Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Principles of sensorimotor learning

Key Points

  • Learning movement skills involves a number of interacting components, such as information extraction, decision making, different classes of control, motor learning and its representations.

  • Skilled performance requires the effective and efficient gathering and processing of sensory information that is relevant to an action.

  • Decision-making processes involve determining what information to extract during the unfolding task and, based on this information, when to make the next movement and which movement to make.

  • Classes of control used to optimize motor performance include predictive, reactive and biomechanical control. Processes of motor learning can be distinguished by the types of information that the motor system uses as a learning signal. These include error-based learning, reinforcement learning, observational learning and use-dependent learning.

  • Representations in motor learning reflect the internal assumptions about the task structure and constrain the way in which learning occurs in response to errors. Such representations can be conceptualized in two ways, either as mechanistic or normative models.

Abstract

The exploits of Martina Navratilova and Roger Federer represent the pinnacle of motor learning. However, when considering the range and complexity of the processes that are involved in motor learning, even the mere mortals among us exhibit abilities that are impressive. We exercise these abilities when taking up new activities — whether it is snowboarding or ballroom dancing — but also engage in substantial motor learning on a daily basis as we adapt to changes in our environment, manipulate new objects and refine existing skills. Here we review recent research in human motor learning with an emphasis on the computational mechanisms that are involved.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Error-based learning in redundant systems.
Figure 2: Motor primitives and structural learning.
Figure 3: A dual-rate learning process.

References

  1. Itti, L. & Koch, C. Computational modelling of visual attention. Nature Rev. Neurosci. 2, 194–203 (2001).

    Article  CAS  Google Scholar 

  2. Hayhoe, M. & Ballard, D. Eye movements in natural behavior. Trends Cogn. Sci. 9, 188–194 (2005).

    Article  PubMed  Google Scholar 

  3. Najemnik, J. & Geisler, W. S. Optimal eye movement strategies in visual search. Nature 434, 387–391 (2005). The authors derive an ideal Bayesian observer to select the eye movement that gains the most information about target location in a cluttered environment. By examining humans in this task they show that they are nearly optimal compared to this model, suggesting that eye movements are chosen to maximize information about target location.

    Article  CAS  PubMed  Google Scholar 

  4. Land, M. & Tatler, B. Looking and Acting: Vision and Eye Movements in Natural Behaviour (Oxford Univ. Press, New York, 2009).

    Book  Google Scholar 

  5. Land, M. & McLeod, P. From eye movements to actions: how batsmen hit the ball. Nature Neurosci. 3, 1340–1345 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Sailer, U., Flanagan, J. R. & Johansson, R. S. Eye-hand coordination during learning of a novel visuomotor task. J. Neurosci. 25, 8833–8842 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Seki, K., Perlmutter, S. & Fetz, E. Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nature Neurosci. 6, 1309–1316 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Bays, P. M. & Wolpert, D. M. Computational principles of sensorimotor control that minimize uncertainty and variability. J. Physiol. 578, 387–396 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Most, S. B., Scholl, B. J., Clifford, E. R. & Simons, D. J. What you see is what you set: sustained inattentional blindness and the capture of awareness. Psychol. Rev. 112, 217–242 (2005).

    Article  PubMed  Google Scholar 

  10. Triesch, J., Ballard, D. H., Hayhoe, M. M. & Sullivan, B. T. What you see is what you need. J. Vis. 3, 86–94 (2003).

    Article  PubMed  Google Scholar 

  11. Green, C. S. & Bavelier, D. Action video game modifies visual selective attention. Nature 423, 534–537 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Nasir, S. M. & Ostry, D. J. Auditory plasticity and speech motor learning. Proc. Natl Acad. Sci. USA 106, 20470–20475 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Faisal, A. A., Selen, L. P. J. & Wolpert, D. M. Noise in the nervous system. Nature Rev. Neurosci. 9, 292–303 (2008).

    Article  CAS  Google Scholar 

  14. Ernst, M. & Bulthoff, H. Merging the senses into a robust percept. Trends Cogn. Sci. 8, 162–169 (2004).

    Article  PubMed  Google Scholar 

  15. Takahashi, C., Diedrichsen, J. & Watt, S. J. Integration of vision and haptics during tool use. J. Vis. 9, 3 (2009).

    Article  PubMed  Google Scholar 

  16. Kording, K. & Wolpert, D. M. Bayesian decision theory in sensorimotor control. Trends Cogn. Sci. 10, 319–326 (2006).

    Article  PubMed  Google Scholar 

  17. Vaziri, S., Diedrichsen, J. & Shadmehr, R. Why does the brain predict sensory consequences of oculomotor commands? Optimal integration of the predicted and the actual sensory feedback. J. Neurosci. 26, 4188–4197 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Cisek, P. & Kalaska, J. F. Neural mechanisms for interacting with a world full of action choices. Annu. Rev. Neurosci. 33, 269–298 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Resulaj, A., Kiani, R., Wolpert, D. M. & Shadlen, M. N. Changes of mind in decision-making. Nature 461, 263–266 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kahneman, D. & Tversky, A. Choices, Values, and Frames (Cambridge Univ. Press, Cambridge, UK, 2000).

    Book  Google Scholar 

  22. Trommershäuser, J., Maloney, L. T. & Landy, M. S. Decision making, movement planning and statistical decision theory. Trends Cogn. Sci. 12, 291–297 (2008).

    Article  PubMed  Google Scholar 

  23. Nagengast, A. J., Braun, D. A. & Wolpert, D. M. Risk-sensitive optimal feedback control accounts for sensorimotor behavior under uncertainty. PLoS Comput. Biol. 6, e1000857 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Braun, D. A., Nagengast, A. J. & Wolpert, D. M. Risk-sensitivity in sensorimotor control. Front. Hum. Neurosci. 5, 1 (2011).

    PubMed  PubMed Central  Google Scholar 

  25. Nagengast, A. J., Braun, D. A. & Wolpert, D. M. Risk-sensitivity and the mean-variance trade-off: decision making in sensorimotor control. Proc. Biol. Sci. 278, 2325–2332 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Johansson, R. S. & Flanagan, J. R. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Rev. Neurosci. 10, 345–359 (2009).

    Article  CAS  Google Scholar 

  27. Wolpert, D. M. & Flanagan, J. R. Motor prediction. Curr. Biol. 11, R729–R732 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Flanagan, J. R., Bowman, M. C. & Johansson, R. S. Control strategies in object manipulation tasks. Curr. Opin. Neurobiol. 16, 650–659 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Wagner, M. J. & Smith, M. A. Shared internal models for feedforward and feedback control. J. Neurosci. 28, 10663–10673 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pruszynski, J. A., Kurtzer, I. & Scott, S. H. Rapid motor responses are appropriately tuned to the metrics of a visuospatial task. J. Neurophysiol. 100, 224–238 (2008).

    Article  PubMed  Google Scholar 

  31. Pruszynski, J. A., Kurtzer, I., Lillicrap, T. P. & Scott, S. H. Temporal evolution of “automatic gain-scaling”. J. Neurophysiol. 102, 992–1003 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Todorov, E. Optimality principles in sensorimotor control. Nature Neurosci. 7, 907–915 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Diedrichsen, J. Optimal task-dependent changes of bimanual feedback control and adaptation. Curr. Biol. 17, 1675–1679 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Todorov, E. & Jordan, M. I. Optimal feedback control as a theory of motor coordination. Nature Neurosci. 5, 1226–1235 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Valero-Cuevas, F. J., Venkadesan, M. & Todorov, E. Structured variability of muscle activations supports the minimal intervention principle of motor control. J. Neurophysiol. 102, 59–68 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Burdet, E., Osu, R., Franklin, D., Milner, T. & Kawato, M. The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414, 446–449 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Franklin, D. W. et al. Endpoint stiffness of the arm is directionally tuned to instability in the environment. J. Neurosci. 27, 7705–7716 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Franklin, D. W. et al. CNS learns stable, accurate, and efficient movements using a simple algorithm. J. Neurosci. 28, 11165–11173 (2008). A new model of motor learning in which stability, accuracy and efficiency are simultaneously optimized by specifying how feedforward commands to individual muscles are adjusted based on error. This model is the first to account for the temporal evolution of both net force and impedance control during learning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mitrovic, D., Klanke, S., Osu, R., Kawato, M. & Vijayakumar, S. A computational model of limb impedance control based on principles of internal model uncertainty. PLoS ONE 5, e13601 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marr, D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (Freeman, New York, 1982).

    Google Scholar 

  41. Martin, T., Keating, J., Goodkin, H., Bastian, A. & Thach, W. Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain 119, 1183–1198 (1996).

    Article  PubMed  Google Scholar 

  42. Pelisson, D., Alahyane, N., Panouillères, M. & Tilikete, C. Sensorimotor adaptation of saccadic eye movements. Neurosci. Biobehav. Rev. 34, 1103–1120 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Shadmehr, R. & Mussa-Ivaldi, F. A. Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 14, 3208–3224 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thoroughman, K. A. & Shadmehr, R. Learning of action through adaptive combination of motor primitives. Nature 407, 742–747 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Krakauer, J., Pine, Z., Ghilardi, M. F. & Ghez, C. Learning of visuomotor transformations for vectorial planning of reaching trajectories. J. Neurosci. 20, 8916–8924 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Flanagan, J. R. & Wing, A. M. The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J. Neurosci. 17, 1519–1528 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van Beers, R. J. Motor learning is optimally tuned to the properties of motor noise. Neuron 63, 406–417 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Donchin, O., Francis, J. T. & Shadmehr, R. Quantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: theory and experiments in human motor control. J. Neurosci. 23, 9032–9045 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Diedrichsen, J., Hashambhoy, Y., Rane, T. & Shadmehr, R. Neural correlates of reach errors. J. Neurosci. 25, 9919–9931 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Srimal, R., Diedrichsen, J., Ryklin, E. B. & Curtis, C. E. Obligatory adaptation of saccade gains. J. Neurophysiol. 99, 1554–1558 (2008).

    Article  PubMed  Google Scholar 

  51. Diedrichsen, J., Verstynen, T., Lehman, S. L. & Ivry, R. B. Cerebellar involvement in anticipating the consequences of self-produced actions during bimanual movements. J. Neurophysiol. 93, 801–812 (2005).

    Article  PubMed  Google Scholar 

  52. Smith, M. A. & Shadmehr, R. Intact ability to learn internal models of arm dynamics in Huntington's disease but not cerebellar degeneration. J. Neurophysiol. 93, 2809–2821 (2005).

    Article  PubMed  Google Scholar 

  53. Morton, S. M. & Bastian, A. J. Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J. Neurosci. 26, 9107–9116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tseng, Y.-W., Diedrichsen, J., Krakauer, J. W., Shadmehr, R. & Bastian, M. S. Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J. Neurophysiol. 98, 54–62 (2007).

    Article  PubMed  Google Scholar 

  55. Golla, H. et al. Reduced saccadic resilience and impaired saccadic adaptation due to cerebellar disease. Eur. J. Neurosci. 27, 132–144 (2008).

    Article  PubMed  Google Scholar 

  56. Baraduc, P., Lang, N., Rothwell, J. C. & Wolpert, D. M. Consolidation of dynamic motor learning is not disrupted by rTMS of primary motor cortex. Curr. Biol. 14, 252–256 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Della-Maggiore, V., Malfait, N., Ostry, D. J. & Paus, T. Stimulation of the posterior parietal cortex interferes with arm trajectory adjustments during the learning of new dynamics. J. Neurosci. 24, 9971–9976 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hadipour-Niktarash, A., Lee, C. K., Desmond, J. E. & Shadmehr, R. Impairment of retention but not acquisition of a visuomotor skill through time-dependent disruption of primary motor cortex. J. Neurosci. 27, 13413–13419 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Galea, J. M., Vazquez, A., Pasricha, N., Orban de Xivry, J.-J. & Celnik, P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb. Cortex 21, 1761–1770 (2011). This study showed that nodal transcranial direct current stimulation (tDCS) stimulation of the cerebellum increases the rate of error-based learning during adaptation of reaching movements under a visuomotor rotation. Anodal tDCS of primary motor cortex does not change the rate of learning, but makes the adaptation more resistant to washout.

    Article  PubMed  Google Scholar 

  60. Mosier, K. M., Scheidt, R. A., Acosta, S. & Mussa-Ivaldi, F. A. Remapping hand movements in a novel geometrical environment. J. Neurophysiol. 94, 4362–4372 (2005).

    Article  PubMed  Google Scholar 

  61. Johansson, R. S. et al. How a lateralized brain supports symmetrical bimanual tasks. PLoS Biol. 4, e158 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu, X., Mosier, K. M., Mussa-Ivaldi, F. A., Casadio, M. & Scheidt, R. A. Reorganization of finger coordination patterns during adaptation to rotation and scaling of a newly learned sensorimotor transformation. J. Neurophysiol. 105, 454–473 (2011).

    Article  PubMed  Google Scholar 

  63. Reis, J. et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc. Natl Acad. Sci. USA 106, 1590–1595 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sutton, R. S. & Barto, A. G. Reinforcement Learning (The MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  65. Deisenroth, M., Rasmussen, C. & Peters, J. Gaussian process dynamic programming. Neurocomputing 72, 1508–1524 (2009).

    Article  Google Scholar 

  66. Izawa, J. & Shadmehr, R. Learning from sensory and reward prediction errors during motor adaptation. PLoS Comput. Biol. 7, e1002012 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Madelain, L., Paeye, C. & Wallman, J. Modification of saccadic gain by reinforcement. J. Neurophysiol. 106, 219–232 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Abe, M. et al. Reward improves long-term retention of a motor memory through induction of offline memory gains. Curr. Biol. 21, 557–562 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang, V. S., Haith, A., Mazzoni, P. & Krakauer, J. W. Rethinking motor learning and savings in adaptation paradigms: model-free memory for successful actions combines with internal models. Neuron 70, 787–801 (2011). This paper suggests that biases in movement direction and savings in relearning during visuomotor adaptation can be explained by two different use-dependent learning mechanisms. In both cases it is the repetition of the actual movement, rather than an error-signal, that underlies the learning changes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Luft, A. R. & Schwarz, S. Dopaminergic signals in primary motor cortex. Int. J. Dev. Neurosci. 27, 415–421 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Hosp, J. A., Pekanovic, A., Rioult-Pedotti, M. S. & Luft, A. R. Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J. Neurosci. 31, 2481–2487 (2011). This study shows that dopaminergic neurons from the ventral tegmental area (VTA) in the rat project to primary motor cortex. Lesions of the VTA lead to profound deficits in learning of a reaching task, which could be partially reversed through levodopa administration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Classen, J., Liepert, J., Wise, S. P., Hallett, M. & Cohen, L. G. Rapid plasticity of human cortical movement representation induced by practice. J. Neurophysiol. 79, 1117–1123 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Bütefisch, C. M. et al. Mechanisms of use-dependent plasticity in the human motor cortex. Proc. Natl Acad. Sci. USA 97, 3661–3665 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Verstynen, T. & Sabes, P. N. How each movement changes the next: an experimental and theoretical study of fast adaptive priors in reaching. J. Neurosci. 31, 10050–10059 (2011). Repeating an arm movement towards the same target decreases the variability of this movement while inducing directional biases for movements to neighbouring targets. This paper offers both a mechanistic (network model) and normative explanation (Bayesian model) for this use-dependent learning effect.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Diedrichsen, J., White, O., Newman, D. & Lally, N. Use-dependent and error-based learning of motor behaviors. J. Neurosci. 30, 5159–5166 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jordan, M. & Rumelhart, D. Forward models: supervised learning with a distal teacher. Cogn. Sci. 16, 307–354 (1992).

    Article  Google Scholar 

  77. d'Avella, A., Portone, A., Fernandez, L. & Lacquaniti, F. Control of fast-reaching movements by muscle synergy combinations. J. Neurosci. 26, 7791–7810 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sing, G. C., Joiner, W. M., Nanayakkara, T., Brayanov, J. B. & Smith, M. A. Primitives for motor adaptation reflect correlated neural tuning to position and velocity. Neuron 64, 575–589 (2009). This study shows that when subjects are exposed to a novel force field that depends only on position or on the speed of the hand, the initial adaptation is biased towards an interpretation that the force field depends on both position and speed. The interpretation of these results is that there is a strong prior that forces experienced by the hand will depend on both position and velocity in a correlated manner, suggesting that distribution of motor primitives are biased for this correlation.

    Article  CAS  PubMed  Google Scholar 

  79. Smith, M. A., Ghazizadeh, A. & Shadmehr, R. Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol. 4, e179 (2006). This study shows that two distinct processes underlie motor adaptation, one that learns quickly but retains information poorly and one that learns slowly but retains information well. This two-process learning system can account for a range of empirical data that a single process system cannot.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lee, J.-Y. & Schweighofer, N. Dual adaptation supports a parallel architecture of motor memory. J. Neurosci. 29, 10396–10404 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tanaka, H., Sejnowski, T. J. & Krakauer, J. W. Adaptation to visuomotor rotation through interaction between posterior parietal and motor cortical areas. J. Neurophysiol. 102, 2921–2932 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lackner, J. R. & DiZio, P. Motor control and learning in altered dynamic environments. Curr. Opin. Neurobiol. 15, 653–659 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Cothros, N., Wong, J. & Gribble, P. Are there distinct neural representations of object and limb dynamics? Exp. Brain Res. 173, 689–697 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Kluzik, J., Diedrichsen, J., Shadmehr, R. & Bastian, A. Reach adaptation: what determines whether we learn an internal model of the tool or adapt the model of our arm? J. Neurophysiol. 100, 1455–1464 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Cothros, N., Wong, J. & Gribble, P. L. Visual cues signaling object grasp reduce interference in motor learning. J. Neurophysiol. 102, 2112–2120 (2009).

    Article  PubMed  Google Scholar 

  86. Berniker, M. & Kording, K. Estimating the sources of motor errors for adaptation and generalization. Nature Neurosci. 11, 1454–1461 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Haith, A., Jackson, C., Miall, C. & Vijayakumar, S. Unifying the sensory and motor components of sensorimotor adaptation. Adv. Neural Inf. Process. Syst. 21, 593–600 (2009).

    Google Scholar 

  88. Cressman, E. K. & Henriques, D. Y. P. Sensory recalibration of hand position following visuomotor adaptation. J. Neurophysiol. 102, 3505–3518 (2009).

    Article  PubMed  Google Scholar 

  89. Ostry, D. J., Darainy, M., Mattar, A. A. G., Wong, J. & Gribble, P. L. Somatosensory plasticity and motor learning. J. Neurosci. 30, 5384–5393 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bursztyn, L. L. C. D., Ganesh, G., Imamizu, H., Kawato, M. & Flanagan, J. R. Neural correlates of internal-model loading. Curr. Biol. 16, 2440–2445 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Caithness, G. et al. Failure to consolidate the consolidation theory of learning for sensorimotor adaptation tasks. J. Neurosci. 24, 8662–8671 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gupta, R. & Ashe, J. Lack of adaptation to random conflicting force fields of variable magnitude. J. Neurophysiol. 97, 738–745 (2007).

    Article  PubMed  Google Scholar 

  93. Krouchev, N. I. & Kalaska, J. F. Context-dependent anticipation of different task dynamics: rapid recall of appropriate motor skills using visual cues. J. Neurophysiol. 89, 1165–1175 (2003).

    Article  PubMed  Google Scholar 

  94. Nozaki, D., Kurtzer, I. & Scott, S. H. Limited transfer of learning between unimanual and bimanual skills within the same limb. Nature Neurosci. 9, 1364–1366 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Howard, I. S., Ingram, J. N. & Wolpert, D. M. Context-dependent partitioning of motor learning in bimanual movements. J. Neurophysiol. 104, 2082–2091 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Howard, I. S., Ingram, J. N. & Wolpert, D. M. Composition and decomposition in bimanual dynamic learning. J. Neurosci. 28, 10531–10540 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nozaki, D. & Scott, S. H. Multi-compartment model can explain partial transfer of learning within the same limb between unimanual and bimanual reaching. Exp. Brain Res. 194, 451–463 (2009).

    Article  PubMed  Google Scholar 

  98. Kojima, Y., Iwamoto, Y. & Yoshida, K. Memory of learning facilitates saccadic adaptation in the monkey. J. Neurosci. 24, 7531–7539 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kording, K. P., Tenenbaum, J. B. & Shadmehr, R. The dynamics of memory as a consequence of optimal adaptation to a changing body. Nature Neurosci. 10, 779–786 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Huang, V. S. & Shadmehr, R. Persistence of motor memories reflects statistics of the learning event. J. Neurophysiol. 102, 931–940 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Anguera, J., Reuter-Lorenz, P., Willingham, D. & Seidler, R. Contributions of spatial working memory to visuomotor learning. J. Cogn. Neurosci. 22, 1917–1930 (2009).

    Article  Google Scholar 

  102. Fernandez-Ruiz, J., Wong, W., Armstrong, I. T. & Flanagan, J. R. Relation between reaction time and reach errors during visuomotor adaptation. Behav. Brain Res. 219, 8–14 (2011).

    Article  PubMed  Google Scholar 

  103. Keisler, A. & Shadmehr, R. A shared resource between declarative memory and motor memory. J. Neurosci. 30, 14817–14823 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Brown, R. M. & Robertson, E. M. Inducing motor skill improvements with a declarative task. Nature Neurosci. 10, 148–149 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Bongard, J., Zykov, V. & Lipson, H. Resilient machines through continuous self-modeling. Science 314, 1118–1121 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Braun, D. A., Aertsen, A., Wolpert, D. M. & Mehring, C. Learning optimal adaptation strategies in unpredictable motor tasks. J. Neurosci. 29, 6472–6478 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Braun, D. A., Aertsen, A., Wolpert, D. M. & Mehring, C. Motor task variation induces structural learning. Curr. Biol. 19, 352–357 (2009). This paper shows that after experiencing multiple sensorimotor transformations that conform to a structure (for example, the set of visuomotor rotations), interference between opposite visuomotor rotations is substantially reduced. These results show that subjects can extract the structure across a set of tasks and use this to facilitate learning of new tasks provided that they conform to the learned structure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Braun, D. A., Mehring, C. & Wolpert, D. M. Structure learning in action. Behav. Brain Res. 206, 157–165 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Braun, D. A., Waldert, S., Aertsen, A., Wolpert, D. M. & Mehring, C. Structure learning in a sensorimotor association task. PLoS ONE 5, e8973 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Huang, V. S., Shadmehr, R. & Diedrichsen, J. Active learning: learning a motor skill without a coach. J. Neurophysiol. 100, 879–887 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Brashers-Krug, T., Shadmehr, R. & Bizzi, E. Consolidation in human motor memory. Nature 382, 252–255 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Brooks, V., Hilperath, F., Brooks, M., Ross, H. & Freund, H. Learning “what” and “how” in a human motor task. Learn. Mem. 2, 225–242 (1995).

    Article  CAS  PubMed  Google Scholar 

  113. Ahmed, A. A., Wolpert, D. M. & Flanagan, J. R. Flexible representations of dynamics are used in object manipulation. Curr. Biol. 18, 763–768 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ingram, J. N., Howard, I. S., Flanagan, J. R. & Wolpert, D. M. Multiple grasp-specific representations of tool dynamics mediate skillful manipulation. Curr. Biol. 20, 618–623 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Churchland, M. M., Afshar, A. & Shenoy, K. V. A central source of movement variability. Neuron 52, 1085–1096 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Burstedt, M., Edin, B. & Johansson, R. S. Coordination of fingertip forces during human manipulation can emerge from independent neural networks controlling each engaged digit. Exp. Brain Res. 117, 67–79 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Reed, K. et al. Haptically linked dyads: are two motor-control systems better than one? Psychol. Sci. 17, 365–366 (2006).

    Article  PubMed  Google Scholar 

  118. Braun, D. A., Ortega, P. A. & Wolpert, D. M. Nash equilibria in multi-agent motor interactions. PLoS Comput. Biol. 5, e1000468 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Braun, D. A., Ortega, P. A. & Wolpert, D. M. Motor coordination: when two have to act as one. Exp. Brain Res. 221, 631–641 (2011).

    Article  Google Scholar 

  120. Rizzolatti, G. & Luppino, G. The cortical motor system. Neuron 31, 889–901 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Rizzolatti, G. & Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Flanagan, J. R. & Johansson, R. S. Action plans used in action observation. Nature 424, 769–771 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Rotman, G., Troje, N. F., Johansson, R. S. & Flanagan, J. R. Eye movements when observing predictable and unpredictable actions. J. Neurophysiol. 96, 1358–1369 (2006).

    Article  PubMed  Google Scholar 

  124. Heyes, C. M. & Foster, C. L. Motor learning by observation: evidence from a serial reaction time task. Q. J. Exp. Physiol. 55, 593–607 (2002).

    CAS  Google Scholar 

  125. Mattar, A. A. G. & Gribble, P. L. Motor learning by observing. Neuron 46, 153–160 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Wolpert, D. M., Doya, K. & Kawato, M. A unifying computational framework for motor control and social interaction. Phil. Trans. R. Soc. Lond. B 358, 593–602 (2003).

    Article  Google Scholar 

  127. Oztop, E., Wolpert, D. M. & Kawato, M. Mental state inference using visual control parameters. Cogn. Brain Res. 22, 129–151 (2005).

    Article  Google Scholar 

  128. Aglioti, S. M., Cesari, P., Romani, M. & Urgesi, C. Action anticipation and motor resonance in elite basketball players. Nature Neurosci. 11, 1109–1116 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Brass, M., Schmitt, R. M., Spengler, S. & Gergely, G. investigating action understanding: inferential processes versus action simulation. Curr. Biol. 17, 2117–2121 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Hesse, M. D., Sparing, R. & Fink, G. R. End or means-the “what” and “how” of observed intentional actions. J. Cogn. Neurosci. 21, 776–790 (2009).

    Article  PubMed  Google Scholar 

  131. Malfait, N. et al. fMRI activation during observation of others' reach errors. J. Cogn. Neurosci. 22, 1493–1503 (2010).

    Article  PubMed  Google Scholar 

  132. Burke, C. J., Tobler, P. N., Baddeley, M. & Schultz, W. Neural mechanisms of observational learning. Proc. Natl Acad. Sci. USA 107, 14431–14436 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. White, O. & Diedrichsen, J. Responsibility assignment in redundant systems. Curr. Biol. 20, 1290–1295 (2010). This study shows that when participants control a single cursor that is located at the spatial average of the two hands, the left hand corrects more for cursor errors that are induced by a visuomotor rotation, although the right hand corrects more efficiently during unimanual movements. This indicates that the motor system assigns the error during redundant movement to the more likely source of the error.

    Article  CAS  PubMed  Google Scholar 

  134. Vetter, P., Flash, T. & Wolpert, D. M. Planning movements in a simple redundant task. Curr. Biol. 12, 488–491 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Wellcome Trust, the Canadian Institutes of Health Research and the Human Frontiers Science Programme for support. J.D. is supported by a Scholar award from the James S. McDonnell foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Wolpert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Daniel M. Wolpert's homepage

Jörn Diedrichsen's homepage

J. Randall Flanagan's homepage

Glossary

Optimal

A system is said to be optimal if it minimizes some cost function under given constraints.

Saccade

A rapid movement of the eyes that changes fixation from one point to another.

Visuomotor mapping

Typically, the relationship between the hand's actual and visual locations that can be altered using devices (such as a prism) or virtual reality to examine visuomotor learning.

Noise

Random or unpredictable fluctuations and disturbances of neural, neuromuscular or environmental origin.

Bayesian inference

A method of statistical inference in which observations are used to calculate or update the probability distribution of hidden variables.

Visuo–haptic integration

The process that combines visual information (for example, the visual size of an object) and haptic information (for example, the felt size of a grasped object) into a single percept (for example, its size).

Efference copy

A copy of the outgoing (efferent) motor command that can be used in conjunction with a forward model to predict the sensory consequences of action.

Dynamics

The relationship between force and motion that can be altered using robotic interfaces to study the learning of novel dynamics.

Forward model

A neural simulator that predicts (in the causal — and hence, forward — direction) the sensory consequences of an action given the current state and efference copy of the motor command.

Optimal feedback control

Optimality that is applied to setting up time-varying feedback controllers to drive a movement so as to minimize a function that is typically a combination of accuracy and effort.

Impedance control

Impedance refers to the force produced by the limb to resist an externally induced motion (or deviation from desired motion). Impedance control changes this biomechanical behaviour of the limb by changing the configuration or stiffness through muscular co-contraction.

Force fields

A type of dynamic motor learning in which forces are applied to the hand by a robotic manipulandum and in which the force direction and magnitude depends on the state of the hand (for example, its position and velocity), allowing the perturbation to be plotted as a force field.

Solution manifold

The set of solutions that can each, on average (perhaps owing to noise), solve a task.

After-effect

The deviations of a system from pre-perturbation behaviour after learning when the perturbation is first removed.

Kinematics

This refers to the relationship between positional variables, such as joint angles and hand position.

Savings

This refers to the phenomenon that relearning of a perturbation or skill for a second time is faster than initial learning.

Declarative memory

Memories that can be consciously recalled, such as facts and events.

Procedural memory

Unconscious memories of skills and how to do things, such as being able to walk downstairs.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wolpert, D., Diedrichsen, J. & Flanagan, J. Principles of sensorimotor learning. Nat Rev Neurosci 12, 739–751 (2011). https://doi.org/10.1038/nrn3112

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing