Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Kynurenines in the mammalian brain: when physiology meets pathology

Key Points

  • The essential amino acid tryptophan is degraded to several neuroactive compounds, including kynurenic acid, 3-hydroxykynurenine and quinolinic acid. These metabolites, collectively termed 'kynurenines', directly target important neurotransmitter receptors and affect redox processes, and thus influence brain physiology.

  • In the mammalian brain, the catabolic cascade responsible for the neosynthesis of kynurenines — the kynurenine pathway — is physically segregated into two branches. One, leading to the neuroprotective agent kynurenic acid, is contained in astrocytes, whereas the other, leading to the neurotoxins 3-hydroxykynurenine and quinolinic acid, is present in microglial cells.

  • Brain kynurenines are not autonomous but are linked to, and affected by, the peripheral kynurenine pathway. As the pathway is stimulated by a host of cytokines and other intercellular signalling molecules, both peripheral and central functions of kynurenines are influenced by infections and other inflammatory conditions.

  • Dysregulations of the pathway, causing hyper- or hypofunction of active metabolites, are associated with neurodegenerative and other neurological disorders, as well as psychiatric diseases such as depression and schizophrenia.

  • Recently developed pharmacological agents make it increasingly possible to selectively influence the kynurenine pathway in the periphery and in the brain.

  • Targeted interventions with such specific 'kynurenergic' drugs can now be used to influence brain physiology. This approach is also envisaged to normalize pathophysiologically relevant imbalances in cerebral kynurenines and thus provide novel treatments for a host of brain diseases.

Abstract

The essential amino acid tryptophan is not only a precursor of serotonin but is also degraded to several other neuroactive compounds, including kynurenic acid, 3-hydroxykynurenine and quinolinic acid. The synthesis of these metabolites is regulated by an enzymatic cascade, known as the kynurenine pathway, that is tightly controlled by the immune system. Dysregulation of this pathway, resulting in hyper- or hypofunction of active metabolites, is associated with neurodegenerative and other neurological disorders, as well as with psychiatric diseases such as depression and schizophrenia. With recently developed pharmacological agents, it is now possible to restore metabolic equilibrium and envisage novel therapeutic interventions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The kynurenine pathway of tryptophan degradation in mammals.
Figure 2: Segregation of the two kynurenine pathway branches in the brain.
Figure 3: Communication between peripheral and central kynurenine pathways under normal and inflammatory conditions.
Figure 4: Effects of kynurenine pathway manipulation on cognition and neurodegeneration.
Figure 5: Targeting brain kynurenines pharmacologically: focus on KAT II and KMO.

Similar content being viewed by others

References

  1. Liebig, J. Über Kynurensäure. Justus Liebigs Ann. Chem. 86, 125–126 (1853).

    Article  Google Scholar 

  2. Leklem, J. E. Quantitative aspects of tryptophan metabolism in humans and other species: a review. Am. J. Clin. Nutr. 24, 659–672 (1971).

    Article  CAS  PubMed  Google Scholar 

  3. Perkins, M. N. & Stone, T. W. An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res. 247, 184–187 (1982). This paper introduces the opposing effects of QUIN and KYNA as agonist and antagonist, respectively, of glutamate receptors.

    Article  CAS  PubMed  Google Scholar 

  4. Parsons, C. G. et al. Novel systemically active antagonists of the glycine site of the N-methyl-D-aspartate receptor: electrophysiological, biochemical and behavioral characterization. J. Pharmacol. Exp. Ther. 283, 1264–1275 (1997).

    CAS  PubMed  Google Scholar 

  5. Maj, J., Rogoz, Z., Skuza, G. & Kolodziejczyk, K. Some central effects of kynurenic acid, 7-chlorokynurenic acid and 5,7- dichloro-kynurenic acid, glycine site antagonists. Pol. J. Pharmacol. 46, 115–124 (1994).

    CAS  PubMed  Google Scholar 

  6. Birch, P. J., Grossman, C. J. & Hayes, A. G. Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycine receptor. Eur. J. Pharmacol. 154, 85–87 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Russi, P. et al. Nicotinylalanine increases the formation of kynurenic acid in the brain and antagonizes convulsions. J. Neurochem. 59, 2076–2080 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Hilmas, C. et al. The brain metabolite kynurenic acid inhibits α7 nicotinic receptor activity and increases non-α7 nicotinic receptor expression: physiopathological implications. J. Neurosci. 21, 7463–7473 (2001). In this paper, the authors identify the α7nAChR as a new and preferential target of KYNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grilli, M. et al. Modulation of the function of presynaptic α7 and non-α7 nicotinic receptors by the tryptophan metabolites, 5-hydroxyindole and kynurenate in mouse brain. Br. J. Pharmacol. 149, 724–732 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu, H. Q. et al. The astrocyte-derived α7 nicotinic receptor antagonist kynurenic acid controls extracellular glutamate levels in the prefrontal cortex. J. Mol. Neurosci. 40, 204–210 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Stone, T. W. Kynurenic acid blocks nicotinic synaptic transmission to hippocampal interneurons in young rats. Eur. J. Neurosci. 25, 2656–2665 (2007).

    Article  PubMed  Google Scholar 

  12. Wang, J. et al. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J. Biol. Chem. 281, 22021–22028 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. DiNatale, B. C. et al. Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling. Toxicol. Sci. 115, 89–97 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moroni, F., Cozzi, A., Sili, M. & Mannaioni, G. Kynurenic acid: a metabolite with multiple actions and multiple targets in brain and periphery. J. Neural Transm. 119, 133–139 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Mok, M. H., Fricker, A. C., Weil, A. & Kew, J. N. Electrophysiological characterisation of the actions of kynurenic acid at ligand-gated ion channels. Neuropharmacology 57, 242–249 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Lopes, C. et al. Competitive antagonism between the nicotinic allosteric potentiating ligand galantamine and kynurenic acid at α7* nicotinic receptors. J. Pharmacol. Exp. Ther. 322, 48–58 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Hardeland, R. et al. Indole-3-pyruvic and -propionic acids, kynurenic acid, and related metabolites as luminophores and free-radical scavengers. Adv. Exp. Med. Biol. 467, 389–395 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Lugo-Huitron, R. et al. On the antioxidant properties of kynurenic acid: free radical scavenging activity and inhibition of oxidative stress. Neurotoxicol. Teratol. 33, 538–547 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Stone, T. W. Neuropharmacology of quinolinic and kynurenic acids. Pharmacol. Rev. 45, 310–379 (1993).

    Google Scholar 

  20. Opitz, C. A. et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478, 197–203 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Copeland, C. S., Neale, S. A. & Salt, T. E. Actions of xanthurenic acid, a putative endogenous group II metabotropic glutamate receptor agonist, on sensory transmission in the thalamus. Neuropharmacology, 2 Apr 2012 (doi: 10.1016/j.neuropharm.2012.03.009).

    Article  CAS  PubMed  Google Scholar 

  22. Fazio, F. et al. Cinnabarinic acid, an endogenous metabolite of the kynurenine pathway, activates type 4 metabotropic glutamate receptors. Mol. Pharmacol. 81, 643–656 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Giles, G. I., Collins, C. A., Stone, T. W. & Jacob, C. Electrochemical and in vitro evaluation of the redox-properties of kynurenine species. Biochem. Biophys. Res. Commun. 300, 719–724 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Goldstein, L. E. et al. 3-Hydroxykynurenine and 3-hydroxyanthranilic acid generate hydrogen peroxide and promote α-crystallin cross-linking by metal ion reduction. Biochemistry 39, 7266–7275 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Christen, S., Peterhans, E. & Stocker, R. Antioxidant activities of some tryptophan metabolites: possible implication for inflammatory diseases. Proc. Natl Acad. Sci. USA 87, 2506–2510 (1990). Key paper linking metabolites of the kynurenine pathway to redox processes and inflammatory conditions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lapin, I. P. Stimulant and convulsive effects of kynurenines injected into brain ventricles in mice. J. Neural Transm. 42, 37–43 (1978).

    Article  CAS  PubMed  Google Scholar 

  27. Stone, T. W. & Perkins, M. N. Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS. Eur. J. Pharmacol. 72, 411–412 (1981).

    Article  CAS  PubMed  Google Scholar 

  28. de Carvalho, L. P., Bochet, P. & Rossier, J. The endogenous agonist quinolinic acid and the non endogenous homoquinolinic acid discriminate between NMDAR2 receptor subunit. Neurochem. Int. 28, 445–452 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Ríos, C. & Santamaría, A. Quinolinic acid is a potent lipid peroxidant in rat brain homogenates. Neurochem. Res. 16, 1139–1143 (1991).

    Article  PubMed  Google Scholar 

  30. Stípek, S., Stastný, F., Pláteník, J., Crkovská, J. & Zima, T. The effect of quinolinate on rat brain lipid peroxidation is dependent on iron. Neurochem. Int. 30, 233–237 (1997).

    Article  PubMed  Google Scholar 

  31. Pláteník, J., Stopka, P., Vejrazka, M. & Stípek, S. Quinolinic acid–iron (II) complexes: slow autoxidation, but enhanced hydroxyl radical production in the fenton reaction. Free Radic. Res. 34, 445–459 (2001).

    Article  PubMed  Google Scholar 

  32. St'astny, F., Hinoi, E., Ogita, K. & Yoneda, Y. Ferrous iron modulates quinolinate-mediated [3H]MK-801 binding to rat brain synaptic membranes in the presence of glycine and spermidine. Neurosci. Lett. 262, 105–108 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Baran, H. & Schwarcz, R. Presence of 3-hydroxyanthranilic acid in rat tissues and evidence for its production from anthranilic acid in the brain. J. Neurochem. 55, 738–744 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Guidetti, P., Walsh, J. L. & Schwarcz, R. A fluorimetric assay for the determination of anthranilic acid in biological materials. Anal. Biochem. 220, 181–184 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Gobaille, S. et al. Xanthurenic acid distribution, transport, accumulation and release in the rat brain. J. Neurochem. 105, 982–993 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Moroni, F., Russi, P., Lombardi, G., Beni, M. & Carlá, V. Presence of kynurenic acid in the mammalian brain. J. Neurochem. 51, 177–180 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. Saito, K., Markey, S. P. & Heyes, M. P. Effects of immune activation on quinolinic acid and neuroactive kynurenines in the mouse. Neuroscience 51, 25–39 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Smythe, G. A. et al. ECNI GC-MS analysis of picolinic and quinolinic acids and their amides in human plasma, CSF, and brain tissue. Adv. Exp. Med. Biol. 527, 705–712 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Turski, W. A. et al. Identification and quantification of kynurenic acid in human brain tissue. Brain Res. 454, 164–169 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Dang, Y., Dale, W. E. & Brown, O. R. Comparative effects of oxygen on indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase of the kynurenine pathway. Free Radic. Biol. Med. 28, 615–624 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Gál, E. M. & Sherman, A. D. L-Kynurenine: its synthesis and possible regulatory function in brain. Neurochem. Res. 5, 223–239 (1980).

    Article  PubMed  Google Scholar 

  42. Speciale, C. & Schwarcz, R. Uptake of kynurenine into rat brain slices. J. Neurochem. 54, 156–163 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Guidetti, P., Eastman, C. L. & Schwarcz, R. Metabolism of [5-3H]kynurenine in the rat brain in vivo: evidence for the existence of a functional kynurenine pathway. J. Neurochem. 65, 2621–2632 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Guillemin, G. J. et al. Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J. Neurochem. 78, 842–853 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Fukui, S., Schwarcz, R., Rapoport, S. I., Takada, Y. & Smith, Q. R. Blood–brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J. Neurochem. 56, 2007–2017 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Speciale, C., Ungerstedt, U. & Schwarcz, R. Production of extracellular quinolinic acid in the striatum studied by microdialysis in unanesthetized rats. Neurosci. Lett. 104, 345–350 (1989).

    Article  CAS  PubMed  Google Scholar 

  47. Speciale, C. et al. Determination of extracellular kynurenic acid in the striatum of unanesthetized rats: effect of aminooxyacetic acid. Neurosci. Lett. 116, 198–203 (1990).

    Article  CAS  PubMed  Google Scholar 

  48. Speciale, C. & Schwarcz, R. On the production and disposition of quinolinic acid in rat brain and liver slices. J. Neurochem. 60, 212–218 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Gramsbergen, J. B. et al. Brain-specific modulation of kynurenic acid synthesis in the rat. J. Neurochem. 69, 290–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Hodgkins, P. S. & Schwarcz, R. Interference with cellular energy metabolism reduces kynurenic acid formation in rat brain slices: reversal by lactate and pyruvate. Eur. J. Neurosci. 10, 1986–1994 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Hodgkins, P. S., Wu, H. Q., Zielke, H. R. & Schwarcz, R. 2-Oxoacids regulate kynurenic acid production in the rat brain: studies in vitro and in vivo. J. Neurochem. 72, 643–651 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Rassoulpour, A., Wu, H.-Q., Poeggeler, B. & Schwarcz, R. Systemic D-amphetamine administration causes a reduction of kynurenic acid levels in rat brain. Brain Res. 802, 111–118 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Uwai, Y., Honjo, H. & Iwamoto, K. Interaction and transport of kynurenic acid via human organic anion transporters hOAT1 and hOAT3. Pharmacol. Res. 65, 254–260 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Foster, A. C., Miller, L. P., Oldendorf, W. H. & Schwarcz, R. Studies on the disposition of quinolinic acid after intracerebral or systemic administration in the rat. Exp. Neurol. 84, 428–440 (1984).

    Article  CAS  PubMed  Google Scholar 

  55. Salter, M. & Pogson, C. I. The role of tryptophan 2,3-dioxygenase in the hormonal control of tryptophan metabolism in isolated rat liver cells. Biochem. J. 229, 499–504 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Espey, M. G. & Namboodiri, M. A. A. Selective metabolism of kynurenine in the spleen in the absence of indoleamine 2,3-dioxygenase induction. Immunol. Lett. 71, 67–72 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Belladonna, M. L. et al. Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO. J. Immunol. 177, 130–137 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Huang, L., Baban, B., Johnson, B. A. 3rd & Mellor, A. L. Dendritic cells, indoleamine 2,3 dioxygenase and acquired immune privilege. Int. Rev. Immunol. 29, 133–155 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Saito, K. et al. Kynurenine pathway enzymes in brain: respones to ischemic brain injury versus systemic immune activation. J. Neurochem. 61, 2061–2070 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Schwarcz, R. & Pellicciari, R. Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J. Pharmacol. Exp. Ther. 303, 1–10 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Guillemin, G. J. et al. Characterization of the kynurenine pathway in human neurons. J. Neurosci. 27, 12884–12892 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yu, P. et al. Biochemical and phenotypic abnormalities in kynurenine aminotransferase II-deficient mice. Mol. Cell. Biol. 24, 6919–6930 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Carpenedo, R. et al. Presynaptic kynurenate-sensitive receptors inhibit glutamate release. Eur. J. Neurosci. 13, 2141–2147 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Rassoulpour, A., Wu, H. Q., Ferré, S. & Schwarcz, R. Nanomolar concentrations of kynurenic acid reduce extracellular dopamine levels in the striatum. J. Neurochem. 93, 762–765 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Amori, L. et al. Specific inhibition of kynurenate synthesis enhances extracellular dopamine levels in the rodent striatum. Neuroscience 159, 196–203 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Zmarowski, A. et al. Astrocyte-derived kynurenic acid modulates basal and evoked cortical acetylcholine release. Eur. J. Neurosci. 29, 529–538 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Albuquerque, E. X., Pereira, E. F., Alkondon, M. & Rogers, S. W. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol. Rev. 89, 73–120 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Shepard, P. D., Joy, B., Clerkin, L. & Schwarcz, R. Micromolar brain levels of kynurenic acid are associated with a disruption of auditory sensory gating in the rat. Neuropsychopharmacology 28, 1454–1462 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Erhardt, S., Schwieler, L., Emanuelsson, C. & Geyer, M. Endogenous kynurenic acid disrupts prepulse inhibition. Biol. Psychiatry 56, 255–260 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Chess, A. C., Simoni, M. K., Alling, T. E. & Bucci, D. J. Elevations of endogenous kynurenic acid produce spatial working memory deficits. Schizophr. Bull. 33, 797–804 (2007).

    Article  PubMed  Google Scholar 

  71. Chess, A. C., Landers, A. M. & Bucci, D. J. L-kynurenine treatment alters contextual fear conditioning and context discrimination but not cue-specific fear conditioning. Behav. Brain Res. 201, 325–331 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Linderholm, K. R. et al. Activation of rat ventral tegmental area dopamine neurons by endogenous kynurenic acid: a pharmacological analysis. Neuropharmacology 53, 918–924 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Erhardt, S., Oberg, H., Mathe, J. M. & Engberg, G. Pharmacological elevation of endogenous kynurenic acid levels activates nigral dopamine neurons. Amino Acids 20, 353–362 (2001).

    Article  CAS  Google Scholar 

  74. Potter, M. C. et al. Reduction of endogenous kynurenic acid formation enhances extracellular glutamate, hippocampal plasticity, and cognitive behavior. Neuropsychopharmacology 35, 1734–1742 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pocivavsek, A. et al. Fluctuations in endogenous kynurenic acid control hippocampal glutamate and memory. Neuropsychopharmacology 36, 2357–2367 (2011). This article is the first to demonstrate that acute upregulation of endogenous KYNA levels worsens, whereas acute downregulation ameliorates, cognitive function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Giorgini, F. et al. Generation and initial characterization of homozygous and heterozygous kynurenine 3-monooxygenase knockout mice. Soc. Neurosci. Abstr. 466.01 (Washington, DC, 12–16 Nov 2011).

  77. Baban, B. et al. Indoleamine 2,3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. J. Reprod. Immunol. 61, 67–77 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Kanai, M. et al. Tryptophan 2,3-dioxygenase is a key modulator of physiological neurogenesis and anxiety-related behavior in mice. Mol. Brain 2, 8 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schwarcz, R., Whetsell, W. O. Jr & Mangano, R. M. Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219, 316–318 (1983).

    Article  CAS  PubMed  Google Scholar 

  80. Foster, A. C., Vezzani, A., French, E. D. & Schwarcz, R. Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid. Neurosci. Lett. 48, 273–278 (1984). In this report, the authors describe the excitotoxic effect of QUIN and the distinct neuroprotective properties of KYNA, suggesting a role for both of these metabolites in the pathophysiology of neurodegenerative diseases and seizure disorders.

    Article  CAS  PubMed  Google Scholar 

  81. Simon, R. P., Swan, J. H., Griffiths, T. & Meldrum, B. S. Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226, 850–852 (1984).

    Article  CAS  PubMed  Google Scholar 

  82. Wieloch, T. Hypoglycemia-induced neuronal damage prevented by an N-methyl-D-aspartate antagonist. Science 230, 681–683 (1985).

    Article  CAS  PubMed  Google Scholar 

  83. Schwarcz, R., Foster, A. C., French, E. D., Whetsell, W. O. Jr & Köhler, C. Excitotoxic models for neurodegenerative disorders. Life Sci. 35, 19–32 (1984).

    Article  CAS  PubMed  Google Scholar 

  84. Coyle, J. T. & Schwarcz, R. Lesion of striatal neurones with kainic acid provides a model for Huntington's chorea. Nature 263, 244–246 (1976).

    Article  CAS  PubMed  Google Scholar 

  85. Guidetti, P., Luthi-Carter, R. E., Augood, S. J. & Schwarcz, R. Neostriatal and cortical quinolinate levels are increased in early grade Huntington's disease. Neurobiol. Dis. 17, 455–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Tai, Y. F. et al. Microglial activation in presymptomatic Huntington's disease gene carriers. Brain 130, 1759–1766 (2007).

    Article  PubMed  Google Scholar 

  87. Whetsell, W. O. Jr & Schwarcz, R. Prolonged exposure to submicromolar concentrations of quinolinic acid causes excitotoxic damage in organotypic cultures of rat corticostriatal system. Neurosci. Lett. 97, 271–275 (1989).

    Article  CAS  PubMed  Google Scholar 

  88. Kerr, S. J., Armati, P. J., Guillemin, G. J. & Brew, B. J. Chronic exposure of human neurons to quinolinic acid results in neuronal changes consistent with AIDS dementia complex. AIDS 12, 355–363 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Pearson, S. J. & Reynolds, G. P. Increased brain concentrations of a neurotoxin, 3-hydroxykynurenine, in Huntington's disease. Neurosci. Lett. 144, 199–201 (1992).

    Article  CAS  PubMed  Google Scholar 

  90. Okuda, S., Nishiyama, N., Saito, H. & Katsuki, H. 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J. Neurochem. 70, 299–307 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Guidetti, P. & Schwarcz, R. 3-Hydroxykynurenine potentiates quinolinate but not NMDA toxicity in the rat striatum. Eur. J. Neurosci. 11, 3857–3863 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Chiarugi, A., Meli, E. & Moroni, F. Similarities and differences in the neuronal death processes activated by 3OH-kynurenine and quinolinic acid. J. Neurochem. 77, 1310–1318 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Beal, M. F. et al. Kynurenic acid concentrations are reduced in Huntington's disease cerebral cortex. J. Neurol. Sci. 108, 80–87 (1992).

    Article  CAS  PubMed  Google Scholar 

  94. Sapko, M. T. et al. Endogenous kynurenate controls the vulnerability of striatal neurons to quinolinate: implications for Huntington's disease. Exp. Neurol. 197, 31–40 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Guidetti, P. et al. Elevated brain 3-hydroxykynurenine and quinolinate levels in Huntington disease mice. Neurobiol. Dis. 23, 190–197 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Guidetti, P., Reddy, P. H., Tagle, D. A. & Schwarcz, R. Early kynurenergic impairment in Huntington's disease and in a transgenic animal model. Neurosci. Lett. 283, 233–235 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Giorgini, F., Guidetti, P., Nguyen, Q., Bennett, S. C. & Muchowski, P. J. A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nature Genet. 37, 526–531 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Giorgini, F. et al. Histone deacetylase inhibition modulates kynurenine pathway activation in yeast, microglia, and mice expressing a mutant huntingtin fragment. J. Biol. Chem. 283, 7390–7400 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Campesan, S. et al. The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington's disease. Curr. Biol. 21, 961–966 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ogawa, T. et al. Kynurenine pathway abnormalities in Parkinson's disease. Neurology 42, 1702–1706 (1992).

    Article  CAS  PubMed  Google Scholar 

  101. Guillemin, G. J., Brew, B. J., Noonan, C. E., Takikawa, O. & Cullen, K. M. Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer's disease hippocampus. Neuropathol. Appl. Neurobiol. 31, 395–404 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Bonda, D. J. et al. Indoleamine 2,3-dioxygenase and 3-hydroxykynurenine modifications are found in the neuropathology of Alzheimer's disease. Redox Rep. 15, 161–168 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Rahman, A. et al. The excitotoxin quinolinic acid induces tau phosphorylation in human neurons. PLoS ONE 4, e6344 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Baran, H., Gramer, M., Honack, D. & Löscher, W. Systemic administration of kainate induces marked increases of endogenous kynurenic acid in various brain regions and plasma of rats. Eur. J. Pharmacol. 286, 167–175 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Lehrmann, E. et al. Glial activation precedes seizures and hippocampal neurodegeneration in measles virus-infected mice. Epilepsia 49 (Suppl. 2), 13–23 (2008).

    Article  PubMed  Google Scholar 

  106. Wu, H. Q. & Schwarcz, R. Seizure activity causes elevation of endogenous extracellular kynurenic acid in the rat brain. Brain Res. Bull. 39, 155–162 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Chugani, D. C. α-methyl-L-tryptophan: mechanisms for tracer localization of epileptogenic brain regions. Biomark. Med. 5, 567–575 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Heyes, M. P., Papagapiou, M., Leonard, C., Markey, S. P. & Auer, R. N. Effects of profound insulin-induced hypoglycemia on quinolinic acid in hippocampus and plasma. Adv. Exp. Med. Biol. 294, 679–682 (1991).

    Article  CAS  PubMed  Google Scholar 

  109. Saito, K., Nowak, T. S. J., Markey, S. P. & Heyes, M. P. Mechanism of delayed increases in kynurenine pathway metabolism in damaged brain regions following transient cerebral ischemia. J. Neurochem. 60, 180–192 (1993).

    Article  CAS  PubMed  Google Scholar 

  110. Ceresoli-Borroni, G. & Schwarcz, R. Neonatal asphyxia in rats: acute effects on cerebral kynurenine metabolism. Pediatr. Res. 50, 231–235 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Blight, A. R., Saito, K. & Heyes, M. P. Increased levels of the excitotoxin quinolinic acid in spinal cord following contusion injury. Brain Res. 632, 314–316 (1993).

    Article  CAS  PubMed  Google Scholar 

  112. Moroni, F. Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur. J. Pharmacol. 375, 87–100 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Németh, H., Toldi, J. & Vécsei, L. Kynurenines, Parkinson's disease and other neurodegenerative disorders: preclinical and clinical studies. J. Neural Transm. 70, 285–304 (2006).

    Google Scholar 

  114. Chen, Y. & Guillemin, G. J. Kynurenine pathway metabolites in humans: disease and healthy states. Int. J. Tryptophan Res. 2, 1–19 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Miu, J., Ball, H. J., Mellor, A. L. & Hunt, N. H. Effect of indoleamine dioxygenase-1 deficiency and kynurenine pathway inhibition on murine cerebral malaria. Int. J. Parasitol. 39, 363–370 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Wang, Y. et al. Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nature Med. 16, 279–285 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Rodgers, J., Stone, T. W., Barrett, M. P., Bradley, B. & Kennedy, P. G. Kynurenine pathway inhibition reduces central nervous system inflammation in a model of human African trypanosomiasis. Brain 132, 1259–1267 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Perry, V. H., Nicoll, J. A. & Holmes, C. Microglia in neurodegenerative disease. Nature Rev. Neurol. 6, 193–201 (2010).

    Article  Google Scholar 

  119. Steinman, L. Elaborate interactions between the immune and nervous systems. Nature Immunol. 5, 575–581 (2004).

    Article  CAS  Google Scholar 

  120. Guillemin, G. J., Smith, D. G., Smythe, G. A., Armati, P. J. & Brew, B. J. Expression of the kynurenine pathway enzymes in human microglia and macrophages. Adv. Exp. Med. Biol. 527, 105–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Heyes, M. P. et al. Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain 115, 1249–1273 (1992). This paper links inflammatory processes in the brain to a dysfunctional cerebral kynurenine pathway, suggesting that normalization of brain kynurenines may provide novel therapies for neurovirological and other neuroimmune diseases.

    Article  PubMed  Google Scholar 

  122. Heyes, M. P., Mefford, I. N., Quearry, B. J., Dedhia, M. & Lackner, A. Increased ratio of quinolinic acid to kynurenic acid in cerebrospinal fluid of D retrovirus-infected rhesus macaques: relationship to clinical and viral status. Ann. Neurol. 27, 666–675 (1990).

    Article  CAS  PubMed  Google Scholar 

  123. Alberati-Giani, D., Ricciardi-Castagnoli, P., Köhler, C. & Cesura, A. M. Regulation of the kynurenine metabolic pathway by interferon-γ in murine clone macrophages and microglial cells. J. Neurochem. 66, 996–1004 (1996).

    Article  CAS  PubMed  Google Scholar 

  124. Lapin, I. P. Kynurenines as probable participants of depression. Pharmakopsychiatr. Neuropsychopharmakol. 6, 273–279 (1973).

    Article  CAS  PubMed  Google Scholar 

  125. Maes, M. et al. Depressive and anxiety symptoms in the early puerperium are related to increased degradation of tryptophan into kynurenine, a phenomenon which is related to immune activation. Life Sci. 71, 1837–1848 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Capuron, L. et al. Interferon-alpha-induced changes in tryptophan metabolism: relationship to depression and paroxetine treatment. Biol. Psychiatry 54, 906–914 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Raison, C. L. et al. CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-α: relationship to CNS immune responses and depression. Mol. Psychiatry 15, 393–403 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. O'Connor, J. C. et al. Interferon-γ and tumor necrosis factor-α mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guérin. J. Neurosci. 29, 4200–4209 (2009). In this paper, the authors demonstrate that the delayed emergence of depressive-like behaviour in mice is caused by the cytokine-induced induction of IDO.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. O'Connor, J. C. et al. Induction of IDO by bacille Calmette-Guérin is responsible for development of murine depressive-like behavior. J. Immunol. 182, 3202–3212 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Smith, A. K. et al. Association of a polymorphism in the indoleamine- 2,3-dioxygenase gene and interferon-α-induced depression in patients with chronic hepatitis C. Mol. Psychiatry 21 Jun 2011 (doi: 10.1038/mp.2011.67).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Manuelpillai, U. et al. Identification of kynurenine pathway enzyme mRNAs and metabolites in human placenta: up-regulation by inflammatory stimuli and with clinical infection. Am. J. Obstet. Gynecol. 192, 280–288 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Kohl, C. et al. Measurement of tryptophan, kynurenine and neopterin in women with and without postpartum blues. J. Affect. Disord. 86, 135–142 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Si, X., Miguel-Hidalgo, J. J., O'Dwyer, G., Stockmeier, C. A. & Rajkowska, G. Age-dependent reductions in the level of glial fibrillary acidic protein in the prefrontal cortex in major depression. Neuropsychopharmacology 29, 2088–2096 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Czeh, B., Simon, M., Schmelting, B., Hiemke, C. & Fuchs, E. Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology 31, 1616–1626 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Tynan, R. J. et al. Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain. Behav. Immun. 24, 1058–1068 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Steiner, J. et al. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J. Neuroinflammation 8, 94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hanson, N. D., Owens, M. J. & Nemeroff, C. B. Depression, antidepressants, and neurogenesis: a critical reappraisal. Neuropsychopharmacology 36, 2589–2602 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Zunszain, P. A. et al. Interleukin-1β: A new regulator of the kynurenine pathway affecting human hippocampal neurogenesis. Neuropsychopharmacology 37, 939–949 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Skolnick, P., Popik, P. & Trullas, R. Glutamate-based antidepressants: 20 years on. Trends Pharmacol. Sci. 30, 563–569 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Laugeray, A. et al. Peripheral and cerebral metabolic abnormalities of the tryptophan-kynurenine pathway in a murine model of major depression. Behav. Brain Res. 210, 84–91 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Murrough, J. W., Iacoviello, B., Neumeister, A., Charney, D. S. & Iosifescu, D. V. Cognitive dysfunction in depression: neurocircuitry and new therapeutic strategies. Neurobiol. Learn. Mem. 96, 553–563 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Frazer, A., Pandey, G. N. & Mendels, J. Metabolism of tryptophan in depressive disease. Arch. Gen. Psychiatry 29, 528–535 (1973).

    Article  CAS  PubMed  Google Scholar 

  143. Krystal, J. H. et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Arch. Gen. Psychiatry 51, 199–214 (1994).

    Article  CAS  PubMed  Google Scholar 

  144. Lahti, A. C., Koffel, B., LaPorte, D. & Tamminga, C. A. Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 13, 9–19 (1995).

    Article  CAS  PubMed  Google Scholar 

  145. Anis, N. A., Berry, S. C., Burton, N. R. & Lodge, D. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br. J. Pharmacol. 79, 565–575 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Schwarcz, R. et al. Kynurenic acid: a potential pathogen in brain disorders. Ann. NY Acad. Sci. 648, 140–153 (1992).

    Article  CAS  PubMed  Google Scholar 

  147. Erhardt, S. et al. Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci. Lett. 313, 96–98 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Schwarcz, R. et al. Increased cortical kynurenate content in schizophrenia. Biol. Psychiatry 50, 521–530 (2001). This is the first direct evidence linking increased cerebral KYNA levels to the pathophysiology of schizophrenia.

    Article  CAS  PubMed  Google Scholar 

  149. Ceresoli-Borroni, G., Rassoulpour, A., Wu, H. Q., Guidetti, P. & Schwarcz, R. Chronic neuroleptic treatment reduces endogenous kynurenic acid levels in rat brain. J. Neural Transm. 113, 1355–1365 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Sathyasaikumar, K. V. et al. Impaired kynurenine pathway metabolism in the prefrontal cortex of individuals with schizophrenia. Schizophr. Bull. 37, 1147–1156 (2011).

    Article  PubMed  Google Scholar 

  151. Wonodi, I. et al. Downregulated kynurenine 3-monooxygenase gene expression and enzyme activity in schizophrenia and genetic association with schizophrenia endophenotypes. Arch. Gen. Psychiatry 68, 665–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Miller, C. L., Llenos, I. C., Dulay, J. R. & Weis, S. Upregulation of the initiating step of the kynurenine pathway in postmortem anterior cingulate cortex from individuals with schizophrenia and bipolar disorder. Brain Res. 1073–1074, 25–37 (2006).

  153. Miller, C. L. et al. Expression of the kynurenine pathway enzyme tryptophan 2,3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol. Dis. 15, 618–629 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Linderholm, K. R. et al. Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia. Schizophr. Bull. 38, 426–432 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Potvin, S. et al. Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol. Psychiatry 63, 801–808 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Müller, N. & Schwarz, M. Schizophrenia as an inflammation-mediated dysbalance of glutamatergic neurotransmission. Neurotox. Res. 10, 131–148 (2006).

    Article  PubMed  Google Scholar 

  157. Erhardt, S. & Engberg, G. Increased phasic activity of dopaminergic neurones in the rat ventral tegmental area following pharmacologically elevated levels of endogenous kynurenic acid. Acta Physiol. Scand. 175, 45–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Goto, Y., Yang, C. R. & Otani, S. Functional and dysfunctional synaptic plasticity in prefrontal cortex: roles in psychiatric disorders. Biol. Psychiatry 67, 199–207 (2010).

    Article  PubMed  Google Scholar 

  159. Alexander, K. S., Wu, H. Q., Schwarcz, R. & Bruno, J. P. Acute elevations of brain kynurenic acid impair cognitive flexibility: normalization by the α7 positive modulator galantamine. Psychopharmacol. (Berl.) 220, 627–637 (2012).

    Article  CAS  Google Scholar 

  160. Alexander, K. et al. Perinatal elevations of kynurenic acid dysregulate prefrontal glutamate release and produce set-shifting deficits in adults: a new model of schizophrenia. Soc. Neurosci. Abstr. 163.23 (Washington, DC, 12–16 Nov 2011).

  161. Trecartin, K. V. & Bucci, D. J. Administration of kynurenine during adolescence, but not during adulthood, impairs social behavior in rats. Schizophr. Res. 133, 156–158 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Akagbosu, C. O., Evans, G. C., Gulick, D., Suckow, R. F. & Bucci, D. J. Exposure to kynurenic acid during adolescence produces memory deficits in adulthood. Schizophr. Bull. 20 Dec 2010 (doi: 10.1093/schbul/sbq151).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Pocivavsek, A., Wu, H. Q., Elmer, G. I., Bruno, J. P. & Schwarcz, R. Pre- and postnatal exposure to kynurenine causes cognitive deficits in adulthood. Eur. J. Neurosci. 35, 1605–1612 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Aoyama, N. et al. Association study between kynurenine 3-monooxygenase gene and schizophrenia in the Japanese population. Genes Brain Behav. 5, 364–368 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. McFarlane, H. G. et al. Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav. 7, 152–163 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. Justinova, Z. et al. Kynurenine 3-monooxygenase inhibition by Ro 61-8048 blocks self-administration of the psychoactive ingredient of marijuana in squirrel monkeys and prevents relapse. Soc. Neurosci. Abstr. 911.12 (Washington, DC, 12–16 Nov 2011).

  167. Olsson, S. K. et al. Elevated levels of kynurenic acid in the cerebrospinal fluid of patients with bipolar disorder. J. Psychiatry Neurosci. 35, 195–199 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Pellicciari, R. et al. Modulators of the kynurenine pathway of tryptophan metabolism. Synthesis and preliminary biological evaluation of (S)-4-(ethylsulfonyl)benzoylalanine, a potent and selective kynurenine aminotransferase II (KAT II) inhibitor. ChemMedChem. 1, 528–531 (2006).

    Article  CAS  PubMed  Google Scholar 

  169. Chapin, D. S., Campbell, B., Strick, C. A. & Kozak, R. The impact of a KATII inhibitor on performance in the rat sustained attentional task (SAT) and conditioned avoidance responding (CAR). Soc. Neurosci. Abstr. 472.16 (San Diego, CA, 13–17 Nov 2010).

  170. Kozak, R. et al. A novel and systemically available KAT II inhibitor protects the α7 nicotinic acetylcholine receptor against blockade by kynurenic acid. Soc. Neurosci. Abstr. 767.30 (San Diego, CA, 13–17 Nov 2010).

  171. Abbott, A. et al. Inhibition of kynurenine aminotransferase ii (kat ii) protects against ketamine-induced cognitive impairment and improves spatial working memory. Soc. Neurosci. Abstr. 472.18 (San Diego, CA, 13–17 Nov 2010).

  172. Koshy Cherian, A. et al. A novel systemically-available kynurenine aminotransferase II (KATII) inhibitor normalizes prefrontal glutamatergic activity in an animal model of schizophrenia. Soc. Neurosci. Abstr. 568.13 (Washington, DC, 12–16 Nov 2011).

  173. Connick, J. H. et al. Nicotinylalanine increases cerebral kynurenic acid content and has anticonvulsant activity. Gen. Pharmacol. 23, 235–239 (1992).

    Article  CAS  PubMed  Google Scholar 

  174. Carpenedo, R. et al. Inhibitors of kynurenine hydroxylase and kynureninase increase cerebral formation of kynurenate and have sedative and anticonvulsant activities. Neuroscience 61, 237–244 (1994).

    Article  CAS  PubMed  Google Scholar 

  175. Speciale, C. et al. (R,S)-3,4-dichlorobenzoylalanine (FCE 28833A) causes a large and persistent increase in brain kynurenic acid levels in rats. Eur. J. Pharmacol. 315, 263–267 (1996).

    Article  CAS  PubMed  Google Scholar 

  176. Röver, S., Cesura, A. M., Huguenin, P., Kettler, R. & Szente, A. Synthesis and biochemical evaluation of N-(4-phenylthiazol-2-yl)benzenesulfonamides as high-affinity inhibitors of kynurenine 3-hydroxylase. J. Med. Chem. 40, 4378–4385 (1997).

    Article  PubMed  Google Scholar 

  177. Cozzi, A., Carpenedo, R. & Moroni, F. Kynurenine hydroxylase inhibitors reduce ischemic brain damage: studies with (m-nitrobenzoyl)-alanine (mNBA) and 3,4-dimethoxyl-[-N-4-(nitrophenyl)thiazol-2YL-benzenesulfonamide (Ro 61-8048) in models of focal or global brain ischemia. J. Cereb. Blood Flow Metab. 19, 771–777 (1999). Using well-established animal models of cerebral ischaemia, this is the first paper to demonstrate impressive neuroprotection following systemic administration of a KMO inhibitor.

