Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Computational neuroanatomy of speech production

Abstract

Speech production has been studied predominantly from within two traditions, psycholinguistics and motor control. These traditions have rarely interacted, and the resulting chasm between these approaches seems to reflect a level of analysis difference: whereas motor control is concerned with lower-level articulatory control, psycholinguistics focuses on higher-level linguistic processing. However, closer examination of both approaches reveals a substantial convergence of ideas. The goal of this article is to integrate psycholinguistic and motor control approaches to speech production. The result of this synthesis is a neuroanatomically grounded, hierarchical state feedback control model of speech production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: State feedback control.
Figure 2: Two-stage psycholinguistic model of speech production.
Figure 3: The state feedback control model.
Figure 4: The hierarchical state feedback control model.
Figure 5: Internal feedback control simulation.

Similar content being viewed by others

References

  1. Dell, G. S. A spreading activation theory of retrieval in language production. Psychol. Rev. 93, 283–321 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Fromkin, V. The non-anomalous nature of anomalous utterances. Language 47, 27–52 (1971).

    Article  Google Scholar 

  3. Levelt, W. J. Roelofs, A. & Meyer, A. S. A theory of lexical access in speech production. Behav. Brain Sci. 22, 1–75 (1999).

    CAS  PubMed  Google Scholar 

  4. Garrett, M. F. in The Psychology of Learning and Motivation Vol. 9 (ed. Bower, G. H.) 133–177 (Academic Press, New York, 1975).

    Google Scholar 

  5. Guenther, F. H., Hampson, M. & Johnson, D. A theoretical investigation of reference frames for the planning of speech movements. Psychol. Rev. 105, 611–633 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Houde, J. F. & Jordan, M. I. Sensorimotor adaptation in speech production. Science 279, 1213–1216 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Fairbanks, G. Systematic research in experimental phonetics. I. A theory of the speech mechanism as a servosystem. J. Speech Hear. Disord. 19, 133–139 (1954).

    Article  CAS  PubMed  Google Scholar 

  8. Kawato, M. Internal models for motor control and trajectory planning. Curr. Opin. Neurobiol. 9, 718–727 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Shadmehr, R. & Krakauer, J. W. A computational neuroanatomy for motor control. Exp. Brain Res. 185, 359–381 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shadmehr, R. & Mussa-Ivaldi, F. A. Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 14, 3208–3224 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for sensorimotor integration. Science 269, 1880–1882 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Tian, X. & Poeppel, D. Mental imagery of speech and movement implicates the dynamics of internal forward models. Front. Psychol. 1, 166 (2010).

    PubMed  PubMed Central  Google Scholar 

  13. Grafton, S. T. The cognitive neuroscience of prehension: recent developments. Exp. Brain Res. 204, 475–491 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wolpert, D. M., Doya, K. & Kawato, M. A unifying computational framework for motor control and social interaction. Phil. Trans. R. Soc. Lond. B 358, 593–602 (2003).

    Article  Google Scholar 

  15. Perkell, J. S. et al. Speech motor control: acoustic goals, saturation effects, auditory feedback and internal models. Speech Commun. 22, 227–250 (1997).

    Article  Google Scholar 

  16. Burnett, T. A., Freedland, M. B., Larson, C. R. & Hain, T. C. Voice F0 responses to manipulations in pitch feedback. J. Acoust. Soc. Am. 103, 3153–3161 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Larson, C. R., Burnett, T. A., Bauer, J. J., Kiran, S. & Hain, T. C. Comparison of voice F0 responses to pitch-shift onset and offset conditions. J. Acoust. Soc. Am. 110, 2845–2848 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Tourville, J. A., Reilly, K. J. & Guenther, F. H. Neural mechanisms underlying auditory feedback control of speech. Neuroimage 39, 1429–1443 (2008).

    Article  PubMed  Google Scholar 

  19. Tremblay, S., Shiller, D. M. & Ostry, D. J. Somatosensory basis of speech production. Nature 423, 866–869 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Grafton, S. T., Aziz-Zadeh, L. & Ivry, R. B. in The Cognitive Neurosciences Ch. 44 (ed. Gazzaniga, M. S.) 641–652 (MIT Press, Cambridge, Massachusetts, USA, 2009).

    Google Scholar 

  21. Grafton, S. T. & Hamilton, A. F. Evidence for a distributed hierarchy of action representation in the brain. Hum. Mov. Sci. 26, 590–616 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Diedrichsen, J., Shadmehr, R. & Ivry, R. B. The coordination of movement: optimal feedback control and beyond. Trends Cogn. Sci. 14, 31–39 (2010).

    Article  PubMed  Google Scholar 

  23. Jackson, J. H. Remarks on evolution and dissolution of the nervous system. J. Ment. Sci. 33, 25–48 (1887).

    Article  Google Scholar 

  24. Gracco, V. L. Some organizational characteristics of speech movement control. J. Speech Hear. Res. 37, 4–27 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Browman, C. P. & Goldstein, L. Articulatory phonology: an overview. Phonetica 49, 155–180 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Plaut, D. C. & Kello, C. T. in The Emergence of Language Ch. 14 (ed. MacWhinney, B.) 381–416 (Lawrence Erlbaum Associates, Mahwah, New Jersey, USA, 1999).

    Google Scholar 

  27. Bock, K. in The MIT Encyclopedia of the Cognitive Sciences (eds Wilson, R. A. & Keil, F. C.) 453–456 (MIT Press, Cambridge, Massachusetts, USA, 1999).

    Google Scholar 

  28. Dell, G. S. in An Invitation to Cognitive Science: Language Ch. 7 (eds Glietman, L. R. & Liberman, M.) 183–208 (MIT Press, Cambridge, Massachusetts, USA, 1995).

    Google Scholar 

  29. Levelt, W. J. Speaking: From Intention to Articulation (MIT Press, Cambridge, Massachusetts, USA, 1989).

    Google Scholar 

  30. Dell, G. S., Schwartz, M. F., Martin, N., Saffran, E. M. & Gagnon, D. A. Lexical access in aphasic and nonaphasic speakers. Psychol. Rev. 104, 801–838 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Levelt, W. J. Models of word production. Trends Cogn. Sci. 3, 223–232 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Vigliocco, G., Antonini, T. & Garrett, M. F. Grammatical gender is on the tip of Italian tongues. Psychol. Sci. 8, 314–317 (1998).

    Article  Google Scholar 

  33. Levelt, W. J. Monitoring and self-repair in speech. Cognition 14, 41–104 (1983).

    Article  CAS  PubMed  Google Scholar 

  34. Nozari, N., Dell, G. S. & Schwartz, M. F. Is comprehension necessary for error detection? A conflict-based account of monitoring in speech production. Cogn. Psychol. 63, 1–33 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Oppenheim, G. M. & Dell, G. S. Inner speech slips exhibit lexical bias, but not the phonemic similarity effect. Cognition 106, 528–537 (2008).

    Article  PubMed  Google Scholar 

  36. Postma, A. Detection of errors during speech production: a review of speech monitoring models. Cognition 77, 97–132 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Huettig, F. & Hartsuiker, R. J. Listening to yourself is like listening to others: external, but not internal, verbal self-monitoring is based on speech perception. Lang. Cognitive Proc. 25, 347–374 (2010).

    Article  Google Scholar 

  38. Nickels, L. & Howard, D. Phonological errors in aphasic naming: comprehension, monitoring and lexicality. Cortex 31, 209–237 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Ozdemir, R., Roelofs, A. & Levelt, W. J. Perceptual uniqueness point effects in monitoring internal speech. Cognition 105, 457–465 (2007).

    Article  PubMed  Google Scholar 

  40. Golfinopoulos, E., Tourville, J. A. & Guenther, F. H. The integration of large-scale neural network modeling and functional brain imaging in speech motor control. Neuroimage 52, 862–874 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Hickok, G., Houde, J. & Rong, F. Sensorimotor integration in speech processing: computational basis and neural organization. Neuron 69, 407–422 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Houde, J. F. & Nagarajan, S. S. Speech production as state feedback control. Front. Hum. Neurosci. 5, 82 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hickok, G., Buchsbaum, B., Humphries, C. & Muftuler, T. Auditory–motor interaction revealed by fMRI: speech, music, and working memory in area Spt. J. Cognitive Neurosci. 15, 673–682 (2003).

    Article  Google Scholar 

  44. Hickok, G., Okada, K. & Serences, J. T. Area Spt in the human planum temporale supports sensory-motor integration for speech processing. J. Neurophysiol. 101, 2725–2732 (2009).

    Article  PubMed  Google Scholar 

  45. Howard, D. & Nickels, L. Separating input and output phonology: semantic, phonological, and orthographic effects in short-term memory impairment. Cogn. Neuropsychol. 22, 42–77 (2005).

    Article  PubMed  Google Scholar 

  46. Jacquemot, C., Dupoux, E. & Bachoud-Levi, A. C. Breaking the mirror: asymmetrical disconnection between the phonological input and output codes. Cogn. Neuropsychol. 24, 3–22 (2007).

    Article  PubMed  Google Scholar 

  47. Shelton, J. R. & Caramazza, A. Deficits in lexical and semantic processing: implications for models of normal language. Psychon. Bull. Rev. 6, 5–27 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Ventura, M. I., Nagarajan, S. S. & Houde, J. F. Speech target modulates speaking induced suppression in auditory cortex. BMC Neurosci. 10, 58 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lichtheim, L. On aphasia. Brain 7, 433–484 (1885).

    Article  Google Scholar 

  50. Wernicke, C. in Wernicke's Works on Aphasia: A Sourcebook and Review (ed. Eggert, G. H.) 91–145 (Mouton, The Hague, The Netherlands, 1874/1977).

  51. Gracco, V. L. & Lofqvist, A. Speech motor coordination and control: evidence from lip, jaw, and laryngeal movements. J. Neurosci. 14, 6585–6597 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Perkell, J. S. Movement goals and feedback and feedback control mechanisms in speech production. J. Neurolinguist. 26 Mar 2010 (doi:10.1016/j.jneuroling.2010.02.011).

    Article  PubMed  Google Scholar 

  53. Wilson, S. M., Saygin, A. P., Sereno, M. I. & Iacoboni, M. Listening to speech activates motor areas involved in speech production. Nature Neurosci. 7, 701–702 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Fadiga, L., Craighero, L., Buccino, G. & Rizzolatti, G. Speech listening specifically modulates the excitability of tongue muscles: a TMS study. Eur. J. Neurosci. 15, 399–402 (2002).

    Article  PubMed  Google Scholar 

  55. Cooper, W. E. & Lauritsen, M. R. Feature processing in the perception and production of speech. Nature 252, 121–123 (1974).

    Article  CAS  PubMed  Google Scholar 

  56. Delvaux, V. & Soquet, A. The influence of ambient speech on adult speech productions through unintentional imitation. Phonetica 64, 145–173 (2007).

    Article  PubMed  Google Scholar 

  57. Kappes, J., Baumgaertner, A., Peschke, C. & Ziegler, W. Unintended imitation in nonword repetition. Brain Lang. 111, 140–151 (2009).

    Article  PubMed  Google Scholar 

  58. Christman, S. S., Boutsen, F. R. & Buckingham, H. W. Perseveration and other repetitive verbal behaviors: functional dissociations. Semin. Speech Lang. 25, 295–307 (2004).

    Article  PubMed  Google Scholar 

  59. Duffy, J. R. Motor Speech Disorders: Substrates, Differential Diagnosis, and Management (Mosby, St. Louis, Missouri, USA, 1995).

    Google Scholar 

  60. Niemi, M., Laaksonen, J. P., Ojala, S., Aaltonen, O. & Happonen, R. P. Effects of transitory lingual nerve impairment on speech: an acoustic study of sibilant sound /s/. Int. J. Oral Maxillofac. Surg. 35, 920–923 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Niemi, M., Laaksonen, J. P., Aaltonen, O. & Happonen, R. P. Effects of transitory lingual nerve impairment on speech: an acoustic study of diphthong sounds. J. Oral Maxillofac. Surg. 62, 44–51 (2004).

    Article  PubMed  Google Scholar 

  62. Niemi, M. et al. Acoustic and neurophysiologic observations related to lingual nerve impairment. Int. J. Oral. Maxillofac. Surg. 38, 758–765 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Perkell, J. S. et al. The distinctness of speakers' /s/-/S/ contrast is related to their auditory discrimination and use of an articulatory saturation effect. J. Speech Lang. Hear. Res. 47, 1259–1269 (2004).

    Article  PubMed  Google Scholar 

  64. Liberman, A. M. Some results of research on speech perception. J. Acoust. Soc. Am. 29, 117–123 (1957).

    Article  Google Scholar 

  65. Indefrey, P. & Levelt, W. J. The spatial and temporal signatures of word production components. Cognition 92, 101–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Rizzolatti, G. et al. Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Exp. Brain Res. 71, 491–507 (1988).

    Article  CAS  PubMed  Google Scholar 

  67. Rizzolatti, G. et al. Neurons related to reaching-grasping arm movements in the rostral part of area 6 (area 6aβ). Exp. Brain Res. 82, 337–350 (1990).

    Article  CAS  PubMed  Google Scholar 

  68. Rizzolatti, G. et al. Neurons related to goal-directed motor acts in inferior area 6 of the macaque monkey. Exp. Brain Res. 67, 220–224 (1987).

    Article  CAS  PubMed  Google Scholar 

  69. Peeva, M. G. et al. Distinct representations of phonemes, syllables, and supra-syllabic sequences in the speech production network. Neuroimage 50, 626–638 (2010).

    Article  PubMed  Google Scholar 

  70. Aichert, I. & Ziegler, W. Syllable frequency and syllable structure in apraxia of speech. Brain Lang. 88, 148–159 (2004).

    Article  PubMed  Google Scholar 

  71. Laganaro, M., Croisier, M., Bagou, O. & Assal, F. Progressive apraxia of speech as a window into the study of speech planning processes. Cortex 26 Mar 2011 (doi:10.1016/j.cortex.2011.03.010).

    Article  PubMed  Google Scholar 

  72. Ogar, J., Slama, H., Dronkers, N., Amici, S. & Gorno-Tempini, M. L. Apraxia of speech: an overview. Neurocase 11, 427–432 (2005).

    Article  PubMed  Google Scholar 

  73. Hillis, A. E. et al. Re-examining the brain regions crucial for orchestrating speech articulation. Brain 127, 1479–1487 (2004).

    Article  PubMed  Google Scholar 

  74. Dronkers, N. F. A new brain region for coordinating speech articulation. Nature 384, 159–161 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Ogar, J. et al. Clinical and anatomical correlates of apraxia of speech. Brain Lang. 97, 343–350 (2006).

    Article  PubMed  Google Scholar 

  76. Ito, M. Control of mental activities by internal models in the cerebellum. Nature Rev. Neurosci. 9, 304–313 (2008).

    Article  CAS  Google Scholar 

  77. Wolpert, D. M., Miall, R. C. & Kawato, M. Internal models in the cerebellum. Trends Cogn. Sci. 9, 338–347 (1998).

    Article  Google Scholar 

  78. Nowak, D. A., Topka, H., Timmann, D., Boecker, H. & Hermsdorfer, J. The role of the cerebellum for predictive control of grasping. Cerebellum 6, 7–17 (2007).

    Article  PubMed  Google Scholar 

  79. Desmurget, M. & Grafton, S. Forward modeling allows feedback control for fast reaching movements. Trends Cogn. Sci. 4, 423–431 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Pasalar, S., Roitman, A. V., Durfee, W. K. & Ebner, T. J. Force field effects on cerebellar Purkinje cell discharge with implications for internal models. Nature Neurosci. 9, 1404–1411 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Shadmehr, R., Smith, M. A. & Krakauer, J. W. Error correction, sensory prediction, and adaptation in motor control. Annu. Rev. Neurosci. 33, 89–108 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Baldo, J. V., Klostermann, E. C. & Dronkers, N. F. It's either a cook or a baker: patients with conduction aphasia get the gist but lose the trace. Brain Lang. 105, 134–140 (2008).

    Article  PubMed  Google Scholar 

  83. Buchsbaum, B. R. et al. Conduction aphasia, sensory–motor integration, and phonological short-term memory — an aggregate analysis of lesion and fMRI data. Brain Lang. 119, 119–128 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Damasio, H. & Damasio, A. R. The anatomical basis of conduction aphasia. Brain 103, 337–350 (1980).

    Article  CAS  PubMed  Google Scholar 

  85. Goodglass, H. in Conduction Aphasia Ch. 3 (ed. Kohn, S. E.) 39–49 (Lawrence Erlbaum Associates, Hillsdale, New Jersey, USA, 1992).

    Google Scholar 

  86. Ackermann, H., Mathiak, K. & Riecker, A. The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum 6, 202–213 (2007).

    Article  PubMed  Google Scholar 

  87. Ackermann, H., Vogel, M., Petersen, D. & Poremba, M. Speech deficits in ischaemic cerebellar lesions. J. Neurol. 239, 223–227 (1992).

    Article  CAS  PubMed  Google Scholar 

  88. Oppenheim, G. M. & Dell, G. S. Motor movement matters: the flexible abstractness of inner speech. Mem. Cognit. 38, 1147–1160 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Buchsbaum, B., Hickok, G. & Humphries, C. Role of left posterior superior temporal gyrus in phonological processing for speech perception and production. Cogn. Sci. 25, 663–678 (2001).

    Article  Google Scholar 

  90. Buchsbaum, B. R., Olsen, R. K., Koch, P. & Berman, K. F. Human dorsal and ventral auditory streams subserve rehearsal-based and echoic processes during verbal working memory. Neuron 48, 687–697 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Murphy, K. et al. Cerebral areas associated with motor control of speech in humans. J. Appl. Physiol. 83, 1438–1447 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Shuster, L. I. & Lemieux, S. K. An fMRI investigation of covertly and overtly produced mono- and multisyllabic words. Brain Lang. 93, 20–31 (2005).

    Article  PubMed  Google Scholar 

  93. Smiley, J. F. et al. Multisensory convergence in auditory cortex. I. Cortical connections of the caudal superior temporal plane in macaque monkeys. J. Comp. Neurol. 502, 894–923 (2007).

    Article  PubMed  Google Scholar 

  94. Schroeder, C. E. et al. Somatosensory input to auditory association cortex in the macaque monkey. J. Neurophysiol. 85, 1322–1327 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Foxe, J. J. et al. Multisensory auditory-somatosensory interactions in early cortical processing revealed by high-density electrical mapping. Brain Res. Cogn. Brain Res. 10, 77–83 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Murray, M. M. et al. Grabbing your ear: rapid auditory-somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment. Cereb. Cortex 15, 963–974 (2005).

    Article  PubMed  Google Scholar 

  97. Foxe, J. J. et al. Auditory-somatosensory multisensory processing in auditory association cortex: an fMRI study. J. Neurophysiol. 88, 540–543 (2002).

    Article  PubMed  Google Scholar 

  98. Lakatos, P., Chen, C. M., O'Connell, M. N., Mills, A. & Schroeder, C. E. Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron 53, 279–292 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Aliu, S. O., Houde, J. F. & Nagarajan, S. S. Motor-induced suppression of the auditory cortex. J. Cogn. Neurosci. 21, 791–802 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Heinks-Maldonado, T. H. et al. Relationship of imprecise corollary discharge in schizophrenia to auditory hallucinations. Arch. Gen. Psychiatry 64, 286–296 (2007).

    Article  PubMed  Google Scholar 

  101. Frith, C. D., Blakemore, S. & Wolpert, D. M. Explaining the symptoms of schizophrenia: abnormalities in the awareness of action. Brain Res. Brain Res. Rev. 31, 357–363 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Paus, T., Perry, D. W., Zatorre, R. J., Worsley, K. J. & Evans, A. C. Modulation of cerebral blood flow in the human auditory cortex during speech: role of motor-to-sensory discharges. Eur. J. Neurosci. 8, 2236–2246 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. Christoffels, I. K., van de Ven, V., Waldorp, L. J., Formisano, E. & Schiller, N. O. The sensory consequences of speaking: parametric neural cancellation during speech in auditory cortex. PLoS ONE 6, e18307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Eliades, S. J. & Wang, X. Sensory–motor interaction in the primate auditory cortex during self-initiated vocalizations. J. Neurophysiol. 89, 2194–2207 (2003).

    Article  PubMed  Google Scholar 

  105. Meister, I. G., Wilson, S. M., Deblieck, C., Wu, A. D. & Iacoboni, M. The essential role of premotor cortex in speech perception. Curr. Biol. 17, 1692–1696 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. D'Ausilio, A. et al. The motor somatotopy of speech perception. Curr. Biol. 19, 381–385 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Callan, D. E., Jones, J. A., Callan, A. M. & Akahane-Yamada, R. Phonetic perceptual identification by native- and second-language speakers differentially activates brain regions involved with acoustic phonetic processing and those involved with articulatory-auditory/orosensory internal models. Neuroimage 22, 1182–1194 (2004).

    Article  PubMed  Google Scholar 

  108. Wilson, S. M. & Iacoboni, M. Neural responses to non-native phonemes varying in producibility: evidence for the sensorimotor nature of speech perception. Neuroimage 33, 316–325 (2006).

    Article  PubMed  Google Scholar 

  109. Jazayeri, M. & Movshon, J. A. Optimal representation of sensory information by neural populations. Nature Neurosci. 9, 690–696 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Jazayeri, M. & Movshon, J. A. A new perceptual illusion reveals mechanisms of sensory decoding. Nature 446, 912–915 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Regan, D. & Beverley, K. I. Postadaptation orientation discrimination. J. Opt. Soc. Am. A 2, 147–155 (1985).

    Article  CAS  PubMed  Google Scholar 

  112. Scolari, M. & Serences, J. T. Adaptive allocation of attentional gain. J. Neurosci. 29, 11933–11942 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Vigliocco, G. & Hartsuiker, R. J. The interplay of meaning, sound, and syntax in sentence production. Psychol. Bull. 128, 442–472 (2002).

    Article  PubMed  Google Scholar 

  114. Friston, K. The free-energy principle: a unified brain theory? Nature Rev. Neurosci. 11, 127–138 (2010).

    Article  CAS  Google Scholar 

  115. Summerfield, C. & Egner, T. Expectation (and attention) in visual cognition. Trends Cogn. Sci. 13, 403–409 (2009).

    Article  PubMed  Google Scholar 

  116. Hickok, G. et al. A functional magnetic resonance imaging study of the role of left posterior superior temporal gyrus in speech production: implications for the explanation of conduction aphasia. Neurosci. Lett. 287, 156–160 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Anderson, J. M. et al. Conduction aphasia and the arcuate fasciculus: a reexamination of the Wernicke–Geschwind model. Brain Lang. 70, 1–12 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Dronkers, N. & Baldo, J. in Encyclopedia of Neuroscience (ed. Squire, L. R.) 343–348 (Academic Press, Oxford, 2009).

    Book  Google Scholar 

  119. Hickok, G. in Language and the Brain Ch. 4 (eds Grodzinsky, Y., Shapiro, L. & Swinney, D.) 87–104 (Academic Press, San Diego, California, USA, 2000).

    Book  Google Scholar 

  120. Galantucci, B., Fowler, C. A. & Turvey, M. T. The motor theory of speech perception reviewed. Psychon. Bull. Rev. 13, 361–377 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Liberman, A. M., Cooper, F. S., Shankweiler, D. P. & Studdert-Kennedy, M. Perception of the speech code. Psychol. Rev. 74, 431–461 (1967).

    Article  CAS  PubMed  Google Scholar 

  122. Hickok, G. The role of mirror neurons in speech perception and action word semantics. Lang. Cognitive Proc. 25, 749–776 (2010).

    Article  Google Scholar 

  123. Lotto, A. J., Hickok, G. S. & Holt, L. L. Reflections on mirror neurons and speech perception. Trends Cogn. Sci. 13, 110–114 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Massaro, D. W. & Chen, T. H. The motor theory of speech perception revisited. Psychon. Bull. Rev. 15, 453–462 (2008).

    Article  PubMed  Google Scholar 

  125. Liberman, A. M. & Mattingly, I. G. The motor theory of speech perception revised. Cognition 21, 1–36 (1985).

    Article  CAS  PubMed  Google Scholar 

  126. Stevens, K. N. & Blumstein, S. E. Invariant cues for place of articulation in stop consonants. J. Acoust. Soc. Am. 64, 1358–1368 (1978).

    Article  CAS  PubMed  Google Scholar 

  127. Stevens, K. N. & Halle, M. in Models for the Perception of Speech and Visual Form (ed. Walthen-Dunn, W.) 88–102 (MIT Press, Cambridge, Massachusetts, USA, 1967).

    Google Scholar 

  128. Nusbaum, H. C. & Magnuson, J. S. in Talker Variability in Speech Processing Ch. 6 (eds Johnson, K. & Mullennix, J. W.) 109–132 (Academic Press, San Diego, California, USA, 1997).

    Google Scholar 

  129. McClelland, J. L. & Elman, J. L. The TRACE model of speech perception. Cogn. Psychol. 18, 1–86 (1986).

    Article  CAS  PubMed  Google Scholar 

  130. Massaro, D. W. in Handbook of Psycholinguistics Ch. 7 (ed. Gernsbacher, M. A.) 219–263 (Academic Press, San Diego, California, USA, 1994).

    Google Scholar 

  131. Vaden, K. I., Piquado, T. & Hickok, G. Sublexical properties of spoken words modulate activity in Broca's area but not superior temporal cortex: implications for models of speech recognition. J. Cogn. Neurosci. 23, 2665–2674 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Greenberg, S. in Listening to Speech: An Auditory Perspective Ch. 25 (eds Greenberg, S. & Ainsworth, W. A.) 411–433 (Erlbaum, Mahwah, New Jersey, USA, 2005).

    Google Scholar 

  133. Klatt, D. H. Speech perception: a model of acoustic-phonetic analysis and lexical access. J. Phonetics 7, 279–312 (1979).

    Google Scholar 

  134. Johnson, K. The auditory/perceptual basis for speech segmentation. OSU Work. Pap. Ling. 50, 101–113 (1997).

    Google Scholar 

  135. Johnson, K. Resonance in an exemplar-based lexicon: the emergence of social identity and phonology. J. Phonetics 34, 485–499 (2006).

    Article  Google Scholar 

  136. Goldinger, S. D. Echoes of echoes? An episodic theory of lexical access. Psychol. Rev. 105, 251–279 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. Stevens, K. N. Toward a model for lexical access based on acoustic landmarks and distinctive features. J. Acoust. Soc. Am. 111, 1872–1891 (2002).

    Article  PubMed  Google Scholar 

  138. Marslen-Wilson, W. D. Functional parallelism in spoken word-recognition. Cognition 25, 71–102 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank J. Houde, H. Nusbaum and D. Poeppel for comments on earlier drafts and sections of this paper, and also V. Gracco, who inspired some of the key ideas that are fleshed out here. This work was supported by a grant (DC009659) from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Hickok.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Gregory Hickok's homepage 1

Gregory Hickok's homepage 2

Glossary

Fricatives

Speech sounds produced by forcing air through a small constriction in the vocal tract, creating turbulent air flow. Examples from English include [v], [f] and [s].

Liquids

Speech sounds produced by a constriction of the vocal tract, but not enough to cause the turbulent airflow associated with fricatives. Examples from English include [l] and [r].

Morphemes

Morphemes are the smallest units of meaning in a language. They can be 'free' (that is, they can exist as a free-standing unit, as in the word 'cook') or 'bound' (that is, they must be tied to another morpheme, as in 'pre' and 'ed' in the word 'precooked').

Phonemes

Phonemes are the minimal units of speech that distinguish between two words in a language. Thus, the onset sound in 'bit' versus that in 'pit' are different phonemes, as are the final sounds in 'bit' versus 'bid'.

Phonology

Phonology is the study of the representation and organization of phonemes and phoneme patterns in a language.

Phrasal level units

Phrasal level units are hierarchically structured clusters of words. For example, the sentence, 'the cat chased the mouse', can be decomposed into at least three phrasal units — 'the cat', 'chased the mouse' and 'the mouse' — that cluster together in a particular hierarchical arrangement.

Psycholinguistics

Psycholinguistics typically refers to the study of how language information is processed in real time during either comprehension or production. By contrast, linguistics typically refers to the study of the principles or representations that characterize all human languages.

Sibilants

A subtype of fricatives in which airflow is directed towards the sharp edges of the teeth, which are held close together. Examples from English include [s] and [z].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hickok, G. Computational neuroanatomy of speech production. Nat Rev Neurosci 13, 135–145 (2012). https://doi.org/10.1038/nrn3158

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3158

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing