus in vitro. Hippocampus 6, 9–16 (1996).
Ngezahayo, A., Schachner, M. & Artola, A. Synaptic activity modulates the induction of bidirectional synaptic changes in adult mouse hippocampus. J. Neurosci. 20, 2451–2458 (2000).
Huang, S. et al. Pull-push neuromodulation of LTP and LTD enables bidirectional experience-induced synaptic scaling in visual cortex. Neuron 73, 497–510 (2012).
Philpot, B. D., Espinosa, J. S. & Bear, M. F. Evidence for altered NMDA receptor function as a basis for metaplasticity in visual cortex. J. Neurosci. 23, 5583–5588 (2003).
Kirkwood, A., Dudek, S. M., Gold, J. T., Aizenman, C. D. & Bear, M. F. Common forms of synaptic plasticity in the hippocampus and neocortex in vitro. Science 260, 1518–1521 (1993).
Chen, W. R. et al. Long-term modifications of synaptic efficacy in the human inferior and middle temporal cortex. Proc. Natl Acad. Sci. USA 93, 8011–8015 (1996).
Massey, P. V. & Bashir, Z. I. Long-term depression: multiple forms and implications for brain function. Trends Neurosci. 30, 176–184 (2007).
Nelson, S. B. & Turrigiano, G. G. Strength through diversity. Neuron 60, 477–482 (2008).
Bear, M. F. in Mechanistic Relationships Between Development and Learning (eds Carew, T. J., Menzel, R. & Shatz, C. J.) 205–225 (John Wiley and Sons, 1998).
Heynen, A. J., Quinlan, E. M., Bae, D. C. & Bear, M. F. Bidirectional, activity-dependent regulation of glutamate receptors in the adult hippocampus in vivo. Neuron 28, 527–536 (2000).
Kauer, J. A. & Malenka, R. C. Synaptic plasticity and addiction. Nature Rev. Neurosci. 8, 844–858 (2007).
Bagetta, V., Ghiglieri, V., Sgobio, C., Calabresi, P. & Picconi, B. Synaptic dysfunction in Parkinson's disease. Biochem. Soc. Trans. 38, 493–497 (2010).
Koffie, R. M., Hyman, B. T. & Spires-Jones, T. L. Alzheimer's disease: synapses gone cold. Mol. Neurodegener. 6, 63 (2011).
Krueger, D. D. & Bear, M. F. Toward fulfilling the promise of molecular medicine in fragile X syndrome. Annu. Rev. Med. 62, 411–429 (2011).
Auerbach, B. D., Osterweil, E. K. & Bear, M. F. Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 480, 63–68 (2011).
Heynen, A. J. et al. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation. Nature Neurosci. 6, 854–862 (2003).
Crozier, R. A., Wang, Y., Liu, C. H. & Bear, M. F. Deprivation-induced synaptic depression by distinct mechanisms in different layers of mouse visual cortex. Proc. Natl Acad. Sci. USA 104, 1383–1388 (2007).
Yoon, B. J., Smith, G. B., Heynen, A. J., Neve, R. L. & Bear, M. F. Essential role for a long-term depression mechanism in ocular dominance plasticity. Proc. Natl Acad. Sci. USA 106, 9860–9865 (2009).
Khibnik, L. A., Cho, K. K. & Bear, M. F. Relative contribution of feedforward excitatory connections to expression of ocular dominance plasticity in layer 4 of visual cortex. Neuron 66, 493–500 (2010).
Hubel, D. H., Wiesel, T. N. & LeVay, S. Plasticity of ocular dominance columns in monkey striate cortex. Phil. Trans. R. Soc. Lond. B 278, 377–409 (1977).
Kleinschmidt, A., Bear, M. F. & Singer, W. Blockade of “NMDA” receptors disrupts experience-dependent plasticity of kitten striate cortex. Science 238, 355–358 (1987).
Bear, M. F., Kleinschmidt, A., Gu, Q. A. & Singer, W. Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist. J. Neurosci. 10, 909–925 (1990).
Bear, M. F. & Colman, H. Binocular competition in the control of geniculate cell size depends upon visual cortical N-methyl-D-aspartate receptor activation. Proc. Natl Acad. Sci. USA 87, 9246–9249 (1990).
Roberts, E. B., Meredith, M. A. & Ramoa, A. S. Suppression of NMDA receptor function using antisense DNA block ocular dominance plasticity while preserving visual responses. J. Neurophysiol. 80, 1021–1032 (1998).
Daw, N. W. et al. Injection of MK-801 affects ocular dominance shifts more than visual activity. J. Neurophysiol. 81, 204–215 (1999).
Liu, C. H., Heynen, A. J., Shuler, M. G. & Bear, M. F. Cannabinoid receptor blockade reveals parallel plasticity mechanisms in different layers of mouse visual cortex. Neuron 58, 340–345 (2008).
Yang, K. et al. The regulatory role of long-term depression in juvenile and adult mouse ocular dominance plasticity. Sci. Rep. 1, 203 (2011).
Bastrikova, N., Gardner, G. A., Reece, J. M., Jeromin, A. & Dudek, S. M. Synapse elimination accompanies functional plasticity in hippocampal neurons. Proc. Natl Acad. Sci. USA 105, 3123–3127 (2008).
Maffei, A., Nelson, S. B. & Turrigiano, G. G. Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation. Nature Neurosci. 7, 1353–1359 (2004).
Maffei, A., Nataraj, K., Nelson, S. B. & Turrigiano, G. G. Potentiation of cortical inhibition by visual deprivation. Nature 443, 81–84 (2006).
Smith, G. B., Heynen, A. J. & Bear, M. F. Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex. Phil. Trans. R. Soc. B 364, 357–367 (2009).
Kirkwood, A. & Bear, M. F. Homosynaptic long-term depression in the visual cortex. J. Neurosci. 14, 3404–3412 (1994).
Carroll, R. C., Lissin, D. V., von Zastrow, M., Nicoll, R. A. & Malenka, R. C. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nature Neurosci. 2, 454–460 (1999).
Lee, H. K., Kameyama, K., Huganir, R. L. & Bear, M. F. NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 21, 1151–1162 (1998).
Fitzjohn, S. M. et al. A characterisation of long-term depression induced by metabotropic glutamate receptor activation in the rat hippocampus in vitro. J. Physiol. 537, 421–430 (2001).
Huber, K. M., Roder, J. C. & Bear, M. F. Chemical induction of mGluR5- and protein synthesis-dependent long-term depression in hippocampal area CA1. J. Neurophysiol. 86, 321–325 (2001).
Griffiths, S. et al. Expression of long-term depression underlies visual recognition memory. Neuron 58, 186–194 (2008).
Kemp, A. & Manahan-Vaughan, D. Hippocampal long-term depression: master or minion in declarative memory processes? Trends Neurosci. 30, 111–118 (2007).
Allen, C. B., Celikel, T. & Feldman, D. E. Long-term depression induced by sensory deprivation during cortical map plasticity in vivo. Nature Neurosci. 6, 291–299 (2003).
Collingridge, G. L., Peineau, S., Howland, J. G. & Wang, Y. T. Long-term depression in the CNS. Nature Rev. Neurosci. 11, 459–473 (2010).
Kirkwood, A., Rioult, M. C. & Bear, M. F. Experience-dependent modification of synaptic plasticity in visual cortex. Nature 381, 526–528 (1996).
Holland, L. L. & Wagner, J. J. Primed facilitation of homosynaptic long-term depression and depotentiation in rat hippocampus. J. Neurosci. 18, 887–894 (1998).
Abraham, W. C., Mason-Parker, S. E., Bear, M. F., Webb, S. & Tate, W. P. Heterosynaptic metaplasticity in the hippocampus in vivo: a BCM-like modifiable threshold for LTP. Proc. Natl Acad. Sci. USA 98, 10924–10929 (2001).
Hamada, M. et al. Bidirectional long-term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation. J. Physiol. 586, 3927–3947 (2008).
Benuskova, L., Diamond, M. E. & Ebner, F. F. Dynamic synaptic modification threshold: computational model of experience-dependent plasticity in adult rat barrel cortex. Proc. Natl Acad. Sci. USA 91, 4791–4795 (1994).
Xu, Z. et al. Metaplastic regulation of long-term potentiation/long-term depression threshold by activity-dependent changes of NR2A/NR2B ratio. J. Neurosci. 29, 8764–8773 (2009).
Bliem, B., Mueller-Dahlbaus, J. F. M., Dinse, H. R. & Ziemann, U. Homeostatic metaplasticity in human somatosensory cortex. J. Cogn. Neurosci. 20, 1517–1528 (2008).
Dunfield, D. & Haas, K. Metaplasticity governs natural experience-driven plasticity of nascent embryonic brain circuits. Neuron 64, 240–250 (2009).
Kind, P. C. et al. Correlated binocular activity guides recovery from monocular deprivation. Nature 416, 430–433 (2002).
Mitchell, D. E., Gingras, G. & Kind, P. C. Initial recovery of vision after early monocular deprivation in kittens is faster when both eyes are open. Proc. Natl Acad. Sci. USA 98, 11662–11667 (2001).
Philpot, B. D., Cho, K. K. & Bear, M. F. Obligatory role of NR2A for metaplasticity in visual cortex. Neuron 53, 495–502 (2007).
Iny, K., Heynen, A. J., Sklar, E. & Bear, M. F. Bidirectional modifications of visual acuity induced by monocular deprivation in juvenile and adult rats. J. Neurosci. 26, 7368–7374 (2006).
Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19, 126–130 (1996).
Turrigiano, G. G. & Nelson, S. B. Homeostatic plasticity in the developing nervous system. Nature Rev. Neurosci. 5, 97–107 (2004).
Sawtell, N. B. et al. NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38, 977–985 (2003).
Sato, M. & Stryker, M. P. Distinctive features of adult ocular dominance plasticity. J. Neurosci. 28, 10278–10286 (2008).
Cho, K. K., Khibnik, L., Philpot, B. D. & Bear, M. F. The ratio of NR2A/B NMDA receptor subunits determines the qualities of ocular dominance plasticity in visual cortex. Proc. Natl Acad. Sci. USA 106, 5377–5382 (2009).
Kuo, M. C. & Dringenberg, H. C. Short-term (2 to 5 h) dark exposure lowers long-term potentiation (LTP) induction threshold in rat primary visual cortex. Brain Res. 1276, 58–66 (2009).
Feldman, D., Sherin, J. E., Press, W. A. & Bear, M. F. N-methyl-D-aspartate-evoked calcium uptake by kitten visual cortex maintained in vitro. Exp. Brain Res. 80, 252–259 (1990).
Gold, J. I. & Bear, M. F. A model of dendritic spine Ca2+ concentration exploring possible bases for a sliding synaptic modification threshold. Proc. Natl Acad. Sci. USA 91, 3941–3945 (1994).
Sobczyk, A. & Svoboda, K. Activity-dependent plasticity of the NMDA-receptor fractional Ca2+ current. Neuron 53, 17–24 (2007).
Kalantzis, G. & Shouval, H. Z. Structural plasticity can produce metaplasticity. PLoS ONE 4, e8062 (2009).
Philpot, B. D., Sekhar, A. K., Shouval, H. Z. & Bear, M. F. Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron 29, 157–169 (2001).
Lee, M. C., Yasuda, R. & Ehlers, M. D. Metaplasticity at single glutamatergic synapses. Neuron 66, 859–870 (2010).
Cull-Candy, S. G. & Leszkiewicz, D. N. Role of distinct NMDA receptor subtypes at central synapses. Sci. STKE 2004, re16, (2004).
Sobczyk, A., Scheuss, V. & Svoboda, K. NMDA receptor subunit-dependent [Ca2+] signaling in individual hippocampal dendritic spines. J. Neurosci. 25, 6037–6046 (2005).
Barria, A. & Malinow, R. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 48, 289–301 (2005).
Quinlan, E. M., Philpot, B. D., Huganir, R. L. & Bear, M. F. Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nature Neurosci. 2, 352–357 (1999).
Quinlan, E. M., Olstein, D. H. & Bear, M. F. Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development. Proc. Natl Acad. Sci. USA 96, 12876–12880 (1999).
Corson, J. et al. Sensory activity differentially modulates N-methyl-D-aspartate receptor subunits 2A and 2B in cortical layers. Neuroscience 163, 920–932 (2009).
Chen, W. S. & Bear, M. F. Activity-dependent regulation of NR2B translation contributes to metaplasticity in mouse visual cortex. Neuropharmacology 52, 200–214 (2007).
Cho, K. K. & Bear, M. F. Promoting neurological recovery of function via metaplasticity. Future Neurol. 5, 21–26 (2010).
Steele, P. M. & Mauk, M. D. Inhibitory control of LTP and LTD: stability of synapse strength. J. Neurophysiol. 81, 1559–1566 (1999).
Deisseroth, K., Bito, H., Schulman, H. & Tsien, R. W. Synaptic plasticity: a molecular mechanism for metaplasticity. Curr. Biol. 5, 1334–1338 (1995).
Zhang, L. et al. Hippocampal synaptic metaplasticity requires inhibitory autophosphorylation of Ca2+/calmodulin-dependent kinase II. J. Neurosci. 25, 7697–7707 (2005).
Hardingham, N., Wright, N., Dachtler, J. & Fox, K. Sensory deprivation unmasks a PKA-dependent synaptic plasticity mechanism that operates in parallel with CaMKII. Neuron 60, 861–874 (2008).
Narayanan, R. & Johnston, D. The h current is a candidate mechanism for regulating the sliding modification threshold in a BCM-like synaptic learning rule. J. Neurophysiol. 104, 1020–1033 (2010).
Huh, G. S. et al. Functional requirement for class I MHC in CNS development and plasticity. Science 290, 2155–2159 (2000).
Huber, K. M., Sawtell, N. B. & Bear, M. F. Brain-derived neurotrophic factor alters the synaptic modification threshold in visual cortex. Neuropharmacology 37, 571–579 (1998).
Mayford, M., Wang, J., Kandel, E. R. & O'Dell, T. J. CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP. Cell 81, 891–904 (1995).
Matta, J. A., Ashby, M. C., Sanz-Clemente, A., Roche, K. W. & Isaac, J. T. mGluR5 and NMDA receptors drive the experience- and activity-dependent NMDA receptor NR2B to NR2A subunit switch. Neuron 70, 339–351 (2011).
Philpot, B. D. & Zukin, R. S. Synapse-specific metaplasticity: to be silenced is not to silence 2B. Neuron 66, 814–816 (2010).
Bellone, C. & Nicoll, R. A. Rapid bidirectional switching of synaptic NMDA receptors. Neuron 55, 779–785 (2007).
Levy, W. B. & Steward, O. Synapses as associative memory elements in the hippocampal formation. Brain Res. 175, 233–245 (1979).
Wigstrom, H. & Gustafsson, B. Postsynaptic control of hippocampal long-term potentiation. J. Physiol. 81, 228–236 (1986).
Barrionuevo, G. & Brown, T. H. Associative long-term potentiation in hippocampal slices. Proc. Natl Acad. Sci. USA 80, 7347–7351 (1983).
Stewart, C. E., Moseley, M. J. & Fielder, A. R. Amblyopia therapy: an update. Strabismus 19, 91–98 (2011).
Hubel, D. H. & Wiesel, T. N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. 206, 419–436 (1970).
Hofer, S. B., Mrsic-Flogel, T. D., Bonhoeffer, T. & Hubener, M. Lifelong learning: ocular dominance plasticity in mouse visual cortex. Curr. Opin. Neurobiol. 16, 451–459 (2006).
He, H. Y., Ray, B., Dennis, K. & Quinlan, E. M. Experience-dependent recovery of vision following chronic deprivation amblyopia. Nature Neurosci. 10, 1134–1136 (2007).
Montey, K. L. & Quinlan, E. M. Recovery from chronic monocular deprivation following reactivation of thalamocortical plasticity by dark exposure. Nature Commun. 2, 317 (2011).
Shouval, H. Z. What is the appropriate description level for synaptic plasticity? Proc. Natl Acad. Sci. USA 108, 19103–19104 (2011).
Kerr, D. S. & Abraham, W. C. Cooperative interactions among afferents govern the induction of homosynaptic long-term depression in the hippocampus. Proc. Natl Acad. Sci. USA 92, 11637–11641 (1995).
Debanne, D., Gahwiler, B. H. & Thompson, S. M. Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro. Proc. Natl Acad. Sci. USA 91, 1148–1152 (1994).
Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).
Feldman, D. E. Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27, 45–56 (2000).
Daw, N., Rao, Y., Wang, X. F., Fischer, Q. & Yang, Y. LTP and LTD vary with layer in rodent visual cortex. Vision Res. 44, 3377–3380 (2004).
Pfister, J. P. & Gerstner, W. Triplets of spikes in a model of spike timing-dependent plasticity. J. Neurosci. 26, 9673–9682 (2006).
Izhikevich, E. M. & Desai, N. S. Relating STDP to BCM. Neural Comput. 15, 1511–1523 (2003).
Gjorgjieva, J., Clopath, C., Audet, J. & Pfister, J. P. A triplet spike-timing-dependent plasticity model generalizes the Bienenstock–Cooper–Munro rule to higher-order spatiotemporal correlations. Proc. Natl Acad. Sci. USA 108, 19383–19388 (2011).
Abarbanel, H. D., Huerta, R. & Rabinovich, M. I. Dynamical model of long-term synaptic plasticity. Proc. Natl Acad. Sci. USA 99, 10132–10137 (2002).
Appleby, P. A. & Elliott, T. Synaptic and temporal ensemble interpretation of spike-timing-dependent plasticity. Neural Comput. 17, 2316–2336 (2005).
Karmarkar, U. R. & Buonomano, D. V. A model of spike-timing dependent plasticity: one or two coincidence detectors? J. Neurophysiol. 88, 507–513 (2002).
Castellani, G. C., Quinlan, E. M., Cooper, L. N. & Shouval, H. Z. A biophysical model of bidirectional synaptic plasticity: dependence on AMPA and NMDA receptors. Proc. Natl Acad. Sci. USA 98, 12772–12777 (2001).
Shouval, H. Z., Castellani, G. C., Blais, B. S., Yeung, L. C. & Cooper, L. N. Converging evidence for a simplified biophysical model of synaptic plasticity. Biol. Cybern. 87, 383–391 (2002).
Shouval, H. Z., Bear, M. F. & Cooper, L. N. A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc. Natl Acad. Sci. USA 99, 10831–10836 (2002).
Rachmuth, G., Shouval, H. Z., Bear, M. F. & Poon, C. S. A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity. Proc. Natl Acad. Sci. USA 108, e1266–e1274 (2011).
Malenka, R. C., Kauer, J. A., Zucker, R. S. & Nicoll, R. A. Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science 242, 81–84 (1988).
Lynch, G., Larson, J., Kelso, S., Barrionuevo, G. & Schottler, F. Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305, 719–721 (1983).
Artola, A., Brocher, S. & Singer, W. Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature 347, 69–72 (1990).
Cormier, R. J., Greenwood, A. C. & Connor, J. A. Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold. J. Neurophysiol. 85, 399–406 (2001).
Ismailov, I., Kalikulov, D., Inoue, T. & Friedlander, M. J. The kinetic profile of intracellular calcium predicts long-term potentiation and long-term depression. J. Neurosci. 24, 9847–9861 (2004).
Stuart, G. J. & Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994).
Magee, J. C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).
Bliss, T. V., Burns, B. D. & Uttley, A. M. Factors affecting the conductivity of pathways in the cerebral cortex. J. Physiol. 195, 339–367 (1968).
Bindman, L. J., Murphy, K. P. & Pockett, S. Postsynaptic control of the induction of long-term changes in efficacy of transmission at neocortical synapses in slices of rat brain. J. Neurophysiol. 60, 1053–1065 (1988).
Bramham, C. R. & Srebro, B. Induction of long-term depression and potentiation by low- and high-frequency stimulation in the dentate area of the anesthetized rat: magnitude, time course and EEG. Brain Res. 405, 100–107 (1987).
Hirsch, J. C. & Crepel, F. Use-dependent changes in synaptic efficacy in rat prefrontal neurons in vitro. J. Physiol. 427, 31–49 (1990).
Barrionuevo, G., Schottler, F. & Lynch, G. The effects of low frequency stimulation on control and “potentiated” synaptic responses in the hippocampus. Life Sci. 27, 2385–2391 (1980).
Staubli, U. & Lynch, G. Stable depression of potentiated synaptic responses in the hippocampus with 1–5 Hz stimulation. Brain Res. 513, 113–118 (1990).
Fujii, S., Saito, K., Miyakawa, H., Ito, K. & Kato, H. Reversal of long-term potentiation (depotentiation) induced by tetanus stimulation of the input to CA1 neurons of guinea pig hippocampal slices. Brain Res. 555, 112–122 (1991).
Arai, A., Larson, J. & Lynch, G. Anoxia reveals a vulnerable period in the development of long-term potentiation. Brain Res. 511, 353–357 (1990).
Lynch, G. S., Dunwiddie, T. & Gribkoff, V. Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature 266, 737–739 (1977).
Abraham, W. C. & Goddard, G. V. Asymmetric relationships between homosynaptic long-term potentiation and heterosynaptic long-term depression. Nature 305, 717–719 (1983).
Tsumoto, T. & Suda, K. Cross-depression: an electrophysiological manifestation of binocular competition in the developing visual cortex. Brain Res. 168, 190–194 (1979).
Dunwiddie, T. & Lynch, G. Long-term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency. J. Physiol. 276, 353–367 (1978).
Wickens, J. R. & Abraham, W. C. The involvement of L-type calcium channels in heterosynaptic long-term depression in the hippocampus. Neurosci. Lett. 130, 128–132 (1991).
Bear, M. F. & Abraham, W. C. Long-term depression in hippocampus. Annu. Rev. Neurosci. 19, 437–462 (1996).
Ito, M. & Kano, M. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci. Lett. 33, 253–258 (1982).
Linden, D. J. & Connor, J. A. Long-term synaptic depression. Annu. Rev. Neurosci. 18, 319–357 (1995).
Stanton, P. K. & Sejnowski, T. J. Associative long-term depression in the hippocampus induced by hebbian covariance. Nature 339, 215–218 (1989).
Goldman, R. S., Chavez-Noriega, L. E. & Stevens, C. F. Failure to reverse long-term potentiation by coupling sustained presynaptic activity and N-methyl-D-aspartate receptor blockade. Proc. Natl Acad. Sci. USA 87, 7165–7169 (1990).
Mulkey, R. M., Herron, C. E. & Malenka, R. C. An essential role for protein phosphatases in hippocampal long-term depression. Science 261, 1051–1055 (1993).
Cooper, L. N., Intrator, N., Blais, B. & Shouval, H. Theory of Cortical Plasticity (World Scientific Publishing, 2004).
Stryker, M. P. & Harris, W. A. Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. J. Neurosci. 6, 2117–2133 (1986).
Steriade, M., McCormick, D. A. & Sejnowski, T. J. Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679–685 (1993).
McCurry, C. L. et al. Loss of Arc renders the visual cortex impervious to the effects of sensory experience or deprivation. Nature Neurosci. 13, 450–457 (2010).
Dolen, G. et al. Correction of fragile X syndrome in mice. Neuron 56, 955–962 (2007).
Acknowledgements
The authors thank the many colleagues, both theoretical and experimental, with whom they have worked these many years. Our collaborative research has been supported by the US Office of Naval Research, the Army Research Office, the Air Force Office of Scientific Research, the National Science Foundation, the US National Institutes of Health, the Howard Hughes Medical Institute, the Dana Foundation and the Ittleson Family Foundation.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Rights and permissions
About this article
Cite this article
Cooper, L., Bear, M. The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat Rev Neurosci 13, 798–810 (2012). https://doi.org/10.1038/nrn3353
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrn3353
This article is cited by
-
Adaptive control of synaptic plasticity integrates micro- and macroscopic network function
Neuropsychopharmacology (2023)
-
Mammalian-brain-inspired neuromorphic motion-cognition nerve achieves cross-modal perceptual enhancement
Nature Communications (2023)
-
Versatile memristor implemented in van der Waals CuInP2S6
Nano Research (2023)
-
Effects of combining two techniques of non-invasive brain stimulation in subacute stroke patients: a pilot study
BMC Neurology (2022)
-
Synaptic plasticity in self-powered artificial striate cortex for binocular orientation selectivity
Nature Communications (2022)