Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Common mechanisms of human perceptual and motor learning

Abstract

The adult mammalian brain has a remarkable capacity to learn in both the perceptual and motor domains through the formation and consolidation of memories. Such practice-enabled procedural learning results in perceptual and motor skill improvements. Here, we examine evidence supporting the notion that perceptual and motor learning in humans exhibit analogous properties, including similarities in temporal dynamics and the interactions between primary cortical and higher-order brain areas. These similarities may point to the existence of a common general mechanism for learning in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Perceptual and motor learning.
Figure 2: Interplay between primary cortical processing and higher-order brain areas.

Similar content being viewed by others

References

  1. Sasaki, Y., Nanez, J. E. & Watanabe, T. Advances in visual perceptual learning and plasticity. Nature Rev. Neurosci. 11, 53–60 (2010).

    Article  CAS  Google Scholar 

  2. Dayan, E. & Cohen, L. G. Neuroplasticity subserving motor skill learning. Neuron 72, 443–454 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Karni, A. & Sagi, D. The time course of learning a visual skill. Nature 365, 250–252 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Walker, M. P., Brakefield, T., Morgan, A., Hobson, J. A. & Stickgold, R. Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron 35, 205–211 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Lehéricy, S. et al. Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc. Natl Acad. Sci. USA 102, 12566–12571 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miyachi, S., Hikosaka, O., Miyashita, K., Kárádi, Z. & Rand, M. K. Differential roles of monkey striatum in learning of sequential hand movement. Exp. Brain Res. 115, 1–5 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Costa, R. M., Cohen, D. & Nicolelis, M. A. Differential corticostriatal plasticity during fast and slow motor skill learning in mice. Curr. Biol. 14, 1124–1134 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Yin, H. H. et al. Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nature Neurosci. 12, 333–341 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Honda, M. et al. Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study. Brain 121, 2159–2173 (1998).

    Article  PubMed  Google Scholar 

  10. Floyer-Lea, A. & Matthews, P. M. Distinguishable brain activation networks for short- and long-term motor skill learning. J. Neurophysiol. 94, 512–518 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Yotsumoto, Y., Chang, L. H., Watanabe, T. & Sasaki, Y. Interference and feature specificity in visual perceptual learning. Vision Res. 49, 2611–2623 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Censor, N., Dimyan, M. A. & Cohen, L. G. Modification of existing human motor memories is enabled by primary cortical processing during memory reactivation. Curr. Biol. 20, 1545–1549 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Muellbacher, W. et al. Early consolidation in human primary motor cortex. Nature 415, 640–644 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Brashers-Krug, T., Shadmehr, R. & Bizzi, E. Consolidation in human motor memory. Nature 382, 252–255 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Cohen, D. A. & Robertson, E. M. Preventing interference between different memory tasks. Nature Neurosci. 14, 953–955 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Hung, S. C. & Seitz, A. R. Retrograde interference in perceptual learning of a peripheral hyperacuity task. PLoS ONE 6, e24556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dudai, Y. The neurobiology of consolidations, or, how stable is the engram? Annu. Rev. Psychol. 55, 51–86 (2004).

    Article  PubMed  Google Scholar 

  18. Karni, A. & Sagi, D. Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. Proc. Natl Acad. Sci. USA 88, 4966–4970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karni, A. et al. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377, 155–158 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Walker, M. P., Brakefield, T., Hobson, J. A. & Stickgold, R. Dissociable stages of human memory consolidation and reconsolidation. Nature 425, 616–620 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Stickgold, R., James, L. & Hobson, J. A. Visual discrimination learning requires sleep after training. Nature Neurosci. 3, 1237–1238 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Robertson, E. M., Pascual-Leone, A. & Press, D. Z. Awareness modifies the skill-learning benefits of sleep. Curr. Biol. 14, 208–212 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Censor, N., Karni, A. & Sagi, D. A link between perceptual learning, adaptation and sleep. Vision Res. 46, 4071–4074 (2006).