    Article  CAS  PubMed  Google Scholar 

  178. Gregoire, L. et al. Prolonged kynurenine 3-hydroxylase inhibition reduces development of levodopa-induced dyskinesias in parkinsonian monkeys. Behav. Brain Res. 186, 161–167 (2008).

    Article  CAS  PubMed  Google Scholar 

  179. Clark, C. J. et al. Prolonged survival of a murine model of cerebral malaria by kynurenine pathway inhibition. Infect. Immun. 73, 5249–5251 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zwilling, D. et al. Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145, 863–874 (2011). The authors show that relatively moderate, chronic peripheral KMO inhibition, by indirectly increasing brain KYNA formation, affords neuroprotection in animal models of Huntington's and Alzheimer's disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Owe-Young, R. et al. Kynurenine pathway metabolism in human blood–brain–barrier cells: implications for immune tolerance and neurotoxicity. J. Neurochem. 105, 1346–1357 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Chiarugi, A. & Moroni, F. Quinolinic acid formation in immune-activated mice: studies with (m-nitrobenzoyl)-alanine (mNBA) and 3,4-dimethoxy-[-N-4-(-3-nitrophenyl) thiazol-2yl]-benzenesulfonamide (Ro 61-8048), two potent and selective inhibitors of kynurenine hydroxylase. Neuropharmacology 38, 1225–1233 (1999).

    Article  CAS  PubMed  Google Scholar 

  183. Prendergast, G. C., Chang, M. Y., Mandik-Nayak, L., Metz, R. & Muller, A. J. Indoleamine 2,3-dioxygenase as a modifier of pathogenic inflammation in cancer and other inflammation-associated diseases. Curr. Med. Chem. 18, 2257–2262 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Combs, A. P. et al. 1,2,5-Oxadiazoles as inhibitors of indoleamine 2,3-dioxygenase. US Patent Application #2012/0058079 (2012).

  185. Pilotte, L. et al. Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc. Natl Acad. Sci. USA 109, 2497–2502 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sakurai, K., Zou, J.-P., Tschetter, J. R., Ward, J. M. & Shearer, G. M. Effect of indoleamine 2,3-dioxygenase on induction of experimental autoimmune encephalomyelitis. J. Neuroimmunol. 129, 186–196 (2002).

    Article  CAS  PubMed  Google Scholar 

  187. Mellor, A. L. & Munn, D. H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nature Rev. Immunol. 4, 762–774 (2004).

    Article  CAS  Google Scholar 

  188. Chiarugi, A. et al. Comparison of the neurochemical and behavioral effects resulting from the inhibition of kynurenine hydroxylase and/or kynureninase. J. Neurochem. 65, 1176–1183 (1995).

    Article  CAS  PubMed  Google Scholar 

  189. Madge, D. J., Hazelwood, R., Iyer, R., Jones, H. T. & Salter, M. Novel tryptophan dioxygenase inhibitors and combined tryptophan dioxygenase/5-HT reuptake inhibitors. Bioorg. Med. Chem. Lett. 6, 857–860 (1996).

    Article  CAS  Google Scholar 

  190. Parli, C. J., Krieter, P. & Schmidt, B. Metabolism of 6-chlorotryptophan to 4-chloro-3-hydroxyanthranilic acid: a potent inhibitor of 3-hydroxyanthranilic acid oxidase. Arch. Biochem. Biophys. 203, 161–166 (1980).

    Article  CAS  PubMed  Google Scholar 

  191. Lehrmann, E., Molinari, A., Speciale, C. & Schwarcz, R. Immunohistochemical visualization of newly formed quinolinate in the normal and excitotoxically lesioned rat striatum. Exp. Brain Res. 141, 389–397 (2001).

    Article  CAS  PubMed  Google Scholar 

  192. Yates, J. R., Heyes, M. P. & Blight, A. R. 4-chloro-3-hydroxyanthranilate reduces local quinolinic acid synthesis, improves functional recovery, and preserves white matter after spinal cord injury. J. Neurotrauma 23, 866–881 (2006).

    Article  PubMed  Google Scholar 

  193. Uemura, T. & Hirai, K. Kynurenine 3-monooxygenase activity of rat brain mitochondria determined by high performance liquid chromatography with electrochemical detection. Adv. Exp. Med. Biol. 294, 531–534 (1991).

    Article  CAS  PubMed  Google Scholar 

  194. Minakata, K., Fukushima, K., Nakamura, M. & Iwahashi, H. Effect of some naturally occurring iron ion chelators on the formation of radicals in the reaction mixtures of rat liver microsomes with ADP, Fe and NADPH. J. Clin. Biochem. Nutr. 49, 207–215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Ceresoli-Borroni, G., Guidetti, P., Amori, L., Pellicciari, R. & Schwarcz, R. Perinatal kynurenine 3-hydroxylase inhibition in rodents: pathophysiological implications. J. Neurosci. Res. 85, 845–854 (2007).

    Article  CAS  PubMed  Google Scholar 

  196. Oxenkrug, G. F. Interferon-gamma-inducible kynurenines/pteridines inflammation cascade: implications for aging and aging-associated psychiatric and medical disorders. J. Neural Transm. 118, 75–85 (2011).

    Article  CAS  PubMed  Google Scholar 

  197. Thomas, S. R. & Stocker, R. Redox reactions related to indoleamine 2,3-dioxygenase and tryptophan metabolism along the kynurenine pathway. Redox Rep. 4, 199–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  198. Ball, H. J., Yuasa, H. J., Austin, C. J., Weiser, S. & Hunt, N. H. Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int. J. Biochem. Cell Biol. 41, 467–471 (2009).

    Article  CAS  PubMed  Google Scholar 

  199. Ren, S. & Correia, M. A. Heme: a regulator of rat hepatic tryptophan 2,3-dioxygenase? Arch. Biochem. Biophys. 377, 195–203 (2000).

    Article  CAS  PubMed  Google Scholar 

  200. Han, Q., Cai, T., Tagle, D. A. & Li, J. Structure, expression, and function of kynurenine aminotransferases in human and rodent brains. Cell. Mol. Life Sci. 67, 353–368 (2010).

    Article  CAS  PubMed  Google Scholar 

  201. Guidetti, P., Amori, L., Sapko, M. T., Okuno, E. & Schwarcz, R. Mitochondrial aspartate aminotransferase: a third kynurenate-producing enzyme in the mammalian brain. J. Neurochem. 102, 103–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  202. Kawai, J., Okuno, E. & Kido, R. Organ distribution of rat kynureninase and changes of its activity during development. Enzyme 39, 181–189 (1988).

    Article  CAS  PubMed  Google Scholar 

  203. Foster, A. C., White, R. J. & Schwarcz, R. Synthesis of quinolinic acid by 3-hydroxyanthranilic acid oxygenase in rat brain tissue in vitro. J. Neurochem. 47, 23–30 (1986).

    Article  CAS  PubMed  Google Scholar 

  204. Stachowski, E. & Schwarcz, R. Regulation of quinolinic acid neosynthesis in mouse, rat, and human brain by iron and iron chelation in vitro. J. Neural Transm. 119, 123–131 (2012).

    Article  CAS  PubMed  Google Scholar 

  205. Pucci, L., Perozzi, S., Cimadamore, F., Orsomando, G. & Raffaelli, N. Tissue expression and biochemical characterization of human 2-amino-carboxymuconate 6-semialdehyde decarboxylase, a key enzyme in tryptophan catabolism. FEBS J. 274, 827–840 (2007).

    Article  CAS  PubMed  Google Scholar 

  206. Foster, A. C., Zinkand, W. C. & Schwarcz, R. Quinolinic acid phosphoribosyltransferase in rat brain. J. Neurochem. 44, 446–454 (1985).

    Article  CAS  PubMed  Google Scholar 

  207. Braidy, N., Guillemin, G. J. & Grant, R. Effects of kynurenine pathway inhibition on NAD metabolism and cell viability in human primary astrocytes and neurons. Int. J. Tryptophan Res. 4, 29–37 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Bellac, C. L., Coimbra, R. S., Christen, S. & Leib, S. L. Inhibition of the kynurenine-NAD+ pathway leads to energy failure and exacerbates apoptosis in pneumococcal meningitis. J. Neuropathol. Exp. Neurol. 69, 1096–1104 (2010).

    Article  CAS  PubMed  Google Scholar 

  209. Guillemin, G. J. et al. Characterisation of kynurenine pathway metabolism in human astrocytes and implications in neuropathogenesis. Redox Rep. 5, 108–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  210. Guidetti, P., Hoffman, G. E., Melendez-Ferro, M., Albuquerque, E. X. & Schwarcz, R. Astrocytic localization of kynurenine aminotransferase II in the rat brain visualized by immunocytochemistry. Glia 55, 78–92 (2007).

    Article  PubMed  Google Scholar 

  211. Heyes, M. P. et al. Human microglia convert L-tryptophan into the neurotoxin quinolinic acid. Biochem. J. 320, 595–597 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Liao, M. et al. Impaired dexamethasone-mediated induction of tryptophan 2,3-dioxygenase in heme-deficient rat hepatocytes: translational control by a hepatic eIF2α kinase, the heme-regulated inhibitor. J. Pharmacol. Exp. Ther. 323, 979–989 (2007).

    Article  CAS  PubMed  Google Scholar 

  213. Connor, T. J., Starr, N., O'Sullivan, J. B. & Harkin, A. Induction of indolamine 2,3-dioxygenase and kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: a role for IFN-γ? Neurosci. Lett. 441, 29–34 (2008).

    Article  CAS  PubMed  Google Scholar 

  214. Cady, S. G. & Sono, M. 1-Methyl-DL-tryptophan, beta-(3-benzofuranyl)-DL-alanine (the oxygen analog of tryptophan), and beta-[3-benzo(b)thienyl]-DL-alanine (the sulfur analog of tryptophan) are competitive inhibitors for indoleamine 2,3-dioxygenase. Arch. Biochem. Biophys. 291, 326–333 (1991).

    Article  CAS  PubMed  Google Scholar 

  215. Amori, L., Guidetti, P., Pellicciari, R., Kajii, Y. & Schwarcz, R. On the relationship between the two branches of the kynurenine pathway in the rat brain in vivo. J. Neurochem. 109, 316–325 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Walsh, H. A., Leslie, P. L., O'Shea, K. C. & Botting, N. P. 2-Amino-4-[3′-hydroxyphenyl]-4-hydroxybutanoic acid; a potent inhibitor of rat and recombinant human kynureninase. Bioorg. Med. Chem. Lett. 12, 361–363 (2002).

    Article  CAS  PubMed  Google Scholar 

  217. Luthman, J. Anticonvulsant effects of the 3-hydroxyanthranilic acid dioxygenase inhibitor NCR-631. Amino Acids 19, 325–334 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Studies in our laboratories have been supported by grants from the US National Institutes of Health (NIMH, NINDS and NICHD) (Maryland, USA), the National Alliance for Research in Schizophrenia and Affective Disorders, the Hereditary Disease Foundation/High Q and CHDI, Inc. We are grateful to the pre- and postdoctoral associates, who were instrumental in the design and completion of the work conducted in our laboratories. We feel special gratitude to our friend Paolo Guidetti, who passed away prematurely on 28 December 2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Schwarcz.

Ethics declarations

Competing interests

R.S. and P.J.M. are listed as inventors on a patent claiming neuroprotective properties of JM6. R.S. received research support from Mitsubishi-Tanabe and Bristol-Myers Squibb.

Related links

Related links

FURTHER INFORMATION

Robert Schwarcz's homepage

John P. Bruno's homepage

Paul M. Muchowski's homepage

Hui-Qiu Wu's homepage

Glossary

Reactive oxygen species

(ROS). Natural byproducts of oxidative phosphorylation in the mitochondria. They include free radicals, peroxides and oxygen ions. Under pathological conditions, ROS levels can increase significantly, resulting in cellular damage.

Pre-pulse inhibition

(PPI). A reduction in the magnitude of the startle reflex that occurs when an organism is presented with a non-startling stimulus (a pre-pulse) before being presented with the startling stimulus. Deficits in PPI have been observed in patients with schizophrenia.

Excitotoxicity

A pathological process by which neurons are damaged and killed by the overactivation of glutamate receptors.

Pro-inflammatory cytokines

Soluble mediators of local and systemic inflammatory responses. They are produced at the site of infection by activated immune cells and include interleukin-1α and interleukin-1β, tumour necrosis factor-α and interleukin-6.

Prodromal events

Early symptoms that might indicate the start of a disease before specific symptoms occur.

Single-nucleotide polymorphism

(SNP). A DNA sequence variation in which a single nucleotide in the genome is altered. SNPs can occur in coding as well as non-coding regions of DNA.

Cerebral malaria

Encephalopathy that develops when red blood cells infected with the malaria parasite adhere to the cerebral microvasculature.

Apoptotic cell death

Innate, programmed cell death that is energy-dependent and leads to nuclear and cytoplasmic compaction with characteristic blebbing of the nucleus. It occurs during development but also in disease states.

Homeostasis

The process whereby an open or closed system regulates its internal environment to maintain its states within bounds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarcz, R., Bruno, J., Muchowski, P. et al. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13, 465–477 (2012). https://doi.org/10.1038/nrn3257

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3257

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing