Opinion | Published:

Structural neurobiology: missing link to a mechanistic understanding of neural computation

Nature Reviews Neuroscience volume 13, pages 351358 (2012) | Download Citation

Abstract

High-resolution, comprehensive structural information is often the final arbiter between competing mechanistic models of biological processes, and can serve as inspiration for new hypotheses. In molecular biology, definitive structural data at atomic resolution are available for many macromolecules; however, information about the structure of the brain is much less complete, both in scope and resolution. Several technical developments over the past decade, such as serial block-face electron microscopy and trans-synaptic viral tracing, have made the structural biology of neural circuits conceivable: we may be able to obtain the structural information needed to reconstruct the network of cellular connections for large parts of, or even an entire, mouse brain within a decade or so. Given that the brain's algorithms are ultimately encoded by this network, knowing where all of these connections are should, at the very least, provide the data needed to distinguish between models of neural computation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Head-anchored whole-cell recordings in freely moving rats. Nature Protoc. 4, 385–392 (2009).

  2. 2.

    et al. Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature 457, 1137–1141 (2009).

  3. 3.

    , , & The contribution of single synapses to sensory representation in vivo. Science 321, 977–980 (2008).

  4. 4.

    et al. Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo. Nature Neurosci. 14, 1089–1093 (2011).

  5. 5.

    , , , & High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nature Methods 7, 399–405 (2010).

  6. 6.

    et al. Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice. Nature 464, 1182–1186 (2010).

  7. 7.

    & The NEURON simulation environment. Neural Comput. 9, 1179–1209 (1997).

  8. 8.

    , , , & Parallel network simulations with NEURON. J. Comp. Neurosci. 21, 119–129 (2006).

  9. 9.

    Sulla struttura della sostanza grigia del cervelo. Gazzetta Medica Italiana (Lombardia) 33, 244–246 (1873).

  10. 10.

    Histology of the Nervous System (Oxford University Press, New York, 1995).

  11. 11.

    Textura del sistema nervioso del hombre y de los vertebrados (Moya, Madrid, 1899).

  12. 12.

    Remarques sur le siége de la faculté du langage articulé, suivies d'une observation d'aphémie (perte de la parole). Bulletin de la Société Anatomique 6, 330–357 (1861).

  13. 13.

    & Ueber die elektrische Erregbarkeit des Grosshirns. Arch. Anat. Physiol. Wissen. 37, 300–332 (1870).

  14. 14.

    Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J. Anat. 93, 420–433 (1959).

  15. 15.

    Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res. 9, 268–287 (1968).

  16. 16.

    & Structural changes after transmitter release at the frog neuromuscular junction. J. Cell Biol. 88, 564–580 (1981).

  17. 17.

    & Structural contributions to short-term synaptic plasticity. Physiol. Rev. 84, 69–85 (2004).

  18. 18.

    , , & The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B 314, 1–340 (1986).

  19. 19.

    , & Wiring optimization can relate neuronal structure and function. Proc. Natl Acad. Sci.USA 103, 4723–4728 (2006).

  20. 20.

    , , , & Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comp. Biol. 7, e1001066 (2011).

  21. 21.

    & Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004).

  22. 22.

    , , & Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J. Neurosci. 28, 2959–2964 (2008).

  23. 23.

    , & Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183–188 (2011).

  24. 24.

    , , & Automating the collection of ultrathin serial sections for large volume TEM reconstructions. Microsc. Microanal. 12, 86–87 (2005).

  25. 25.

    , & High-accuracy neurite reconstruction for high-throughput neuroanatomy. Nature Neurosci. 14, 1081–1088 (2011).

  26. 26.

    et al. Ultrastructural analysis of hippocampal neuropil from the connectomics perspective. Neuron 67, 1009–1020 (2010).

  27. 27.

    et al. Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput. 22, 511–538 (2010).

  28. 28.

    et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

  29. 29.

    et al. GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57, 353–363 (2008).

  30. 30.

    , , , & Invariant visual representation by single neurons in the human brain. Nature 435, 1102–1107 (2005).

  31. 31.

    & Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160, 106–154 (1962).

  32. 32.

    , , , & Two-photon targeted patching (TPTP) in vivo. Nature Protoc. 1, 647–652 (2006).

  33. 33.

    et al. Targeted whole-cell recordings in the mammalian brain in vivo. Neuron 39, 911–918 (2003).

  34. 34.

    et al. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471, 177–182 (2011).

  35. 35.

    The blue brain project. Nature Rev. Neurosci. 7, 153–160 (2006).

  36. 36.

    , & How ribosomes make peptide bonds. Trends Biochem. Sci. 32, 20–26 (2007).

  37. 37.

    et al. Neuropeptide feedback modifies odor-evoked dynamics in Caenorhabditis elegans olfactory neurons. Nature Neurosci. 13, 615–621 (2010).

  38. 38.

    Beyond the wiring diagram: signalling through complex neuromodulator networks. Philos. Trans. R. Soc.B 365, 2363–2374 (2010).

  39. 39.

    , & Similar network activity from disparate circuit parameters. Nature Neurosci. 7, 1345–1352 (2004).

  40. 40.

    , & Electron tomography in nanoparticle imaging and analysis. Nanomedicine (Lond.) 3, 125–131 (2008).

  41. 41.

    , , , & New technique for ultra-thin serial brain section imaging using scanning electron microscopy. Microsc. Microanal. 13, 26–27 (2007).

  42. 42.

    SEM images of block faces, cut by a miniature microtome within the SEM — a technical note. Scan. Electron Microsc. 1981, 73–76 (1981).

  43. 43.

    et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

  44. 44.

    , , , & Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl Acad. Sci. USA 97, 8206–8210 (2000).

  45. 45.

    , & Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009).

  46. 46.

    , , , & Superresolution imaging of chemical synapses in the brain. Neuron 68, 843–856 (2010).

  47. 47.

    Lead asparate, an en bloc contrast stain particularly useful for ultrastructural enzymology. J. Histochem. Cytochem. 27, 1337–1342 (1979).

  48. 48.

    Principles and Techniques of Electron Microscopy: Biological Applications (Cambridge University Press, Cambridge, UK, 2000).

  49. 49.

    , & A new staining method (OTO) for enhancing contrast of lipid-containing membranes and droplets in osmium tetroxide-fixed tissue with osmiophilic thiocarbohydrazide (TCH). J. Cell Biol. 30, 424–432 (1966).

  50. 50.

    Use of ferrocyanide-reduced osmium tetroxide in electron microscopy. In Proc. 14th Ann. Meet. Am. Soc. Cell. Biol. 146, Abstr.284 (1971).

  51. 51.

    et al. High-contrast en bloc staining of neuronal tissue for field emission scanning electron microscopy. Nature Protoc. 7, 193–206 (2012).

  52. 52.

    et al. Enhancing serial block-face scanning electron microscopy to enable high resolution 3D nanohistology of cells and tissues. Microsc. Microanal. 16, 1138–1139 (2010).

  53. 53.

    , & Osmiophilic polymer generation: catalysis by transition metal compounds in ultrastructural cytochemistry. Science 175, 991–993 (1972).

  54. 54.

    & Photoconversion of some fluorescent markers to a diaminobenzidine product. J. Histochem. Cytochem. 36, 555–559 (1988).

  55. 55.

    Photoconversion of diaminobenzidine with different fluorescent neuronal markers into a light and electron microscopic dense reaction product. Microsc. Res. Tech. 24, 2–14 (1993).

  56. 56.

    et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol. 9, e1001041 (2011).

  57. 57.

    , , & Membrane targeted horseradish peroxidase as a marker for correlative fluorescence and electron microscopy studies. Front. Neural Circuits 4, 6 (2010).

  58. 58.

    , & Synaptic strength of individual spines correlates with bound Ca2+-calmodulin-dependent kinase II. J. Neurosci. 27, 14007–14011 (2007).

  59. 59.

    et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nature Neurosci. 4, 1086–1092 (2001).

  60. 60.

    Lucifer dyes — highly fluorescent dyes for biological tracing. Nature 292, 17–21 (1981).

  61. 61.

    , , & The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).

  62. 62.

    et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nature Methods 5, 545–551 (2008).

  63. 63.

    et al. Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nature Methods 8, 260–266 (2011).

  64. 64.

    et al. Drosophila brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nature Methods 8, 253–259 (2011).

  65. 65.

    , & Innervation of the heart and its central medullary origin defined by viral tracing. Science 263, 232–234 (1994).

  66. 66.

    et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

  67. 67.

    et al. A dual infection pseudorabies virus conditional reporter approach to identify projections to collateralized neurons in complex neural circuits. PLoS ONE 6, e21141 (2011).

  68. 68.

    et al. Genetically timed, activity-sensor and rainbow transsynaptic viral tools. Nature Methods 6, 127–130 (2009).

  69. 69.

    , , & Targeting single neuronal networks for gene expression and cell labeling in vivo. Neuron 67, 562–574 (2010).

  70. 70.

    et al. Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit. Nature 469, 407–410 (2011).

  71. 71.

    et al. Transfection via whole-cell recording in vivo: bridging single-cell physiology, genetics and connectomics. Nature Neurosci. 14, 527–532 (2011).

  72. 72.

    , & Correlative microscopy of densely labeled projection neurons using neural tracers. Front. Neuroanat. 4, 24 (2010).

  73. 73.

    , & Projection neuron circuits resolved using correlative array tomography. Front. Neurosci. 5, 50 (2011).

  74. 74.

    & Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55, 25–36 (2007).

  75. 75.

    , , , & Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers. Neuron 68, 639–653 (2010).

  76. 76.

    , , , & V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nature Biotech. 28, 348–353 (2010).

  77. 77.

    et al. An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy. PLoS Biol. 8 (2010).

  78. 78.

    Reconstruct: a free editor for serial section microscopy. J. Microsc. 218, 52–61 (2005).

  79. 79.

    et al. Supervised learning of image restoration with convolutional networks. IEEE 11th International Conference on Computer Vision (ICCV) 2, 1–8 (2007).

  80. 80.

    , , , & in Pattern Recognition: Lecture Notes in Computer Science Vol. 5096 (ed. Rigoll, G.) 142–152 (Springer-Verlag Berlin, Heidelberg, 2008).

  81. 81.

    , & Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418, 845–852 (2002).

  82. 82.

    Reading the book of memory: sparse sampling versus dense mapping of connectomes. Neuron 62, 17–29 (2009).

  83. 83.

    , & Mechanisms of disease: general anesthesia, sleep, and coma. N. Engl. J. Med. 363, 2638–2650 (2010).

  84. 84.

    et al. Increasing depth resolution of electron microscopy of neural circuits using sparse tomographic reconstruction. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 1767–1774 (2010).

Download references

Acknowledgements

We thank P. Detwiler and A. Karpova for their critical reading of the manuscript.

Author information

Affiliations

  1. Winfried Denk is at the Max Planck Institute for Medical Research, Heidelberg 69120, Germany.

    • Winfried Denk
  2. Kevin L. Briggman is at the National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, USA.

    • Kevin L. Briggman
  3. Moritz Helmstaedter is at the Max Planck Institute of Neurobiology, Martinsried 82152, Germany.

    • Moritz Helmstaedter

Authors

  1. Search for Winfried Denk in:

  2. Search for Kevin L. Briggman in:

  3. Search for Moritz Helmstaedter in:

Competing interests

SBEM Technology licensed to Gatan results in royalty income to Winfried Denk. Kevin Briggman and Moritz Helmstaedter declare no competing interests.

Corresponding author

Correspondence to Winfried Denk.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nrn3169

Further reading