    Article  PubMed  Google Scholar 

  24. Robertson, E. M., Press, D. Z. & Pascual-Leone, A. Off-line learning and the primary motor cortex. J. Neurosci. 25, 6372–6378 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Karni, A., Tanne, D., Rubenstein, B. S., Askenasy, J. J. & Sagi, D. Dependence on REM sleep of overnight improvement of a perceptual skill. Science 265, 679–682 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Korman, M. et al. Daytime sleep condenses the time course of motor memory consolidation. Nature Neurosci. 10, 1206–1213 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Stickgold, R., Whidbee, D., Schirmer, B., Patel, V. & Hobson, J. A. Visual discrimination task improvement: a multi-step process occurring during sleep. J. Cogn. Neurosci. 12, 246–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Mednick, S., Nakayama, K. & Stickgold, R. Sleep-dependent learning: a nap is as good as a night. Nature Neurosci. 6, 697–698 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Nishida, M. & Walker, M. P. Daytime naps, motor memory consolidation and regionally specific sleep spindles. PLoS ONE 2, e341 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fischer, S., Nitschke, M. F., Melchert, U. H., Erdmann, C. & Born, J. Motor memory consolidation in sleep shapes more effective neuronal representations. J. Neurosci. 25, 11248–11255 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nader, K., Schafe, G. E. & Le Doux, J. E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406, 722–726 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Lee, J. L. Memory reconsolidation mediates the strengthening of memories by additional learning. Nature Neurosci. 11, 1264–1266 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Forcato, C. et al. Reconsolidation of declarative memory in humans. Learn. Mem. 14, 295–303 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hupbach, A., Gomez, L., Hardt, O. & Nadel, R. Reconsolidation of episodic memories: a subtle reminder triggers integration of new information. Learn. Mem. 14, 47–53 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Abe, M. et al. Reward improves long-term retention of a motor memory through induction of offline memory gains. Curr. Biol. 21, 557–562 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Romano, J. C., Howard, J. H. Jr & Howard, D. V. One-year retention of general and sequence-specific skills in a probabilistic, serial reaction time task. Memory 18, 427–441 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Savion-Lemieux, T. & Penhune, V. B. The effects of practice and delay on motor skill learning and retention. Exp. Brain Res. 161, 423–431 (2005).

    Article  PubMed  Google Scholar 

  38. Krakauer, J. W. & Mazzoni, P. Human sensorimotor learning: adaptation, skill, and beyond. Curr. Opin. Neurobiol. 21, 636–644 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Grafton, S. T., Hazeltine, E. & Ivry, R. B. Motor sequence learning with the nondominant left hand. A PET functional imaging study. Exp. Brain Res. 146, 369–378 (2002).

    Article  PubMed  Google Scholar 

  40. De Weerd, P. et al. Posttraining transcranial magnetic stimulation of striate cortex disrupts consolidation early in visual skill learning. J. Neurosci. 32, 1981–1988 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun, F. T., Miller, L. M., Rao, A. A. & D'Esposito, M. Functional connectivity of cortical networks involved in bimanual motor sequence learning. Cereb. Cortex 17, 1227–1234 (2007).

    Article  PubMed  Google Scholar 

  42. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Ahissar, M. & Hochstein, S. Attentional control of early perceptual learning. Proc. Natl Acad. Sci. USA 90, 5718–5722 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hikosaka, O., Nakamura, K., Sakai, K. & Nakahara, H. Central mechanisms of motor skill learning. Curr. Opin. Neurobiol. 12, 217–222 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Doyon, J. & Benali, H. Reorganization and plasticity in the adult brain during learning of motor skills. Curr. Opin. Neurobiol. 15, 161–167 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Müller, G. Z. & Pilzecker, A. Experimental contributions to the science of memory. Z. Psychol. 1, 1–300 (1900).

    Google Scholar 

  47. Seitz, A. R. et al. Task-specific disruption of perceptual learning. Proc. Natl Acad. Sci. USA 102, 14895–14900 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Been, M., Jans, B. & De Weerd, P. Time-limited consolidation and task interference: no direct link. J. Neurosci. 31, 14944–14951 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Blumenfeld, B., Preminger, S., Sagi, D. & Tsodyks, M. Dynamics of memory representations in networks with novelty-facilitated synaptic plasticity. Neuron 52, 383–394 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Preminger, S., Blumenfeld, B., Sagi, D. & Tsodyks, M. Mapping dynamic memories of gradually changing objects. Proc. Natl Acad. Sci. USA 106, 5371–5376 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, J. Y. et al. Stimulus coding rules for perceptual learning. PLoS Biol. 6, e197 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tanaka, S., Honda, M., Hanakawa, T. & Cohen, L. G. Differential contribution of the supplementary motor area to stabilization of a procedural motor skill acquired through different practice schedules. Cereb. Cortex 20, 2114–2121 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Song, S., Sharma, N., Buch, E. R. & Cohen, L. G. White matter microstructural correlates of superior long-term skill gained implicitly under randomized practice. Cereb. Cortex 22, 1671–1677 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Diekelmann, S. & Born, J. The memory function of sleep. Nature Rev. Neurosci. 11, 114–126 (2010).

    Article  CAS  Google Scholar 

  55. Adini, Y., Sagi, D. & Tsodyks, M. Context-enabled learning in the human visual system. Nature 415, 790–793 (2002).

    Article  PubMed  Google Scholar 

  56. Fahle, M. Perceptual learning: a case for early selection. J. Vis. 4, 879–890 (2004).

    Article  PubMed  Google Scholar 

  57. Rand, M. K., Hikosaka, O., Miyachi, S., Lu, X. & Miyashita, K. Characteristics of a long-term procedural skill in the monkey. Exp. Brain Res. 118, 293–297 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Schwartz, S., Maquet, P. & Frith, C. Neural correlates of perceptual learning: a functional MRI study of visual texture discrimination. Proc. Natl Acad. Sci. USA 99, 17137–17142 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yotsumoto, Y., Watanabe, T. & Sasaki, Y. Different dynamics of performance and brain activation in the time course of perceptual learning. Neuron 57, 827–833 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Censor, N., Bonneh, Y., Arieli, A. & Sagi, D. Early-vision brain responses which predict human visual segmentation and learning. J. Vis. 9, 1–9 (2009).

    Article  PubMed  Google Scholar 

  61. Pourtois, G., Rauss, K. S., Vuilleumier, P. & Schwartz, S. Effects of perceptual learning on primary visual cortex activity in humans. Vision Res. 48, 55–62 (2008).

    Article  PubMed  Google Scholar 

  62. Luft, A. R., Buitrago, M. M., Ringer, T., Dichgans, J. & Schulz, J. B. Motor skill learning depends on protein synthesis in motor cortex after training. J. Neurosci. 24, 6515–6520 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Richardson, A. G. et al. Disruption of primary motor cortex before learning impairs memory of movement dynamics. J. Neurosci. 26, 12466–12470 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Reis, J. et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc. Natl Acad. Sci. USA 106, 1590–1595 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Albouy, G. et al. Both the hippocampus and striatum are involved in consolidation of motor sequence memory. Neuron 58, 261–272 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Perez, M. A. et al. Neural substrates of intermanual transfer of a newly acquired motor skill. Curr. Biol. 17, 1896–1902 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Perez, M. A., Tanaka, S., Wise, S. P., Willingham, D. T. & Cohen, L. G. Time-specific contribution of the supplementary motor area to intermanual transfer of procedural knowledge. J. Neurosci. 28, 9664–9669 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Debas, K. et al. Brain plasticity related to the consolidation of motor sequence learning and motor adaptation. Proc. Natl Acad. Sci. USA 107, 17839–17844 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Law, C. T. & Gold, J. I. Neural correlates of perceptual learning in a sensory-motor, but not a sensory, cortical area. Nature Neurosci. 11, 505–513 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Law, C. T. & Gold, J. I. Reinforcement learning can account for associative and perceptual learning on a visual-decision task. Nature Neurosci. 12, 655–663 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Kahnt, T., Grueschow, M., Speck, O. & Haynes, J. Perceptual learning and decision-making in human medial frontal cortex. Neuron 70, 549–559 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Xiao, L. Q. et al. Complete transfer of perceptual learning across retinal locations enabled by double training. Curr. Biol. 18, 1922–1926 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, J. Y. et al. Rule-based learning explains visual perceptual learning and its specificity and transfer. J. Neurosci. 30, 12323–12328 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Censor, N. & Sagi, D. Global resistance to local perceptual adaptation in texture discrimination. Vision Res. 49, 2550–2556 (2009).

    Article  PubMed  Google Scholar 

  75. Censor, N. & Sagi, D. Benefits of efficient consolidation: short training enables long-term resistance to perceptual adaptation induced by intensive testing. Vision Res. 48, 970–977 (2008).

    Article  PubMed  Google Scholar 

  76. Harris, H., Gliksberg, M. & Sagi, D. Generalized perceptual learning in the absence of sensory adaptation. Curr. Biol. (in the press).

  77. Japikse, K. C., Negash, S., Howard, J. H. Jr & Howard, D. V. Intermanual transfer of procedural learning after extended practice of probabilistic sequences. Exp. Brain Res. 148, 38–49 (2003).

    Article  PubMed  Google Scholar 

  78. Cohen, D. A., Pascual-Leone, A., Press, D. Z. & Robertson, E. M. Off-line learning of motor skill memory: a double dissociation of goal and movement. Proc. Natl Acad. Sci. USA 102, 18237–18241 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Witt, K., Margraf, N., Bieber, C., Born, J. & Deuschl, G. Sleep consolidates the effector-independent representation of a motor skill. Neuroscience 171, 227–234 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Lin, K. C., Chen, Y. A., Chen, C. L., Wu, C. Y. & Chang, Y. F. The effects of bilateral arm training on motor control and functional performance in chronic stroke: a randomized controlled study. Neurorehabil. Neural Repair 24, 42–51 (2010).

    Article  PubMed  Google Scholar 

  81. Mednick, S. C. et al. The restorative effect of naps on perceptual deterioration. Nature Neurosci. 5, 677–681 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Vyazovskiy, V. V., Cirelli, C., Pfister-Genskow, M., Faraguna, U. & Tononi, G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nature Neurosci. 11, 200–208 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Brawn, T. P., Fenn, K. M., Nusbaum, H. C. & Margoliash, D. Consolidating the effects of waking and sleep on motor-sequence learning. J. Neurosci. 30, 13977–13982 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Walker, M. P. A refined model of sleep and the time course of memory formation. Behav. Brain Sci. 28, 51–104 (2005).

    Article  PubMed  Google Scholar 

  85. Marrosu, F. et al. Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep–wake cycle in freely moving cats. Brain Res. 671, 329–332 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Mukai, I. et al. Activations in visual and attention-related areas predict and correlate with the degree of perceptual learning. J. Neurosci. 27, 11401–11411 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Frey, U. & Morris, R. G. Synaptic tagging and long-term potentiation. Nature 385, 533–536 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Rasch, B., Gais, S. & Born, J. Impaired off-line consolidation of motor memories after combined blockade of cholinergic receptors during REM sleep-rich sleep. Neuropsychopharmacology 34, 1843–1853 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Bergmann, T. O. et al. A local signature of LTP- and LTD-like plasticity in human NREM sleep. Eur. J. Neurosci. 27, 2241–2249 (2008).

    Article  PubMed  Google Scholar 

  90. Song, S., Howard, J. H. Jr & Howard, D. V. Sleep does not benefit probabilistic motor sequence learning. J. Neurosci. 27, 12475–12483 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schendan, H. E., Searl, M. M., Melrose, R. J. & Stern, C. E. An FMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron 27, 1013–1025 (2003).

    Article  Google Scholar 

  92. Seitz, A. R., Kim, D. & Watanabe, T. Rewards evoke learning of unconsciously processed visual stimuli in adult humans. Neuron 61, 700–707 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mednick, S. C., Arman, A. C. & Boynton, G. M. The time course and specificity of perceptual deterioration. Proc. Natl Acad. Sci. USA 102, 3881–3885 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ofen, N., Moran, A. & Sagi, D. Effects of trial repetition in texture discrimination. Vision Res. 47, 1094–1102 (2007).

    Article  PubMed  Google Scholar 

  95. Huber, R., Felice Ghilardi, M., Massimini, M. & Tononi, G. Local sleep and learning. Nature 430, 78–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Tononi, G. & Cirelli, C. Sleep function and synaptic homeostasis. Sleep Med. Rev. 10, 49–62 (2006).

    Article  PubMed  Google Scholar 

  97. Rasch, B., Büchel, C., Gais, S. & Born, J. Odor cues during slow-wave sleep prompt declarative memory consolidation. Science 315, 1426–1429 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Diekelmann, S., Büchel, C., Born, J. & Rasch, B. Labile or stable: opposing consequences for memory when reactivated during waking and sleep. Nature Neurosci. 14, 381–386 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Gais, S. et al. Sleep transforms the cerebral trace of declarative memories. Proc. Natl Acad. Sci. USA 104, 18778–18783 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ji, D. & Wilson, M. A. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neurosci. 10, 100–107 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Landsness, E. C. et al. Sleep-dependent improvement in visuomotor learning: a causal role for slow waves. Sleep 32, 1273–1284 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Rasch, B., Pommer, J., Diekelmann, S. & Born, J. Pharmacological REM sleep suppression paradoxically improves rather than impairs skill memory. Nature Neurosci. 12, 396–397 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Godde, B., Leonhardt, R., Cords, S. M. & Dinse, H. R. Plasticity of orientation preference maps in the visual cortex of adult cats. Proc. Natl Acad. Sci. USA 99, 6352–6357 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bejjanki, V. R., Beck, J. M., Lu, Z. L. & Pouget, A. Perceptual learning as improved probabilistic inference in early sensory areas. Nature Neurosci. 14, 642–648 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Gilbert, C. D., Sigman, M. & Crist, R. E. The neural basis of perceptual learning. Neuron 31, 681–697 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Paz, R., Wise, S. P. & Vaadia, E. Viewing and doing: similar cortical mechanisms for perceptual and motor learning. Trends Neurosci. 27, 496–503 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Krakauer, J. W., Pine, Z. M., Ghilardi, M. F. & Ghez, C. Learning of visuomotor transformations for vectorial planning of reaching trajectories. J. Neurosci. 20, 8916–8924 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dosher, B. A. & Lu, Z. L. Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. Proc. Natl Acad. Sci. USA 95, 13988–13993 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kapogiannis, D., Campion, P., Grafman, J. & Wassermann, E. M. Reward-related activity in the human motor cortex. Eur. J. Neurosci. 27, 1836–1842 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Hochstein, S. & Ahissar, M. View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36, 791–804 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Gutnisky, D. A., Hansen, B. J., Iliescu, B. F. & Dragoi, V. Attention alters visual plasticity during exposure-based learning. Curr. Biol. 19, 555–560 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Kowler, E., Anderson, E., Dosher, B. & Blaser, E. The role of attention in the programming of saccades. Vision Res. 35, 1897–1916 (1995).

    Article  CAS  PubMed  Google Scholar 

  113. Baker, C. I., Olson, C. R. & Behrmann, M. Role of attention and perceptual grouping in visual statistical learning. Psychol. Sci. 15, 460–466 (2004).

    Article  PubMed  Google Scholar 

  114. Freeman, E., Sagi, D. & Driver, J. Lateral interactions between targets and flankers in low-level vision depend on attention to the flankers. Nature Neurosci. 4, 1032–1036 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Wannig, A., Stanisor, L. & Roelfsema, P. R. Automatic spread of attentional response modulation along Gestalt criteria in primary visual cortex. Nature Neurosci. 14, 1243–1244 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Sakai, K., Kitaguchi, K. & Hikosaka, O. Chunking during human visuomotor sequence learning. Exp. Brain Res. 152, 229–242 (2003).

    Article  PubMed  Google Scholar 

  117. Landi, S. M., Baguear, F. & Della-Maggiore, V. One week of motor adaptation induces structural changes in primary motor cortex that predict long-term memory one year later. J. Neurosci. 31, 11808–11813 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Scholz, J., Klein, M. C., Behrens, T. E. & Johansen-Berg, H. Training induces changes in white-matter architecture. Nature Neurosci. 12, 1370–1371 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Sagi, Y. et al. Learning in the fast lane: new insights into neuroplasticity. Neuron 73, 1195–1203 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Zelano, C., Montag, J., Khan, R. & Sobel, N. A specialized odor memory buffer in primary olfactory cortex. PLoS ONE 4, e4965 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jones, S. V., Choi, D. C., Davis, M. & Ressler, K. J. Learning-dependent structural plasticity in the adult olfactory pathway. J. Neurosci. 28, 13106–13111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Harris, J. A., Miniussi, C., Harris, I. M. & Diamond, M. E. Transient storage of a tactile memory trace in primary somatosensory cortex. J. Neurosci. 22, 8720–8725 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhou, X. & Merzenich, M. M. Intensive training in adults refines A1 representations degraded in an early postnatal critical period. Proc. Natl Acad. Sci. USA 104, 15935–15940 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Amedi, A., Floel, A., Knecht, S., Zohary, E. & Cohen, L. G. Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects. Nature Neurosci. 7, 1266–1270 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Bottari, D., Caclin, A., Giard, M. H. & Pavani, F. Changes in early cortical visual processing predict enhanced reactivity in deaf individuals. PLoS ONE 6, e25607 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mao, Y. T., Hua, T. M. & Pallas, S. L. Competition and convergence between auditory and cross-modal visual inputs to primary auditory cortical areas. J. Neurophysiol. 105, 1558–1573 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lomber, S. G., Meredith, M. A. & Kral, A. Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deaf. Nature Neurosci. 13, 1421–1427 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Cohen, L. G. et al. Functional relevance of cross-modal plasticity in blind humans. Nature 389, 180–183 (1997).

    Article  CAS  PubMed  Google Scholar 

  129. McDonald, J. J., Teder-Sälejärvi, W. A., Di Russo, F. & Hillyard, S. A. Neural substrates of perceptual enhancement by cross-modal spatial attention. J. Cogn. Neurosci. 15, 10–19 (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Dayan for useful suggestions in relation to this manuscript. This work was supported by the Intramural Research Program of the National Institute of Neurological Disorders and Stroke (NINDS), US National Institutes of Health. N.C. was supported by an NINDS Competitive Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nitzan Censor or Leonardo G. Cohen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Nitzan Censor's homepage

Dov Sagi's homepage

Leonardo G. Cohen's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Censor, N., Sagi, D. & Cohen, L. Common mechanisms of human perceptual and motor learning. Nat Rev Neurosci 13, 658–664 (2012). https://doi.org/10.1038/nrn3315

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3315

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing