Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration

Key Points

  • TAR DNA-binding protein 43 (TDP43) protein is a predominantly nuclear RNA-binding protein that is involved in multiple aspects of RNA processing, including the regulation of pre-mRNA splicing and mRNA stability.

  • TDP43 protein is the major constituent of ubiquitylated inclusions in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). These inclusions are usually mislocalized within the cytoplasm and are associated with a loss of normal nuclear TDP43 expression. Pathologic TDP43 exhibits a characteristic biochemical profile including ubiquitylation, phosphorylation and cleavage.

  • Ubiquitylation of TDP43 is associated with attempts to degrade TDP43 protein. The identification of disease-associated ubiquilin 2 (UBQLN2) mutations indicates that abnormal protein degradation pathways may lead to TDP43 pathology.

  • TDP43 phosphorylation, cleavage and cytoplasmic localization are all associated with TDP43 aggregation. Data from experimental models suggest that these factors are not absolutely required for TDP43-mediated neurodegeneration.

  • A variety of genetic mutations with diverse functions lead to TDP43 pathology. Dysregulation of TDP43 seems to be a common final pathway that is tightly associated with neurodegeneration.

  • The absence of normal nuclear TDP43 protein in affected neurons is consistent with a loss-of-nuclear-function mechanism of neurodegeneration. Nuclear clearance may be mechanistically linked to the ability of TDP43 protein to autoregulate its cognate RNA.

Abstract

RNA-binding proteins, and in particular TAR DNA-binding protein 43 (TDP43), are central to the pathogenesis of motor neuron diseases and related neurodegenerative disorders. Studies on human tissue have implicated several possible mechanisms of disease and experimental studies are now attempting to determine whether TDP43-mediated neurodegeneration results from a gain or a loss of function of the protein. In addition, the distinct possibility of pleotropic or combined effects — in which gains of toxic properties and losses of normal TDP43 functions act together — needs to be considered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The genetics, pathology and biochemistry of TDP43 proteinopathies.
Figure 2: Normal functions of TDP43.
Figure 3: TDP43 modification, stability and turnover.
Figure 4: Lifecycle of TDP43 pathology.
Figure 5: Subcellular localization of TDP43 protein.
Figure 6: Autoregulation of TDP43 and models of TDP43 toxicity.

Similar content being viewed by others

References

  1. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006). TDP43 protein is identified biochemically, immunohistochemically and by amino acid sequence analysis as the major component of proteinaceous ubiquitin-positive inclusions in FTLD and ALS. Pathologic TDP43 is found to be ubiquitylated, phosphorylated and cleaved, and is associated with nuclear clearance of normal TDP43.

    Article  CAS  PubMed  Google Scholar 

  2. Giordana, M. T. et al. TDP-43 redistribution is an early event in sporadic amyotrophic lateral sclerosis. Brain Pathol. 20, 351–360 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Brandmeir, N. J. et al. Severe subcortical TDP-43 pathology in sporadic frontotemporal lobar degeneration with motor neuron disease. Acta Neuropathol. 115, 123–131 (2008).

    Article  PubMed  Google Scholar 

  4. Strong, M. J. et al. TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein. Mol. Cell. Neurosci. 35, 320–327 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Pamphlett, R., Luquin, N., McLean, C., Jew, S. K. & Adams, L. TDP-43 neuropathology is similar in sporadic amyotrophic lateral sclerosis with or without TDP-43 mutations. Neuropathol. Appl. Neurobiol. 35, 222–225 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Dickson, D. W., Josephs, K. A. & Amador-Ortiz, C. TDP-43 in differential diagnosis of motor neuron disorders. Acta Neuropathol. 114, 71–79 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Davidson, Y. et al. Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43. Acta Neuropathol. 113, 521–533 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Cairns, N. J. et al. TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. Am. J. Pathol. 171, 227–240 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fujita, Y., Mizuno, Y., Takatama, M. & Okamoto, K. Anterior horn cells with abnormal TDP-43 immunoreactivities show fragmentation of the Golgi apparatus in ALS. J. Neurol. Sci. 269, 30–34 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Mori, F. et al. Maturation process of TDP-43-positive neuronal cytoplasmic inclusions in amyotrophic lateral sclerosis with and without dementia. Acta Neuropathol. 116, 193–203 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Pesiridis, G. S., Lee, V. M. & Trojanowski, J. Q. Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum. Mol. Genet. 18, R156–R162 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gitcho, M. A. et al. TDP-43 A315T mutation in familial motor neuron disease. Ann. Neurol. 63, 535–538 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kabashi, E. et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nature Genet. 40, 572–574 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Sreedharan, J. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672 (2008). The first of several reports identifying TARDBP missense mutations, confirming the role of TDP43 in both sporadic and familial ALS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Van Deerlin, V. M. et al. TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol. 7, 409–416 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mackenzie, I. R., Rademakers, R. & Neumann, M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol. 9, 995–1007 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Geser, F., Lee, V. M. & Trojanowski, J. Q. Amyotrophic lateral sclerosis and frontotemporal lobar degeneration: a spectrum of TDP-43 proteinopathies. Neuropathology 30, 103–112 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Da Cruz, S. & Cleveland, D. W. Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr. Opin. Neurobiol. 1 Aug 2011 (doi:10.1016/j.conb.2011.05.029).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lagier-Tourenne, C., Polymenidou, M. & Cleveland, D. W. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum. Mol. Genet. 19, R46–R64 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ward, M. E. & Miller, B. L. Potential mechanisms of progranulin-deficient FTLD. J. Mol. Neurosci. 3 Sept 2011 (doi:10.1007/s12031-011-9622-3).

    Article  CAS  PubMed  Google Scholar 

  21. Ayala, Y. M. et al. Human, Drosophila, and C.elegans TDP43: nucleic acid binding properties and splicing regulatory function. J. Mol. Biol. 348, 575–588 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Ou, S. H., Wu, F., Harrich, D., Garcia-Martinez, L. F. & Gaynor, R. B. Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J. Virol. 69, 3584–3596 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, H. Y., Wang, I. F., Bose, J. & Shen, C. K. Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics 83, 130–139 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Buratti, E. & Baralle, F. E. Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J. Biol. Chem. 276, 36337–36343 (2001). Functional anlaysis of TDP43 protein as an RNA-binding protein that regulates alternative splicing of pre-mRNA.

    Article  CAS  PubMed  Google Scholar 

  25. Polymenidou, M. et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nature Neurosci. 14, 459–468 (2011). The identification of RNA molecules that physically interact with TDP43 protein using HITS-CLIP analysis. Binding of a large proportion of the transcriptome is observed, including binding of the TDP43 RNA itself, and this is mechanistically linked to autoregulation.

    Article  CAS  PubMed  Google Scholar 

  26. Buratti, E., Brindisi, A., Pagani, F. & Baralle, F. E. Nuclear factor TDP-43 binds to the polymorphic TG repeats in CFTR intron 8 and causes skipping of exon 9: a functional link with disease penetrance. Am. J. Hum. Genet. 74, 1322–1325 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tollervey, J. R. et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nature Neurosci. 14, 452–458 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Buratti, E. et al. TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J. Biol. Chem. 280, 37572–37584 (2005). A study of the interaction between the C terminus of TDP43 and other members of the hnRNP complex, including hnRNP A2/B1 and hnRNP A1. This paper also shows that TDP43 regulates splicing in the early stages of spliceosomal assembly.

    Article  CAS  PubMed  Google Scholar 

  29. Ling, S. C. et al. ALS-associated mutations in TDP-43 increase its stability and promote complexes with FUS/TLS. Proc. Natl Acad. Sci. USA 107, 13318–13323 (2010). A proteomic analysis of proteins found in complex with TDP43, which includes the hnRNP proteins, FUS protein and components of the Drosha microprocessor complex. ALS-associated mutations increase the interaction between TDP43 and FUS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Freibaum, B. D., Chitta, R. K., High, A. A. & Taylor, J. P. Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J. Proteome Res. 9, 1104–1120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. D'Ambrogio, A. et al. Functional mapping of the interaction between TDP-43 and hnRNP A2 in vivo. Nucleic Acids Res. 37, 4116–4126 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Buratti, E. et al. Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J. 20, 1774–1784 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bose, J. K., Wang, I. F., Hung., L., Tarn, W. Y. & Shen, C. K. TDP-43 overexpression enhances exon 7 inclusion during the survival of motor neuron pre-mRNA splicing. J. Biol. Chem. 283, 28852–28859 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mercado, P. A., Ayala, Y. M., Romano, M., Buratti, E. & Baralle, F. E. Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene. Nucleic Acids Res. 33, 6000–6010 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dreumont, N. et al. Antagonistic factors control the unproductive splicing of SC35 terminal intron. Nucleic Acids Res. 38, 1353–1366 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Ayala, Y. M., Misteli, T. & Baralle, F. E. TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin-dependent kinase 6 expression. Proc. Natl Acad. Sci. USA 105, 3785–3789 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fiesel, F. C. et al. Knockdown of transactive response DNA-binding protein (TDP-43) downregulates histone deacetylase 6. EMBO J. 29, 209–221 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Godena, V. K. et al. TDP-43 regulates Drosophila neuromuscular junctions growth by modulating Futsch/MAP1B levels and synaptic microtubules organization. PloS ONE 6, e17808 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, I. F., Wu, L. S., Chang, H. Y. & Shen, C. K. TDP-43, the signature protein of FTLD-U, is a neuronal activity-responsive factor. J. Neurochem. 105, 797–806 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Elvira, G. et al. Characterization of an RNA granule from developing brain. Mol. Cell. Proteomics 5, 635–651 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Moisse, K. et al. Cytosolic TDP-43 expression following axotomy is associated with caspase 3 activation in NFL-/- mice: support for a role for TDP-43 in the physiological response to neuronal injury. Brain Res. 1296, 176–186 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Moisse, K. et al. Divergent patterns of cytosolic TDP-43 and neuronal progranulin expression following axotomy: implications for TDP-43 in the physiological response to neuronal injury. Brain Res. 1249, 202–211 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Sato, T. et al. Axonal ligation induces transient redistribution of TDP-43 in brainstem motor neurons. Neuroscience 164, 1565–1578 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Nishimoto, Y. et al. Characterization of alternative isoforms and inclusion body of the TAR DNA-binding protein-43. J. Biol. Chem. 285, 608–619 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Colombrita, C. et al. TDP-43 is recruited to stress granules in conditions of oxidative insult. J. Neurochem. 111, 1051–1061 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Volkening, K., Leystra-Lantz, C., Yang, W., Jaffee, H. & Strong, M. J. Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res. 1305, 168–182 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Dewey, C. M. et al. TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Mol. Cell. Biol. 31, 1098–1108 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. McDonald, K. K. et al. TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Hum. Mol. Genet. 20, 1400–10 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Casafont, I., Bengoechea, R., Tapia, O., Berciano, M. T. & Lafarga, M. TDP-43 localizes in mRNA transcription and processing sites in mammalian neurons. J. Struct. Biol. 167, 235–241 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Buratti, E. et al. Nuclear factor TDP-43 can affect selected microRNA levels. FEBS J. 277, 2268–2281 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Fukuda, T. et al. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nature Cell Biol. 9, 604–611 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Gregory, R. I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Acharya, K. K., Govind, C. K., Shore, A. N., Stoler, M. H. & Reddi, P. P. cis-requirement for the maintenance of round spermatid-specific transcription. Dev. Biol. 295, 781–790 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Kuo, P. H., Doudeva, L. G., Wang, Y. T., Shen, C. K. & Yuan, H. S. Structural insights into TDP-43 in nucleic-acid binding and domain interactions. Nucleic Acids Res. 37, 1799–1808 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Abhyankar, M. M., Urekar, C. & Reddi, P. P. A novel CpG-free vertebrate insulator silences the testis-specific SP-10 gene in somatic tissues: role for TDP-43 in insulator function. J. Biol. Chem. 282, 36143–36154 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Furukawa, Y., Kaneko, K., Watanabe, S., Yamanaka, K. & Nukina, N. A seeding reaction recapitulates intracellular formation of Sarkosyl-insoluble transactivation response element (TAR) DNA-binding protein-43 inclusions. J. Biol. Chem. 286, 18664–18672 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Neumann, M. et al. Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol. 117, 137–149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hasegawa, M. et al. Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann. Neurol. 64, 60–70 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Deng, H. X. et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477, 211–215 (2011). The identification of dominant mutations in UBQLN2 that are associated with X-linked juvenile and adult-onset ALS and ALS-dementia. The results implicate abnormal protein degradation pathways in the pathogenesis of motor neuron disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shan, X., Chiang, P. M., Price, D. L. & Wong, P. C. Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc. Natl Acad. Sci. USA 107, 16325–16330 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stallings, N. R., Puttaparthi, K., Luther, C. M., Burns, D. K. & Elliott, J. L. Progressive motor weakness in transgenic mice expressing human TDP-43. Neurobiol. Dis. 40, 404–414 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Wegorzewska, I., Bell, S., Cairns, N. J., Miller, T. M. & Baloh, R. H. TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc. Natl Acad. Sci. USA 106, 18809–18814 (2009). The first transgenic mouse overexpressing TDP43 is described. It demonstrates selective neurodegeneration and death, recapitulating many of the major features of ALS and FTLD

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wils, H. et al. TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc. Natl Acad. Sci. USA 107, 3858–3863 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu, Y. F. et al. Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J. Neurosci. 30, 10851–10859 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Igaz, L. M. et al. Expression of TDP-43 c-terminal fragments in vitro recapitulates pathological features of TDP-43 proteinopathies. J. Biol. Chem. 284, 8516–8524 (2009). This paper shows that overexpression of disease-associated C-terminal TDP43 fragments leads to cytoplasmic aggregation. The aggregates are ubiquitylated and phosphorylated. These changes are associated with changes in RNA splicing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Igaz, L. M. et al. Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. J. Clin. Invest. 121, 726–738 (2011). Overexpression of nuclear or cytoplasmic human TDP43 protein in transgenic mice results in selective neurodegeneration recapitulating many of the major features of FTLD and upper motor neuron disease. Transgene expression leads to downregulation of endogenous TDP43 mRNA and protein, and this autoregulation phenomenon is the best correlate of neurodegeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nonaka, T. et al. Phosphorylated and ubiquitinated TDP-43 pathological inclusions in ALS and FTLD-U are recapitulated in SH-SY5Y cells. FEBS Lett. 583, 394–400 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Nonaka, T., Kametani, F., Arai, T., Akiyama, H. & Hasegawa, M. Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43. Hum. Mol. Genet. 18, 3353–3364 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Winton, M. J. et al. Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. J. Biol. Chem. 283, 13302–13309 (2008). This paper shows that overexpression of TDP43 protein harbouring mutations of the NLS domain results in cytoplasmic TDP43 protein that accumulates as cytoplasmic aggregates, implicating abnormal TDP43 protein localization in the pathogenesis of ALS and FTLD

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, Y. J. et al. Phosphorylation regulates proteasomal-mediated degradation and solubility of TAR DNA binding protein-43 C-terminal fragments. Mol. Neurodegener. 5, 33 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pesiridis, G. S., Tripathy, K., Tanik, S., Trojanowski, J. Q. & Lee, V. M. A “Two-hit” hypothesis for inclusion formation by carboxyl-terminal fragments of TDP-43 protein linked to RNA depletion and impaired microtubule-dependent transport. J. Biol. Chem. 286, 18845–18855 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Urushitani, M., Sato, T., Bamba, H., Hisa, Y. & Tooyama, I. Synergistic effect between proteasome and autophagosome in the clearance of polyubiquitinated TDP-43. J. Neurosci. Res. 88, 784–797 (2010).

    CAS  PubMed  Google Scholar 

  73. Kim, S. H. et al. Potentiation of amyotrophic lateral sclerosis (ALS)-associated TDP-43 aggregation by the proteasome-targeting factor, ubiquilin 1. J. Biol. Chem. 284, 8083–8092 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Brady, O. A., Meng, P., Zheng, Y., Mao, Y. & Hu, F. Regulation of TDP-43 aggregation by phosphorylation and p62/SQSTM1. J. Neurochem. 116, 248–259 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Filimonenko, M. et al. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J. Cell Biol. 179, 485–500 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, X. et al. Degradation of TDP-43 and its pathogenic form by autophagy and the ubiquitin-proteasome system. Neurosci. Lett. 469, 112–116 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Suzuki, S. et al. AMSH is required to degrade ubiquitinated proteins in the central nervous system. Biochem. Biophys. Res. Commun. 408, 582–588 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Skibinski, G. et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nature Genet. 37, 806–808 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Hanson, K. A., Kim, S. H., Wassarman, D. A. & Tibbetts, R. S. Ubiquilin modifies TDP-43 toxicity in a Drosophila model of amyotrophic lateral sclerosis (ALS). J. Biol. Chem. 285, 11068–11072 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liachko, N. F., Guthrie, C. R. & Kraemer, B. C. Phosphorylation promotes neurotoxicity in a Caenorhabditis elegans model of TDP-43 proteinopathy. J. Neurosci. 30, 16208–16219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dormann, D. et al. Proteolytic processing of TAR DNA binding protein-43 by caspases produces C-terminal fragments with disease defining properties independent of progranulin. J. Neurochem. 110, 1082–1094 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, Y. J. et al. Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc. Natl Acad. Sci. USA 106, 7607–7612 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sampathu, D. M. et al. Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Am. J. Pathol. 169, 1343–1352 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mackenzie, I. R. et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol. 122, 111–113 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mackenzie, I. R. et al. Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathol. 112, 539–549 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Johnson, B. S. et al. TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J. Biol. Chem. 284, 20329–20339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Frost, B., Ollesch, J., Wille, H. & Diamond, M. I. Conformational diversity of wild-type Tau fibrils specified by templated conformation change. J. Biol. Chem. 284, 3546–3551 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Guo, J. L. & Lee, V. M. Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. J. Biol. Chem. 286, 15317–15331 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hansen, C. et al. α-synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J. Clin. Invest. 121, 715–725 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Luk, K. C. et al. Exogenous α-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc. Natl Acad. Sci. USA 106, 20051–20056 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cushman, M., Johnson, B. S., King, O. D., Gitler, A. D. & Shorter, J. Prion-like disorders: blurring the divide between transmissibility and infectivity. J. Cell Sci. 123, 1191–1201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gitler, A. D. & Shorter, J. RNA-binding proteins with prion-like domains in ALS and FTLD-U. Prion 5, 179–187 (2011). A review of recent characterization of prion-like domains within TDP43 and FUS, and the implications of such domains in the progression of disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Guo, W. et al. An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity. Nature Struct. Mol. Biol. 18, 822–830 (2011).

    Article  CAS  Google Scholar 

  94. Fuentealba, R. A. et al. Interaction with polyglutamine aggregates reveals a Q/N-rich domain in TDP-43. J. Biol. Chem. 285, 26304–26314 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nishihira, Y. et al. Sporadic amyotrophic lateral sclerosis of long duration is associated with relatively mild TDP-43 pathology. Acta Neuropathol. 117, 45–53 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Pamphlett, R. & Kum Jew, S. TDP-43TDP43 inclusions do not protect motor neurons from sporadic ALS. Acta Neuropathol. 116, 221–222 (2008).

    Article  PubMed  Google Scholar 

  97. Braun, R. J. et al. Neurotoxic 43-kDa TAR DNA-binding protein (TDP-43) triggers mitochondrion-dependent programmed cell death in yeast. J. Biol. Chem. 286, 19958–19972 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Arai, T. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602–611 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Igaz, L. M. et al. Enrichment of C-terminal fragments in TAR DNA-binding protein-43 cytoplasmic inclusions in brain but not in spinal cord of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Am. J. Pathol. 173, 182–194 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rutherford, N. J. et al. Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet. 4, e1000193 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, Y. J. et al. Progranulin mediates caspase-dependent cleavage of TAR DNA binding protein-43. J. Neurosci. 27, 10530–10534 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Caccamo, A. et al. Rapamycin rescues TDP-43 mislocalization and the associated low molecular mass neurofilament instability. J. Biol. Chem. 284, 27416–27424 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tsai, K. J. et al. Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U. J. Exp. Med. 207, 1661–1673 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yang, C. et al. The C-terminal TDP-43 fragments have a high aggregation propensity and harm neurons by a dominant-negative mechanism. PloS ONE 5, e15878 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Li, Y. et al. A Drosophila model for TDP-43 proteinopathy. Proc. Natl Acad. Sci. USA 107, 3169–3174 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Voigt, A. et al. TDP-43-mediated neuron loss in vivo requires RNA-binding activity. PloS ONE 5, e12247 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ayala, Y. M. et al. Structural determinants of the cellular localization and shuttling of TDP-43. J. Cell Sci. 121, 3778–3785 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Thorpe, J. R., Tang, H., Atherton, J. & Cairns, N. J. Fine structural analysis of the neuronal inclusions of frontotemporal lobar degeneration with TDP-43 proteinopathy. J. Neural Transm. 115, 1661–1671 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Winton, M. J. et al. A90V TDP-43 variant results in the aberrant localization of TDP-43 in vitro. FEBS Lett. 582, 2252–2256 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Luty, A. A. et al. Sigma nonopioid intracellular receptor 1 mutations cause frontotemporal lobar degeneration-motor neuron disease. Ann. Neurol. 68, 639–649 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Ritson, G. P. et al. TDP-43 mediates degeneration in a novel Drosophila model of disease caused by mutations in VCP/p97. J. Neurosci. 30, 7729–7739 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Barmada, S. J. et al. Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J. Neurosci. 30, 639–649 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Miguel, L., Frebourg, T., Campion, D. & Lecourtois, M. Both cytoplasmic and nuclear accumulations of the protein are neurotoxic in Drosophila models of TDP-43 proteinopathies. Neurobiol. Dis. 41, 398–406 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Chiang, P. M. et al. Deletion of TDP-43 down-regulates Tbc1d1, a gene linked to obesity, and alters body fat metabolism. Proc. Natl Acad. Sci. USA 107, 16320–16324 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ayala, Y. M. et al. TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J. 30, 277–288 (2011). A molecular analysis of the mechanisms of TDP43 autoregulation, including identification of the 3′ UTR binding site and the role of exosome-mediated RNA decay. Nonsense-mediated decay is not implicated in this process.

    Article  CAS  PubMed  Google Scholar 

  117. Iguchi, Y. et al. TDP-43 depletion induces neuronal cell damage through dysregulation of Rho family GTPases. J. Biol. Chem. 284, 22059–22066 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Feiguin, F. et al. Depletion of TDP-43 affects Drosophila motoneurons terminal synapsis and locomotive behavior. FEBS Lett. 583, 1586–1592 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Kabashi, E. et al. Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. Hum. Mol. Genet. 19, 671–683 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Sephton, C. F. et al. TDP-43 is a developmentally regulated protein essential for early embryonic development. J. Biol. Chem. 285, 6826–6834 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Wu, L. S. et al. TDP-43, a neuro-pathosignature factor, is essential for early mouse embryogenesis. Genesis 48, 56–62 (2010).

    CAS  PubMed  Google Scholar 

  122. Kraemer, B. C. et al. Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis. Acta Neuropathol. 119, 409–419 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kwiatkowski, T. J., Jr. et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205–1208 (2009). The identification of FUS mutations associated with familial ALS. As FUS is an RNA-binding protein, this discovery further supports the hypothesis that aberrant RNA processing is involved in the pathogenesis of ALS and FTLD.

    Article  CAS  PubMed  Google Scholar 

  124. Deng, H. X. et al. Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science 261, 1047–1051 (1993).

    Article  CAS  PubMed  Google Scholar 

  125. Maruyama, H. et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465, 223–226 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Baker, M. et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Cruts, M. et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442, 920–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Watts, G. D. et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nature Genet. 36, 377–381 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Elden, A. C. et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466, 1069–1075 (2010). Based on data from a yeast genetic screen, this paper identifies intermediate-sized polyglutamine repeats as a risk factor for developing ALS in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Al-Saif, A., Al-Mohanna, F. & Bohlega, S. A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann. Neurol. 12 Aug 2011 (doi:10.1002/ana.22534).

    Article  CAS  PubMed  Google Scholar 

  131. Dejesus-Hernandez, M. & al., E. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011). In this paper, a hexanucleotide repeat expansion in C9ORF72 is found to result in ALS, and this mutation accounts for the majority of familial ALS cases. The repeat expansion results in both altered splicing of the C9ORF72 transcript and the formation of nuclear C9ORF72 RNA foci.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Renton, A. E. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011). This study and reference 131 reported hexanucleotide repeat expansions in C9ORF72 that are pathogenic for ALS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mackenzie, I. R. et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann. Neurol. 61, 427–434 (2007). TDP43 pathology is seen in both sporadic and familial ALS cases, except in ALS cases that are associated with SOD1 mutations. This report suggests that cases that are associated with SOD1 mutations may involve a distinct disease process.

    Article  CAS  PubMed  Google Scholar 

  134. Sun, Z. et al. Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol. 9, e1000614 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lanson, N. A., Jr. et al. A Drosophila model of FUS-related neurodegeneration reveals genetic interaction between FUS and TDP-43. Hum. Mol. Genet. 12 Apr 2011 (doi:10.1093/hmg/ddr150).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang, J. W., Brent, J. R., Tomlinson, A., Shneider, N. A. & McCabe, B. D. The ALS-associated proteins FUS and TDP-43 function together to affect Drosophila locomotion and life span. J. Clin. Invest. 121, 4118–4126 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wojciechowska, M. & Krzyzosiak, W. J. Cellular toxicity of expanded RNA repeats: focus on RNA foci. Human Mol. Genet. 20, 3811–3821 (2011).

    Article  CAS  Google Scholar 

  138. Yu, Z. et al. PolyQ repeat expansions in ATXN2 associated with ALS are CAA interrupted repeats. PloS ONE 6, e17951 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Glenner, G. G. & Wong, C. W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984).

    Article  CAS  PubMed  Google Scholar 

  140. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 (1991).

    Article  CAS  PubMed  Google Scholar 

  141. Chartier-Harlin, M. C. et al. Early-onset Alzheimer's disease caused by mutations at codon 717 of the β-amyloid precursor protein gene. Nature 353, 844–846 (1991).

    Article  CAS  PubMed  Google Scholar 

  142. Murrell, J., Farlow, M., Ghetti, B. & Benson, M. D. A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease. Science 254, 97–99 (1991).

    Article  CAS  PubMed  Google Scholar 

  143. Hsiao, K. et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274, 99–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  144. Games, D. et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373, 523–527 (1995).

    Article  CAS  PubMed  Google Scholar 

  145. Holtzman, D. M., Morris, J. C. & Goate, A. M. Alzheimer's disease: the challenge of the second century. Sci. Transl. Med. 3, 77sr1 (2011).

    PubMed  PubMed Central  Google Scholar 

  146. Knopman, D. S., Mastri, A. R., Frey, W. H., 2nd, Sung, J. H. & Rustan, T. Dementia lacking distinctive histologic features: a common non-Alzheimer degenerative dementia. Neurology 40, 251–256 (1990).

    Article  CAS  PubMed  Google Scholar 

  147. Mackenzie, I. R. et al. Dementia lacking distinctive histology (DLDH) revisited. Acta Neuropathol. 112, 551–559 (2006).

    Article  PubMed  Google Scholar 

  148. Mackenzie, I. R. et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol. 119, 1–4 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our many colleagues working on TDP43 in the Center for Neurodegenerative Disease Research (CNDR) and the Department of Neurology at the University of Pennsylvania for extensive collaborations that provided essential input at many stages of our research on TDP43 since 2006, including L. Kwong who provided immunoblot images. The studies from CNDR that are summarized here were supported by the National Institutes of Health (grants AG10124, AG17586, K08AG039510 and training grant T32 AG00255). V.M.-Y.L. is the John H. Ware III Chair of Alzheimer's Research and J.Q.T. is the William Maul Measey-Truman G. Schnabel, Jr, MD Professor of Geriatric Medicine and Gerontology at the University of Pennsylvania. The authors would like to thank the families of their patients who made this research possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Q. Trojanowski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Edward B. Lee's homepage

Virginia M.-Y. Lee and John Q. Trojanowski's homepage

Glossary

Dominant missense mutation

An alteration of a single nucleotide within a gene, resulting in a codon that encodes for an amino acid that is different from normal. Thus,a change in a single allele is sufficient to result in the mutation-associated phenotype.

Epiphenomena

Secondary processes or events that occur in parallel to a primary event and that may even be a result of the primary event. However, epiphenomena are in addition to the course of a disease and are not necessarily causally related to the primary mechanisms of disease.

High-throughput sequencing of RNA isolated by crosslinking immunoprecipitation

(HITS-CLIP). A method to identify the RNA-binding sites of a given protein in which protein–RNA interactions are stabilized by UV crosslinking. The protein of interest is immunoprecipitated, and the interacting RNA species are identified using high-throughput next-generation sequencing platforms.

RNA granules

Macromolecular structures in neurons enriched with RNA and RNA-binding proteins. They are thought to be involved in the preservation and transport of mRNA

Stress granules

Dense cytosolic protein and RNA aggregations that appear under conditions of cellular stress. The RNA molecules are thought to be stalled translation pre-initiation complexes.

Multivesicular bodies

Endosomal intermediates in which small membrane vesicles are enclosed within a limiting membrane. The internal vesicles are thought to form by invagination and budding from the limiting membrane.

Adaptor protein

A protein that contributes to cellular function by recruiting other proteins to a complex. Such molecules often contain several protein–protein interaction domains.

Neuronophagia

The process in which dying neurons are cleared by phagocytic cells including microglia.

Interspecies heterokaryon assays

A test that is performed on cells that contain multiple genetically different nuclei from different species. The test is capable of demonstrating low levels of dynamic nucelo–cytoplasmic shuttling by measuring the transport of a nuclear protein from a donor nucleus to a receptor nucleus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, E., Lee, VY. & Trojanowski, J. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 13, 38–50 (2012). https://doi.org/10.1038/nrn3121

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing