Abstract
Intracranial recordings in subjects suffering from intractable epilepsy — made during their evaluation for an eventual surgical removal of the epileptic focus — have allowed the extraordinary opportunity to study the firing of multiple single neurons in awake and behaving human subjects. These studies have shown that neurons in the human medial temporal lobe respond in a remarkably selective and abstract manner to particular persons or objects, such as Jennifer Aniston, Luke Skywalker or the Tower of Pisa. These neurons have been named 'Jennifer Aniston neurons' or, more recently, 'concept cells'. I argue that the sparse, explicit and abstract representation of these neurons is crucial for memory functions, such as the creation of associations and the transition between related concepts that leads to episodic memories and the flow of consciousness.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Single-neuron mechanisms of neural adaptation in the human temporal lobe
Nature Communications Open Access 29 April 2023
-
Uncovering the fast, directional signal flow through the human temporal pole during semantic processing
Scientific Reports Open Access 26 April 2023
-
Decoding of human identity by computer vision and neuronal vision
Scientific Reports Open Access 12 January 2023
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Aristotle. De Anima (Penguin, London, reprinted 2004).
Tsao, D. Y. & Livingstone, M. Mechanisms of face perception Annu. Rev. Neurosci. 31, 411–437 (2008).
Roelfsema, P. R. Cortical algorithms for perceptual grouping Annu. Rev. Neurosci. 29, 203–227 (2006).
Logothetis, N. K. & Sheinberg, D. L. Visual object recognition Annu. Rev. Neurosci. 19, 577–621 (1996).
Tanaka, K. Inferotemporal cortex and object vision Annu. Rev. Neurosci. 19, 109–139 (1996).
Lavenex, P. & Amaral, D. G. Hippocampal–neocortical interaction: a hierarchy of associativity Hippocampus 10, 420–430 (2000).
Suzuki, W. A. Neuroanatomy of the monkey entorhinal, perirhinal and parahippocampal cortices: organization of cortical inputs and interconnections with amygdala and striatum Seminar Neurosci. 8, 3–12 (1996).
Saleem, K. S. & Tanaka, K. Divergent projections from the anterior inferotemporal area TE to the perirhinal and entorhinal cortices in the macaque monkey J. Neurosci. 16, 4757–4775 (1996).
Mishkin, M. Memory in monkeys severely impaired by combined but not separate removal of the amygdala and hippocampus. Nature 273, 297–298 (1978).
Squire, L. & Zola-Morgan, S. The medial temporal lobe memory system. Science 253, 1380–1386 (1991).
Squire, L. R., Stark, C. E. L. & Clark, R. E. The medial temporal lobe. Annu. Rev. Neurosci. 27, 279–306 (2004).
Scoville, W. & Milner, B. Loss of recent memory after bilateral hippocampal lesion. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).
Milner, B., Corkin, S. & Teuber, H. Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of H.M. Neuropsychologia 6, 215–234 (1968).
Corkin, S. What's new with the amnesic patient H.M.? Nature Rev. Neurosci. 3, 153–160 (2002).
Squire, L. The legacy of patient H.M. for neuroscience. Neuron 61, 6–9 (2009).
Moscovitch, M. et al. Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory. J. Anat. 207, 35–66 (2005).
Rosenbaum, R. S. et al. The case of K.C.: contributions of a memory-impaired person to memory theory. Neuropsychologia 43, 989–1021 (2005).
Squire, L. R., Wixted, J. T. & Clark, R. E. Recognition memory and the medial temporal lobe: a new perspective. Nature Rev. Neurosci. 8, 872–883 (2007).
Moscovitch, M., Nadel, L., Winocur, G., Gilboa, A. & Rosenbaum, R. S. The cognitive neuroscience of remote episodic, semantic and spatial memory. Curr. Opin. Neurobiol. 16, 179–190 (2006).
Moscovitch, M. & Nadel, L. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin. Neurobiol. 7, 217–227 (1997).
Eichenbaum, H. Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44, 109–120 (2004).
Eichenbaum, H. A cortical–hippocampal system for declarative memory. Nature Rev. Neurosci. 1, 41–50 (2000).
Fabre-Thorpe, M. Visual categorization: accessing abstraction in non-human primates. Phil. Trans. R. Soc. Lond. B 358, 1215–1223 (2003).
Palmeri, T. J. & Gauthier, I. Visual object understanding. Nature Rev. Neurosci. 5, 291–303 (2004).
Palmer, S. E. Vision Science (MIT Press, 1999).
Bartlett, F. C. Remembering (Cambridge Univ. Press, 1932).
Quian Quiroga, R., Reddy, L., Kreiman, G., Koch, C. & Fried, I. Invariant visual representation by single neurons in the human brain. Nature 435, 1102–1107 (2005).
Niedermeyer, E. in Electroencephalography (eds Lopes da Silva, F. & Niedermeyer, E.) 461–564 (Williams and Wilkins, 1993).
Heit, G., Smith, M. E. & Halgren, E. Neural encoding of individual words and faces by the human hippocampus and amygdala. Nature 333, 773–775 (1988).
Heit, G., Smith, M. E. & Halgren, E. Neuronal activity in the human medial temporal lobe during recognition memory. Brain 113, 1093–1112 (1990).
Fried, I., MacDonald, K. A. & Wilson, C. L. Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron 18, 753–765 (1997).
Cameron, K. A., Yashar, S., Wilson, C. L. & Fried, I. Human hippocampal neurons predict how well word pairs will be remembered. Neuron 30, 289–298 (2001).
Kreiman, G., Koch, C. & Fried, I. Category-specific visual responses of single neurons in the human medial temporal lobe. Nature Neurosci. 3, 946–953 (2000).
Rutishauser, U., Mamelak, A. N. & Schuman, E. M. Single-trial learning of novel stimuli by individual neurons of the human hippocampus–amygdala complex. Neuron 49, 805–813 (2006).
Viskontas, I., Knowlton, B. J., Steinmetz, P. N. & Fried, I. Differences in mnemonic processing by neurons in the human hippocampus and parahippocampal regions. J. Cogn. Neurosci. 18, 1654–1662 (2006).
Kreiman, G., Koch, C. & Fried, I. Imagery neurons in the human brain. Nature 408, 357–361 (2000).
Gelbard-Sagiv, H., Mukamel, R., Harel, M., Malach, R. & Fried, I. Internally generated reactivation of single neurons in human hippocampus during free recall. Science 322, 96–101 (2008).
Freiwald, F. A. & Tsao, D. Y. Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330, 845–851 (2010).
Quian Quiroga, R., Reddy, L., Koch, C. & Fried, I. Decoding visual inputs from multiple neurons in the human temporal lobe. J. Neurophysiol. 98, 1997–2007 (2007).
Quian Quiroga, R., Kraskov, A., Koch, C. & Fried, I. Explicit encoding of multimodal percepts by single neurons in the human brain. Curr. Biol. 19, 1308–1313 (2009).
Mormann, F. et al. Latency and selectivity of single neurons indicate hierarchical processing in the human medial temporal lobe. J. Neurosci. 28, 8865–8872 (2008).
Freedman, D. J., Riessenhuber, M., Poggio, T. & Miller, E. K. Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291, 312–316 (2001).
Hung, C., Kreiman, G., Poggio, T. & DiCarlo, J. Fast readout of object identity from macaque inferior temporal cortex. Science 310, 863–866 (2005).
Kiani, R., Esteky, H. & Tanaka, K. Differences in onset latency of macaque inferotemporal neural responses to primate and non-primate faces. J. Neurophysiol. 94, 1587–1596 (2005).
Waydo, S., Kraskov, A., Quian Quiroga, R., Fried, I. & Koch, C. Sparse representation in the human medial temporal lobe. J. Neurosci. 26, 10232–10234 (2006).
Olshausen, B. A. & Field, D. J. Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14, 481–487 (2004).
Shoham, S., O'Connor, D. H. & Segev, R. How silent is the brain: is there a “dark matter” problem in neuroscience? J. Comp. Physiol. A Neuroethol Sens. Neural Behav. Physiol. 192, 777–784 (2006).
Viskontas, I., Quian Quiroga, R. & Fried, I. Human medial temporal lobe neurons respond preferentially to personally relevant images. Proc. Natl Acad. Sci. USA 106, 21329–21334 (2009).
Quian Quiroga, R. & Panzeri, S. Extracting information from neural populations: information theory and decoding approaches. Nature Rev. Neurosci. 10, 173–185 (2009).
Abbott, L. F., Rolls, E. T. & Tovee, M. J. Representational capacity of face coding in monkeys. Cereb. Cortex 6, 498–505 (1996).
Kreiman, G. et al. Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex. Neuron 49, 433–445 (2006).
Cerf, M. et al. On-line, voluntary control of human temporal lobe neurons. Nature 467, 1104–1108 (2010).
Quian Quiroga, R., Mukamel, R., Isham, E. A., Malach, R. & Fried, I. Human single-neuron responses at the threshold of conscious recognition. Proc. Natl Acad. Sci. USA 105, 3599–3604 (2008).
Ison, M. et al. Selectivity of pyramidal cells and interneurons in the human medial temporal lobe. J. Neurophysiol. 106, 1713–1721 (2011).
Bussey, T. J. & Saksida, L. M. Object memory and perception in the medial temporal lobe: an alternative approach. Curr. Opin. Neurobiol. 15, 730–737 (2005).
Murray, E. A., Bussey, T. J. & Saksida, L. M. Visual perception and memory: a new view of medial temporal lobe function in primates and rodents. Annu. Rev. Neurosci. 30, 99–122 (2007).
Buckley, M. J. & Gaffan, D. Perirhinal cortical contributions to object perception. Trends Cogn. Sci. 10, 100–107 (2006).
Quian Quiroga, R., Kreiman, G., Koch, C. & Fried, I. Sparse but not 'Grandmother-cell' coding in the medial temporal lobe. Trends Cogn. Sci. 12, 87–91 (2008).
Marr, D. Simple memory: a theory for archicortex. Phil. Trans. R. Soc. Lond. B 262, 23–81 (1971).
McClelland, J. L., McNaughton, B. L. & O'Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).
Graf, P. & Schacter, D. Implicit and explicit memory for new associations in normal and amnesic subjects. J. Exp. Psychol. Learn. Mem. Cogn. 11, 501–518 (1985).
Berger, T. W., Alger, B. & Thompson, R. F. Neuronal substrate of classical conditioning in the hippocampus. Science 192, 483–485 (1976).
Messinger, A., Squire, L., Zola, S. & Albright, T. Neuronal representations of stimulus associations develop in the temporal lobe during learning. Proc. Natl Acad. Sci. USA 98, 12239–12244 (2001).
Naya, Y., Yoshida, M. & Miyashita, Y. Backward spreading of memory-retrieval signal in the primate temporal cortex. Science 291, 661–664 (2001).
Takeuchi, D., Hirabayashi, T., Tamura, K. & Miyashita, Y. Reversal of interlaminar signal between sensory and memory processing in monkey temporal cortex. Science 331, 1443–1447 (2011).
Miyashita, Y. Cognitive memory: cellular and network machineries and their top-down control. Science 306, 435–440 (2004).
Wirth, S. et al. Single neurons in the monkey hippocampus and learning of new associations. Science 300, 1578–1581 (2003).
Wirth, S. et al. Trial outcome and associative learning signals in the monkey hippocampus. Neuron 61, 930–940 (2009).
Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M. & Tanila, H. The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron 23, 209–226 (1999).
Quian Quiroga, R. & Kreiman, G. Postscript: about grandmother cells and Jennifer Aniston neurons. Psychol. Rev. 117, 297–299 (2010).
Ison, M., Quian Quiroga, R. & Fried, I. Fast remapping of single neuron responses in the human medial temporal lobe. Soc. Neurosci. Abstr. 279.15 (San Diego, California, USA, 13–17 Nov 2010).
Paz, R. et al. A neural substrate in the human hippocampus for linking successive events. Proc. Natl Acad. Sci. USA 107, 6046–6051 (2010).
Quian Quiroga, R. & Kreiman, G. Measuring sparseness in the brain: comment on Bowers (2009). Psychol. Rev. 117, 291–297 (2010).
Hebb, D. O. The Organization of Behavior (John Wiley & Sons, 1949).
Teyler, T. J. & Discenna, P. The hippocampal memory indexing theory. Behav. Neurosci. 100, 147–154 (1986).
Tulving, E. Episodic memory: from mind to brain. Annu. Rev. Psychol. 53, 1–25 (2002).
Kahana, M. J. Associative retrieval processes in free recall. Mem. Cognit. 24, 103–109 (1996).
Howard, M. W., Fotedar, M. S., Datey, A. V. & Hasselmo, M. E. The temporal context model in spatial navigation and relational learning: toward a common explanation of medial temporal lobe function across domains. Psychol. Rev. 112, 75–116 (2005).
Steinvorth, S., Levine, B. & Corkin, S. Medial temporal lobe structures are needed to re-experience remote autobiographical memories: evidence from H.M. and W.R. Neuropsychologia 43, 479–496 (2005).
Rosenbaum, R. S., Gilboa, A., Levine, B., Winocur, G. & Moscovitch, M. Amnesia as an impairment of detail generation and binding: evidence from personal, fictional, and semantic narratives in K.C. Neuropsychologia 47, 2181–2187 (2009).
Vargha-Khadem, F. et al. Differential effects of early hippocampal pathology on episodic and semantic memory. Science 277, 376–380 (1997).
Hassabis, D., Kumaran, D., Vann, S. & Maguire, E. A. Patients with hippocampal amnesia cannot imagine new experiences. Proc. Natl Acad. Sci. USA 104, 1726–1731 (2007).
Hassabis, D. & Maguire, E. A. Deconstructing episodic memory with construction. Trends Cogn. Sci. 11, 299–306 (2007).
Perez-Orive, J. et al. Oscillations and sparsening of odor representations in the mushroom body. Science 297, 359–365 (2002).
Theunissen, F. E. From synchrony to sparseness. Trends Neurosci. 26, 61–64 (2003).
Gross, C. Genealogy of the “grandmother cell”. Neuroscientist 8, 512–518 (2002).
Willshaw, D., Hallam, J., Gingell, S. & Lau, S. Marr's theory of neocortex as a self-organizing neural network. Neural Comput. 9, 911–936 (1997).
Marr, D. A theory for cerebral neocortex. Proc. R. Soc. Lond. B 176, 161–234 (1970).
O'Reilly, R. C. & Norman, K. A. Hippocampal and neocortical contributions to memory: advances in the complementary learning systems framework. Trends Cogn. Sci. 6, 505–510 (2002).
O'Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map: preliminary evidence from unit activity in freely moving rats. Brain Res. 34, 171–175 (1971).
Wilson, M. A. & McNaughton, B. L. Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993).
Wills, T. J., Lever, C., Cacucci, F., Burgess, N. & O'Keefe, J. Attractor dynamics in the hippocampal representation of the local environment. Science 308, 873–876 (2005).
Quirk, G. J., Muller, R. U. & Kubie, J. L. The firing of hippocampal place cells in the dark depends on the rat's recent experience. J. Neurosci. 10, 2008–2017 (1990).
Li, X.-G., Somogyi, P., Ylinen, A. & Buzsaki, G. The hippocampal CA3 network: an in vivo intracellular labeling study. J. Comp. Neurol. 339, 181–208 (1994).
Redish, A. D. et al. Independence of firing correlates of anatomically proximate hippocampal pyramidal cells. J. Neurosci. 21, 1–6 (2001).
Muller, R. U., Kubie, J. L. & Ranck, J. B. Spatial firing patterns of hippocampal complex-spike cells in a fixed environment. J. Neurosci. 7, 1935–1950 (1987).
Buzsaki, G. Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus 15, 827–840 (2005).
Foster, D. J. & Wilson, M. A. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440, 680–683 (2006).
Dragoi, G. & Buzsaki, G. Temporal encoding of place sequences by hippocampal cell assemblies. Neuron 50, 145–157 (2006).
Skaggs, W. E. & McNaughton, B. L. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271, 1870–1873 (1996).
Lee, A. K. & Wilson, M. A. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36, 1183–1194 (2002).
Louie, K. & Wilson, M. A. Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29, 145–156 (2001).
Pastalkova, E., Itskov, V., Amarasingham, A. & Buzsaki, G. Internally generated cell assembly sequences in the rat hippocampus. Science 321, 1322–1327 (2008).
Diba, K. & Buzsaki, G. Forward and reverse hippocampal place-cell sequences during ripples. Nature Neurosci. 10, 1241–1242 (2007).
Fortin, N. J., Agster, K. L. & Eichenbaum, H. Critical role of the hippocampus in memory for sequences of events. Nature Neurosci. 5, 458–462 (2002).
Pedreira, C. et al. Responses of human medial temporal lobe neurons are modulated by stimulus repetition. J. Neurophysiol. 103, 97–107 (2010).
Thompson, L. T. & Best, P. J. Long-term stability of the place-field activity of single units recorded from the dorsal hippocampus of freely behaving rats. Brain Res. 509, 299–308 (1990).
Bliss, T. V. P. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331–356 (1973).
Cho, Y. H., Giese, K. P., Tanila, H., Silva, A. J. & Eichenbaum, H. Abnormal hippocampal spatial representations in αCaMKIIT286A and CREBαΔ– mice. Science 279, 867–869 (1998).
Rotenberg, A., Mayford, M., Hawkins, R. D., Kandel, E. R. & Muller, R. U. Mice expressing activated CaMKII lack low frequency LTP and do not form stable place cells in the CA1 region of the hippocampus. Cell 87, 1351–1361 (1996).
Lynch, M. A. Long-term potentiation and memory. Physiol. Rev. 84, 87–136 (2004).
Shapiro, M. Plasticity, hippocampal place cells, and cognitive maps. Arch. Neurol. 58, 874–881 (2001).
Bird, C. M. & Burgess, N. The hippocampus and memory: insights from spatial processing. Nature Rev. Neurosci. 9, 182–194 (2008).
Burgess, N., Maguire, E. A. & O'Keefe, J. The human hippocampus and spatial and episodic memory. Neuron 35, 625–641 (2002).
Hafting, T., Fyhn, M., Molden, S., Moser, M.-B. & Moser, E. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005).
Engel, A. K., Moll, C. K. E., Fried, I. & Ojermann, G. A. Invasive recordings from the human brain: clinical insights and beyond. Nature Rev. Neurosci. 6, 35–47 (2005).
Babb, T. L., Carr, E. & Crandall, P. H. Analysis of extracellular firing patterns of deep temporal lobe structures in man. Electroencephalogr. Clin. Neurophysiol. 34, 247–257 (1973).
Quian Quiroga, R., Nadasdy, Z. & Ben-Shaul, Y. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 16, 1661–1687 (2004).
Quian Quiroga, R. Spike sorting. Scholarpedia 2, 3583 (2007).
Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160, 106–154 (1962).
Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195, 215–243 (1968).
Gross, C. G., Bender, D. B. & Rocha-Miranda, C. E. Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science 166, 1303–1306 (1969).
Gross, C. G. How inferior temporal cortex became a visual area. Cereb. Cortex 4, 455–469 (1994).
Gross, C. G. Single neuron studies of inferior temporal cortex. Neuropsychologia 46, 841–852 (2008).
Quiroga, R. Q. Borges and Memory: Encounters with the Human Brain. (MIT Press, in the press).
Hubel, D. H. & Wiesel, T. N. Receptive fields of single neurones in the cat's striate cortex. J. Physiol. 148, 574–591 (1959).
Acknowledgements
The author is indebted to his collaborators, C. Koch and I. Fried, all the researchers in their laboratories and his laboratory that have contributed to the recording and analysis of these data, and the patients for their willingness to participate in these studies.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing financial interests.
Related links
Glossary
- Attractor
-
A state or set of states towards which neighbouring states converge. In neuroscience, percepts and memories are thought to act as attractors of neuronal representations.
- Cell assembly
-
A network of functionally connected neurons that is activated by a specific mental process (for example, a visual stimulus or the retrieval of a memory).
- Combinatorial explosion
-
A problem in which the number of possibilities increases exponentially. A combinatorial explosion argument has been raised to disprove the possibility of grandmother cells, as there are not enough neurons in the brain to encode all possible concepts and their instances (for example, grandmother smiling, grandmother drinking tea, grandmother wearing a red pullover, and so on).
- Declarative memory
-
Also known as explicit memory, this is the memory of things that can be named and consciously recalled things that one can be explicitly aware of.
- Episodic memory
-
A form of declarative memory that involves personally experienced events and situations.
- Grandmother cell
-
A neural representation in which relatively few neurons encode for only one thing. Grandmother cell coding is the extreme version of sparse coding.
- Grid cells
-
Neurons in the rodent entorhinal cortex that fire when the animal is at one of several specific locations in an environment and that are organized in a grid-like manner.
- Lateral processing
-
Recurrent processing within a given brain area.
- Medial temporal lobe
-
(MTL). A system of anatomically connected structures that is critical for declarative memory. It comprises the hippocampus, amygdala and the entorhinal, parahippocampal and perirhinal cortices.
- Non-topographic organization
-
A representation in which nearby neurons represent disparate things. It contrasts with a topographic organization, in which nearby neurons encode similar stimulus features or motor outputs (and connect to nearby neurons in other areas).
- Oddball task
-
A task in which subjects have to detect an infrequent deviant stimulus (the oddball or target) that is randomly placed in a sequence of frequent non-target stimuli.
- Pattern completion
-
The process by which a whole-cell assembly is activated from partial inputs.
- Semantic memory
-
A form of declarative memory that involves the memory of facts and knowledge about the world.
- Theta phase precession
-
A phenomenon in which place cells fire at increasingly earlier phases of the underlying theta oscillation when approaching the place field.
Rights and permissions
About this article
Cite this article
Quiroga, R. Concept cells: the building blocks of declarative memory functions. Nat Rev Neurosci 13, 587–597 (2012). https://doi.org/10.1038/nrn3251
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrn3251
This article is cited by
-
From cognitive maps to spatial schemas
Nature Reviews Neuroscience (2023)
-
Decoding of human identity by computer vision and neuronal vision
Scientific Reports (2023)
-
Uncovering the fast, directional signal flow through the human temporal pole during semantic processing
Scientific Reports (2023)
-
Single-neuron mechanisms of neural adaptation in the human temporal lobe
Nature Communications (2023)
-
Disrupted social memory ensembles in the ventral hippocampus underlie social amnesia in autism-associated Shank3 mutant mice
Molecular Psychiatry (2022)