Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses

Key Points

  • The coupling between Ca2+ channels and Ca2+ sensors of exocytosis is a key determinant of speed and efficacy of synaptic transmission at peripheral and central synapses.

  • Previous studies of the young calyx of Held revealed that Ca2+ channels are loosely coupled to the Ca2+ sensors and that several Ca2+ channels have to open to trigger transmitter release.

  • Recent studies of inhibitory synapses in the hippocampus and cerebellum indicated that Ca2+ channels are tightly coupled to their Ca2+ sensors at these synapses and that only a small number of open Ca2+ channels are required for evoked transmitter release.

  • Likewise, analysis of synaptic transmission at the calyx of Held at different developmental stages indicated that both the coupling distance and the number of open Ca2+ channels decrease during development.

  • Molecular analysis suggests that coupling at the nanometre scale is generated by protein–protein interactions involving Ca2+ channels and Ca2+ sensors, but also several other proteins enriched in presynaptic terminals.

  • Tight coupling of a small number of Ca2+ channels to the transmitter release machinery offers several functional advantages, as it increases efficacy, speed and energy efficiency of synaptic transmission.

Abstract

The physical distance between presynaptic Ca2+ channels and the Ca2+ sensors that trigger exocytosis of neurotransmitter-containing vesicles is a key determinant of the signalling properties of synapses in the nervous system. Recent functional analysis indicates that in some fast central synapses, transmitter release is triggered by a small number of Ca2+ channels that are coupled to Ca2+ sensors at the nanometre scale. Molecular analysis suggests that this tight coupling is generated by protein–protein interactions involving Ca2+ channels, Ca2+ sensors and various other synaptic proteins. Nanodomain coupling has several functional advantages, as it increases the efficacy, speed and energy efficiency of synaptic transmission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model synapses used for the analysis of Ca2+ channel–sensor coupling.
Figure 2: Experimental determination of the coupling distance and the number of open Ca2+ channels that mediate transmitter release.
Figure 3: Molecular mechanisms of nanodomain coupling.
Figure 4: Functional consequences of nanodomain coupling.

Similar content being viewed by others

References

  1. Katz, B. & Miledi, R. The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction. Proc. R. Soc. Lond. B 161, 483–495 (1965).

    Article  CAS  PubMed  Google Scholar 

  2. Llinás, R., Sugimori, M. & Simon, S. M. Transmission by presynaptic spike-like depolarization in the squid giant synapse. Proc. Natl Acad. Sci. USA 79, 2415–2419 (1982).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Borst, J. G. G. & Sakmann, B. Calcium influx and transmitter release in a fast CNS synapse. Nature 383, 431–434 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Sabatini, B. L. & Regehr, W. G. Timing of neurotransmission at fast synapses in the mammalian brain. Nature 384, 170–172 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Geiger, J. R. P. & Jonas, P. Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron 28, 927–939 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 17, 549–560 (1905).

    Article  CAS  Google Scholar 

  7. Katz, B. The Release of Neural Transmitter Substances (Liverpool Univ. Press, Liverpool, 1969).

    Google Scholar 

  8. Llinás, R. R. The Squid Giant Synapse (Oxford Univ. Press, New York, 1999).

    Google Scholar 

  9. Harlow, M. L., Ress, D., Stoschek, A., Marshall, R. M. & McMahan U. J. The architecture of active zone material at the frog's neuromuscular junction. Nature 409, 479–484 (2001). A classical electron microscopy tomography study of the active zone at the frog neuromuscular junction. Four rows of presynaptic Ca2+ channels are opposed to two rows of synaptic vesicles, with 20 nm between the individual elements.

    Article  CAS  PubMed  Google Scholar 

  10. Shahrezaei, V., Cao, A. & Delaney, K. R. Ca2+ from one or two channels controls fusion of a single vesicle at the frog neuromuscular junction. J. Neurosci. 26, 13240–13249 (2006). The authors cleverly exploit the advantage of the Monte-Carlo simulation to monitor individual Ca2+ ions. By backtracing the Ca2+ from the vesicle to the Ca2+ channels through which they entered, the authors conclude that only one or two open Ca2+ channels contribute to transmitter release at the frog neuromuscular junction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Adler, E. M., Augustine, G. J., Duffy, S. N. & Charlton, M. P. Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. J. Neurosci. 11, 1496–1507 (1991). A classical paper that uses exogenous Ca2+ chelators with different binding rates to probe the distance between Ca2+ source and Ca2+ sensor at the squid giant synapse. Based on the lack of effects of the slow Ca2+ chelator EGTA, the authors suggest that nanodomain coupling exists between Ca2+ channels and Ca2+ sensors at this invertebrate synapse.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Augustine, G. J. Regulation of transmitter release at the squid giant synapse by presynaptic delayed rectifier potassium current. J. Physiol. 431, 343–364 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Augustine, G. J., Adler, E. M. & Charlton, M. P. The calcium signal for transmitter secretion from presynaptic nerve terminals. Ann. NY Acad. Sci. 635, 365–381 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Stanley, E. F. Single calcium channels and acetylcholine release at a presynaptic nerve terminal. Neuron 11, 1007–1011 (1993). The first direct evidence that a single Ca2+ channel triggers exocytosis at a chick calyx synapse. In enzymatically treated preparations, the release face of the calyx (that is, the side that is normally attached to the postsynaptic ciliary neuron) is sometimes partially separated from the postsynaptic cell, allowing simultaneous electrophysiological recording of presynaptic Ca2+ channel activity and chemoluminescent detection of acetylcholine release.

    Article  CAS  PubMed  Google Scholar 

  15. Stanley, E. F. The calcium channel and the organization of the presynaptic transmitter release face. Trends Neurosci. 20, 404–409 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Nicoll, R. A. & Schmitz, D. Synaptic plasticity at hippocampal mossy fibre synapses. Nature Rev. Neurosci. 6, 863–876 (2005).

    Article  CAS  Google Scholar 

  17. Neher, E. Usefulness and limitations of linear approximations to the understanding of Ca++ signals. Cell Calcium 24, 345–357 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Forsythe, I. D. Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. J. Physiol. 479, 381–387 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  19. von Gersdorff, H. & Borst, J. G. G. Short-term plasticity at the calyx of Held. Nature Rev. Neurosci. 3, 53–64 (2002).

    Article  CAS  Google Scholar 

  20. Kraushaar, U. & Jonas, P. Efficacy and stability of quantal GABA release at a hippocampal interneuron-principal neuron synapse. J. Neurosci. 20, 5594–5607 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Caillard, O. et al. Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc. Natl Acad. Sci. USA 97, 13372–13377 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meinrenken, C. J., Borst, J. G. G. & Sakmann, B. Calcium secretion coupling at calyx of Held governed by nonuniform channel-vesicle topography. J. Neurosci. 22, 1648–1667 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fedchyshyn, M. J. & Wang, L. Y. Developmental transformation of the release modality at the calyx of Held synapse. J. Neurosci. 25, 4131–4140 (2005). This paper demonstrates a developmental decrease of sensitivity of evoked transmitter release to EGTA at the calyx of Held, indicating a tightening of Ca2+ channel–sensor coupling. Furthermore, it shows a reduction in Ca2+ current cooperativity during development. Although the power coefficients in this study cannot be correlated to the number of open channels required for release (they exceed the upper bound of biochemical cooperativity), the results may indicate a reduction of this number during development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ohana, O. & Sakmann, B. Transmitter release modulation in nerve terminals of rat neocortical pyramidal cells by intracellular calcium buffers. J. Physiol. 513, 135–148 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rozov, A., Burnashev, N., Sakmann, B. & Neher, E. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics. J. Physiol. 531, 807–826 (2001). This paper reports that the Ca2+ chelator BAPTA induces pseudofacilitation. Careful quantitative analysis reveals buffer saturation as the underlying mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bucurenciu, I., Kulik, A., Schwaller, B., Frotscher, M. & Jonas, P. Nanodomain coupling between Ca2+ channels and Ca2+ sensors promotes fast and efficient transmitter release at a cortical GABAergic synapse. Neuron 57, 536–545 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Christie, J. M., Chiu, D. N. & Jahr, C. E. Ca2+-dependent enhancement of release by subthreshold somatic depolarization. Nature Neurosci. 14, 62–68 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Atluri, P. P. & Regehr, W. G. Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J. Neurosci. 16, 5661–5671 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chad, J. E. & Eckert, R. Calcium domains associated with individual channels can account for anomalous voltage relations of Ca-dependent responses. Biophys. J. 45, 993–999 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Llinás, R., Sugimori, M. & Silver, R. B. Microdomains of high calcium concentration in a presynaptic terminal. Science 256, 677–679 (1992).

    Article  PubMed  Google Scholar 

  31. Fogelson, A. L. & Zucker, R. S. Presynaptic calcium diffusion from various arrays of single channels. Implications for transmitter release and synaptic facilitation. Biophys. J. 48, 1003–1017 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roberts, W. M. Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. J. Neurosci. 14, 3246–3262 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Naraghi, M. & Neher, E. Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J. Neurosci. 17, 6961–6973 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wadel, K., Neher, E. & Sakaba, T. The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release. Neuron 53, 563–575 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Neher, E. & Sakaba, T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59, 861–872 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Moulder, K. L. & Mennerick, S. Reluctant vesicles contribute to the total readily releasable pool in glutamatergic hippocampal neurons. J. Neurosci. 25, 3842–3850 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moser, T. & Beutner, D. Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. Proc. Natl Acad. Sci. USA 97, 883–888 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mennerick, S. & Matthews, G. Ultrafast exocytosis elicited by calcium current in synaptic terminals of retinal bipolar neurons. Neuron 17, 1241–1249 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Jarsky, T., Tian, M. & Singer, J. H. Nanodomain control of exocytosis is responsible for the signaling capability of a retinal ribbon synapse. J. Neurosci. 30, 11885–11895 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Taschenberger, H., Leão, R. M., Rowland, K. C., Spirou, G. A. & von Gersdorff, H. Optimizing synaptic architecture and efficiency for high-frequency transmission. Neuron 36, 1127–1143 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, L. Y., Neher, E. & Taschenberger, H. Synaptic vesicles in mature calyx of Held synapses sense higher nanodomain calcium concentrations during action potential-evoked glutamate release. J. Neurosci. 28, 14450–14458 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, L. Y., Fedchyshyn, M. J. & Yang, Y. M. Action potential evoked transmitter release in central synapses: insights from the developing calyx of Held. Mol. Brain 2, 36 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hefft, S. & Jonas, P. Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron–principal neuron synapse. Nature Neurosci. 8, 1319–1328 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Glickfeld, L. L. & Scanziani, M. Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells. Nature Neurosci. 9, 807–815 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Daw, M. I., Tricoire, L., Erdelyi, F., Szabo, G. & McBain, C. J. Asynchronous transmitter release from cholecystokinin-containing inhibitory interneurons is widespread and target-cell independent. J. Neurosci. 29, 11112–11122 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brandt, A., Khimich, D. & Moser, T. Few CaV1.3 channels regulate the exocytosis of a synaptic vesicle at the hair cell ribbon synapse. J. Neurosci. 25, 11577–11585 (2005). Evidence that a few Ca2+ channels trigger exocytosis at auditory hair cell ribbon synapses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Erazo-Fischer, E., Striessnig, J. & Taschenberger, H. The role of physiological afferent nerve activity during in vivo maturation of the calyx of Held synapse. J. Neurosci. 27, 1725–1737 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ahmed, M. S. & Siegelbaum, S. A. Recruitment of N-type Ca2+ channels during LTP enhances low release efficacy of hippocampal CA1 perforant path synapses. Neuron 63, 372–385 (2009). This paper shows that distal perforant path synapses on CA1 pyramidal neurons exhibit a presynaptic form of long-term potentiation dependent on Ca2+ channel recruitment. This may suggest that the coupling between Ca2+ channels and transmitter release is altered during presynaptic forms of plasticity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pumplin, D. W., Reese, T. S. & Llinás, R. Are the presynaptic membrane particles the calcium channels? Proc. Natl Acad. Sci. USA 78, 7210–7213 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yoshikami, D., Bagabaldo, Z. & Olivera, B. M. The inhibitory effects of omega-conotoxins on Ca channels and synapses. Ann. NY Acad. Sci. 560, 230–248 (1989).

    Article  CAS  PubMed  Google Scholar 

  51. Matveev, V., Bertram, R. & Sherman, A. Ca2+ current versus Ca2+ channel cooperativity of exocytosis. J. Neurosci. 29, 12196–12209 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chapman, E. R. How does synaptotagmin trigger neurotransmitter release? Annu. Rev. Biochem. 77, 615–641 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Pang, Z. P. & Südhof, T. C. Cell biology of Ca2+-triggered exocytosis. Curr. Opin. Cell Biol. 22, 496–505 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006). A classical paper that quantitatively determines the protein content of synaptic vesicles. Among other proteins, 15 synaptotagmin copies and ten RAB3A copies are present per vesicle.

    Article  CAS  PubMed  Google Scholar 

  55. Wu, L. G., Westenbroek, R. E., Borst, J. G. G., Catterall, W. A. & Sakmann, B. Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J. Neurosci. 19, 726–736 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bucurenciu, I., Bischofberger, J. & Jonas, P. A small number of open Ca2+ channels trigger transmitter release at a central GABAergic synapse. Nature Neurosci. 13, 19–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Kochubey, O., Han, Y. & Schneggenburger, R. Developmental regulation of the intracellular Ca2+ sensitivity of vesicle fusion and Ca2+-secretion coupling at the rat calyx of Held. J. Physiol. 587, 3009–3023 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. von Gersdorff, H., Sakaba, T., Berglund, K. & Tachibana, M. Submillisecond kinetics of glutamate release from a sensory synapse. Neuron 21, 1177–1188 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Borst, J. G. G. & Sakmann B. Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem. J. Physiol. 506, 143–157 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, L., Bischofberger, J. & Jonas, P. Differential gating and recruitment of P/Q-, N-, and R-type Ca2+ channels in hippocampal mossy fiber boutons. J. Neurosci. 27, 13420–13429 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang, Y. M. & Wang, L. Y. Amplitude and kinetics of action potential-evoked Ca2+ current and its efficacy in triggering transmitter release at the developing calyx of Held synapse. J. Neurosci. 26, 5698–5708 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lin, K. H., Oleskevich, S. & Taschenberger, H. Presynaptic Ca2+ influx and vesicle exocytosis at the mouse endbulb of Held: a comparison of two auditory nerve terminals. J. Physiol. 589, 4301–4320 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stevens, C. F. Neurotransmitter release at central synapses. Neuron 40, 381–388 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Sätzler, K. et al. Three-dimensional reconstruction of a calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. J. Neurosci. 22, 10567–10579 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Roberts, W. M., Jacobs, R. A. & Hudspeth, A. J. Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J. Neurosci. 10, 3664–3684 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Celio, M. R. Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35, 375–475 (1990).

    Article  CAS  PubMed  Google Scholar 

  67. Freund, T. F. & Buzsáki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Collin, T. et al. Developmental changes in parvalbumin regulate presynaptic Ca2+ signaling. J. Neurosci. 25, 96–107 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Müller, M., Felmy, F., Schwaller, B. & Schneggenburger, R. Parvalbumin is a mobile presynaptic Ca2+ buffer in the calyx of Held that accelerates the decay of Ca2+ and short-term facilitation. J. Neurosci. 27, 2261–2271 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Felmy, F. & Schneggenburger, R. Developmental expression of the Ca2+-binding proteins calretinin and parvalbumin at the calyx of Held of rats and mice. Eur. J. Neurosci. 20, 1473–1482 (2004).

    Article  PubMed  Google Scholar 

  71. Edmonds, B., Reyes, R., Schwaller, B. & Roberts, W. M. Calretinin modifies presynaptic calcium signaling in frog saccular hair cells. Nature Neurosci. 3, 786–790 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Hackney, C. M., Mahendrasingam, S., Penn, A. & Fettiplace, R. The concentrations of calcium buffering proteins in mammalian cochlear hair cells. J. Neurosci. 25, 7867–7875 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee, A., Zhou, H., Scheuer, T. & Catterall, W. A. Molecular determinants of Ca2+/calmodulin-dependent regulation of Ca2.1 channels. Proc. Natl Acad. Sci. USA 100, 16059–16064 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mori, M. X., Erickson, M. G. & Yue, D. T. Functional stoichiometry and local enrichment of calmodulin interacting with Ca2+ channels. Science 304, 432–435 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Aponte, Y., Bischofberger, J. & Jonas, P. Efficient Ca2+ buffering in fast-spiking basket cells of rat hippocampus. J. Physiol. 586, 2061–2075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Eggermann, E. & Jonas, P. How the 'slow' Ca2+ buffer parvalbumin affects transmitter release in nanodomain-coupling regimes. Nature Neurosci. 4 Dec 2011 (doi:10.1038/nn.3002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nägerl, U. V., Novo, D., Mody, I. & Vergara, J. L. Binding kinetics of calbindin-D28k determined by flash photolysis of caged Ca2+. Biophys. J. 79, 3009–3018 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Faas, G. C., Schwaller, B., Vergara, J. L. & Mody, I. Resolving the fast kinetics of cooperative binding: Ca2+ buffering by calretinin. PLoS Biol. 5, e311 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Faas, G. C., Raghavachari, S., Lisman, J. E. & Mody, I. Calmodulin as a direct detector of Ca2+ signals. Nature Neurosci. 14, 301–304 (2011). This paper measures the Ca2+-binding rates of different Ca2+-binding proteins directly, using fast Ca2+ uncaging in a cuvette. Surprisingly, the binding rate for the N-lobe of calmodulin (relaxed form) is even faster than that of BAPTA.

    Article  CAS  PubMed  Google Scholar 

  80. Schneggenburger, R. & Neher, E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889–893 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Bollmann, J. H., Sakmann, B. & Borst J. G. G. Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289, 953–957 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Lou, X., Scheuss, V. & Schneggenburger, R. Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion. Nature 435, 497–501 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Nowycky, M. C. & Pinter, M. J. Time courses of calcium and calcium-bound buffers following calcium influx in a model cell. Biophys. J. 64, 77–91 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Matveev, V., Zucker, R. S. & Sherman, A. Facilitation through buffer saturation: constraints on endogenous buffering properties. Biophys. J. 86, 2691–2709 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jackson, M. B. & Redman, S. J. Calcium dynamics, buffering, and buffer saturation in the boutons of dentate granule-cell axons in the hilus. J. Neurosci. 23, 1612–1621 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Blatow, M., Caputi, A., Burnashev, N., Monyer, H. & Rozov, A. Ca2+ buffer saturation underlies paired pulse facilitation in calbindin-D28k-containing terminals. Neuron 38, 79–88 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Felmy, F., Neher, E. & Schneggenburger, R. Probing the intracellular calcium sensitivity of transmitter release during synaptic facilitation. Neuron 37, 801–811 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Dodge, F. A. & Rahamimoff, R. Co-operative action of calcium ions in transmitter release at the neuromuscular junction. J. Physiol. 193, 419–432 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee, S. H., Schwaller, B. & Neher, E. Kinetics of Ca2+ binding to parvalbumin in bovine chromaffin cells: implications for [Ca2+] transients of neuronal dendrites. J. Physiol. 525, 419–432 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schwaller, B., Meyer, M. & Schiffmann, S. 'New' functions for 'old' proteins: the role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum 1, 241–258 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Schwaller, B. Cytosolic Ca2+ buffers. Cold Spring Harb. Perspect. Biol. 2, a004051 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schmidt, H., Brown, E. B., Schwaller, B. & Eilers, J. Diffusional mobility of parvalbumin in spiny dendrites of cerebellar Purkinje neurons quantified by fluorescence recovery after photobleaching. Biophys. J. 84, 2599–2608 (2003). This paper directly measures the diffusion coefficient of the Ca2+-binding protein parvalbumin from the time course of recovery of fluorescence after photobleaching. Unlike many other Ca2+-binding proteins, parvalbumin is highly mobile.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schmidt, H., Schwaller, B. & Eilers, J. Calbindin D28k targets myo-inositol monophosphatase in spines and dendrites of cerebellar Purkinje neurons. Proc. Natl Acad. Sci. USA 102, 5850–5855 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Müller C. S. et al. Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain. Proc. Natl Acad. Sci. USA 107, 14950–14957 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sheng, Z. H., Yokoyama, C. T. & Catterall, W. A. Interaction of the synprint site of N-type Ca2+ channels with the C2B domain of synaptotagmin I. Proc. Natl Acad. Sci. USA 94, 5405–5410 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bezprozvanny, I., Scheller, R. H. & Tsien, R. W. Functional impact of syntaxin on gating of N-type and Q-type calcium channels. Nature 378, 623–626 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Rettig, J. et al. Isoform-specific interaction of the α1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25. Proc. Natl Acad. Sci. USA 93, 7363–7368 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhong, H., Yokoyama, C. T., Scheuer, T. & Catterall, W. A. Reciprocal regulation of P/Q-type Ca2+ channels by SNAP-25, syntaxin and synaptotagmin. Nature Neurosci. 2, 939–941 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Atlas, D. Functional and physical coupling of voltage-sensitive calcium channels with exocytotic proteins: ramifications for the secretion mechanism. J. Neurochem. 77, 972–985 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Kittel, R. J. et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312, 1051–1054 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Wang, Y., Liu, X., Biederer, T. & Südhof, T. C. A family of RIM-binding proteins regulated by alternative splicing: implications for the genesis of synaptic active zones. Proc. Natl. Acad. Sci. USA 99, 14464–14469 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kaeser, P. S. et al. ELKS2α/CAST deletion selectively increases neurotransmitter release at inhibitory synapses. Neuron 64, 227–239 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Missler, M. et al. α-neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature 423, 939–948 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Boucard, A. A., Chubykin, A. A., Comoletti, D., Taylor, P. & Südhof, T. C. A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to α- and β-neurexins. Neuron 48, 229–236 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Kaeser, P. S. et al. RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 144, 282–295 (2011). This paper shows that RIM acts as a tethering molecule linking presynaptic Ca2+ channels to the exocytosis machinery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Han, Y., Kaeser, P. S., Südhof, T. C. & Schneggenburger, R. RIM determines Ca2+ channel density and vesicle docking at the presynaptic active zone. Neuron 69, 304–316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hibino, H. et al. RIM binding proteins (RBPs) couple Rab3-interacting molecules (RIMs) to voltage-gated Ca2+ channels. Neuron 34, 411–423 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Beites, C. L., Xie, H., Bowser, R. & Trimble, W. S. The septin CDCrel-1 binds syntaxin and inhibits exocytosis. Nature Neurosci. 2, 434–439 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Yang, Y. M. et al. Septins regulate developmental switching from microdomain to nanodomain coupling of Ca2+ influx to neurotransmitter release at a central synapse. Neuron 67, 100–115 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Siksou, L. et al. Three-dimensional architecture of presynaptic terminal cytomatrix. J. Neurosci. 27, 6868–6877 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Iwasaki, S. & Takahashi, T. Developmental changes in calcium channel types mediating synaptic transmission in rat auditory brainstem. J. Physiol. 509, 419–423 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Forti, L., Pouzat, C. & Llano, I. Action potential-evoked Ca2+ signals and calcium channels in axons of developing rat cerebellar interneurones. J. Physiol. 527, 33–48 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Stephens, G. J., Morris, N. P., Fyffe, R. E. W. & Robertson, B. The Cav2.1/α1A (P/Q-type) voltage-dependent calcium channel mediates inhibitory neurotransmission onto mouse cerebellar Purkinje cells. Eur. J. Neurosci. 13, 1902–1912 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Cao Y. Q. & Tsien, R. W. Different relationship of N- and P/Q-type Ca2+ channels to channel-interacting slots in controlling neurotransmission at cultured hippocampal synapses. J. Neurosci. 30, 4536–4546 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mochida, S., Westenbroek, R. E., Yokoyama, C. T., Itoh. K. & Catterall, W. A. Subtype-selective reconstitution of synaptic transmission in sympathetic ganglion neurons by expression of exogenous calcium channels. Proc. Natl Acad. Sci. USA 100, 2813–2818 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mochida, S. et al. Requirement for the synaptic protein interaction site for reconstitution of synaptic transmission by P/Q-type calcium channels. Proc. Natl Acad. Sci. USA 100, 2819–2824 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sun, J. et al. A dual-Ca2+-sensor model for neurotransmitter release in a central synapse. Nature 450, 676–682 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sakaba, T. Two Ca2+-dependent steps controlling synaptic vesicle fusion and replenishment at the cerebellar basket cell terminal. Neuron 57, 406–419 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Atluri, P. P. & Regehr, W. G. Delayed release of neurotransmitter from cerebellar granule cells. J. Neurosci. 18, 8214–8227 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Matsui, K. & Jahr, C. E. Ectopic release of synaptic vesicles. Neuron 40, 1173–1183 (2003). This paper shows that EGTA-AM leaves synaptic release on Purkinje cells unaffected, but inhibits ectopic release on Bergmann glial cells. This suggests that synaptic release is triggered by Ca2+ nanodomains, whereas ectopic release is driven by Ca2+ microdomains.

    Article  CAS  PubMed  Google Scholar 

  121. Matsui, K. & Jahr, C. E. Differential control of synaptic and ectopic vesicular release of glutamate. J. Neurosci. 24, 8932–8939 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kim, M. H., Korogod, N., Schneggenburger, R., Ho, W. K. & Lee, S. H. Interplay between Na+/Ca2+ exchangers and mitochondria in Ca2+ clearance at the calyx of Held. J. Neurosci. 25, 6057–6065 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ribrault, C., Sekimoto, K. & Triller A. From the stochasticity of molecular processes to the variability of synaptic transmission. Nature Rev. Neurosci. 12, 375–387 (2011).

    Article  CAS  Google Scholar 

  124. Goswami, S. P., Jonas, P. & Bucurenciu, I. Differential dependence of miniature IPSC and EPSC frequency on presynaptic Ca2+ channels at hippocampal synapses. Soc. Neurosci. Abstr. 446.07 (Washington DC, 12–16 Nov 2011).

  125. Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Bean, B. P. Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature 340, 153–156 (1989).

    Article  CAS  PubMed  Google Scholar 

  127. Hefft, S., Kraushaar, U., Geiger, J. R. P. & Jonas, P. Presynaptic short-term depression is maintained during regulation of transmitter release at a GABAergic synapse in rat hippocampus. J. Physiol. 539, 201–208 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Meinrenken, C. J., Borst, J. G. G. & Sakmann, B. Local routes revisited: the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held. J. Physiol. 547, 665–689 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Cao, Y. Q. et al. Presynaptic Ca2+ channels compete for channel type-preferring slots in altered neurotransmission arising from Ca2+ channelopathy. Neuron 43, 387–400 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Lansman, J. B., Hess, P. & Tsien, R. W. Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. Voltage and concentration dependence of calcium entry into the pore. J. Gen. Physiol. 88, 321–347 (1986).

    Article  CAS  PubMed  Google Scholar 

  131. Wheeler, D. B., Randall, A. & Tsien, R. W. Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science 264, 107–111 (1994).

    Article  CAS  PubMed  Google Scholar 

  132. Castillo, P. E., Weisskopf, M. G. & Nicoll, R. A. The role of Ca2+ channels in hippocampal mossy fiber synaptic transmission and long-term potentiation. Neuron 12, 261–269 (1994).

    Article  CAS  PubMed  Google Scholar 

  133. Mintz, I. M., Sabatini, B. L. & Regehr, W. G. Calcium control of transmitter release at a cerebellar synapse. Neuron 15, 675–688 (1995).

    Article  CAS  PubMed  Google Scholar 

  134. Bertram, R., Smith, G. D. & Sherman, A. Modeling study of the effects of overlapping Ca2+ microdomains on neurotransmitter release. Biophys. J. 76, 735–750 (1999). A detailed modelling paper that cleans up several misconceptions regarding the cooperativity of Ca2+ inflow and transmitter release.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wu, L. G. & Saggau, P. Pharmacological identification of two types of presynaptic voltage-dependent calcium channels at CA3-CA1 synapses of the hippocampus. J. Neurosci. 14, 5613–5622 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bullock, T. H. & Hagiwara, S. Intracellular recording from the giant synapse of the squid. J. Gen. Physiol. 40, 565–577 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nicholls, J. G., Martin, R. A. & Wallace, B. G. From Neuron to Brain (Sinauer, Sunderland, Massachusetts, USA, 1992).

    Google Scholar 

  138. Pernía-Andrade, A. & Jonas, P. The multiple faces of RIM. Neuron 69, 185–187 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Naraghi, M. T-jump study of calcium binding kinetics of calcium chelators. Cell Calcium 22, 255–268 (1997).

    Article  CAS  PubMed  Google Scholar 

  140. Singer, J. H. & Diamond, J. S. Sustained Ca2+ entry elicits transient postsynaptic currents at a retinal ribbon synapse. J. Neurosci. 23, 10923–10933 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Borst, J. G. G., Helmchen, F. & Sakmann, B. Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J. Physiol. 489, 825–840 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kruglikov, I. & Rudy, B. Perisomatic GABA release and thalamocortical integration onto neocortical excitatory cells are regulated by neuromodulators. Neuron 58, 911–924 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Tsien and E. Neher for their comments on this Review, J. Guzmán and A. Pernía-Andrade for reading earlier versions and E. Kramberger for perfect editorial support. Work of the authors was funded by grants of the Deutsche Forschungsgemeinschaft to P.J. (grants SFB 780/A5, TR 3/B10 and the Leibniz programme), a European Research Council Advanced grant to P.J. and a Swiss National Foundation fellowship to E.E. We apologize that owing to space constraints, not all relevant papers could be cited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Jonas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (box)

Modelling the effects of buffers in realistic coupling regimes (PDF 175 kb)

Related links

Related links

FURTHER INFORMATION

Peter Jonas's homepage

Glossary

Synaptic delay

The time interval between the presynaptic action potential and the postsynaptic response. A synaptic delay is comprised of several components: opening of presynaptic Ca2+ channels, diffusion of Ca2+ from the channels to the Ca2+ sensors, activation of Ca2+ sensors, exocytosis, diffusion of transmitter across the synaptic cleft and activation of postsynaptic receptors.

Ca2+ chelators

Chemical substances that bind Ca2+. In synaptic physiology, BAPTA and EGTA are widely used Ca2+ chelators. Both chelators are also available in membrane-permeable acetoxymethyl ester (AM) forms.

BAPTA

1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid

EGTA

ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid

Ca2+ microdomains

Domains of elevated Ca2+ concentration that extend over more than 100 nanometres. Note that this definition does not imply that the size of the domain is in the micrometre range (1 μm = 10−6 m).

Basket cells

Types of perisomatic inhibitory GABAergic interneurons in the hippocampus and cerebellum. The name was given as the axon forms 'baskets' around somata of postsynaptic target cells.

Ca2+ nanodomains

Domains of elevated Ca2+ concentration that extend over less than 100 nanometres (1 nm = 10−9 m).

Intrinsic or biochemical cooperativity

Nonlinear dependence of transmitter release on the intracellular Ca2+ concentration, presumably owing to multiple Ca2+-binding sites on the Ca2+ sensor synaptotagmin and multiple copies of synaptotagmin on individual synaptic vesicles.

Rab3-interacting molecules

(RIMs). Active zone proteins that serve as central organizers, tethering presynaptic Ca2+ channels and Ca2+ sensors of exocytosis. RIMs are encoded by four genes, which drive the expression of seven known isoforms. For synaptic transmission, only the long RIM versions are relevant.

Length constant

The distance in which a quantity declines to the fraction 1/e. In the case of buffered diffusion of Ca2+, the length constant represents the mean distance Ca2+ diffuses before it is captured by the buffer.

Fixed buffers

Fixed buffers always remain at the same location. In contrast to mobile buffers, fixed buffers can only be regenerated by Ca2+ unbinding, not by diffusion.

SNARE

Soluble N-ethylmaleimide-sensitive-factor attachment protein (SNAP) receptor.

ELKS

Glutamic acid, leucine, lysine and serine-rich protein (also known as cytomatrix of the active zone-associated structural protein (CAST)).

Synaptic depression

Decrease in efficacy of synaptic transmission during and after stimulation of the presynaptic neuron. Synaptic depression is often interpreted as a depletion of the releasable pool of synaptic vesicles, although other mechanisms such as changes in presynaptic action potential shape and inactivation of presynaptic Ca2+ channels may also contribute.

Synaptic facilitation

Short-lasting increase in efficacy of synaptic transmission during and after repetitive stimulation. Synaptic facilitation is often attributed to residual Ca2+ following the action potential, although other mechanisms such as saturation of endogenous buffers may also contribute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eggermann, E., Bucurenciu, I., Goswami, S. et al. Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses. Nat Rev Neurosci 13, 7–21 (2012). https://doi.org/10.1038/nrn3125

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3125

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing