Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The structural basis of inter-individual differences in human behaviour and cognition

Abstract

Inter-individual variability in perception, thought and action is frequently treated as a source of 'noise' in scientific investigations of the neural mechanisms that underlie these processes, and discarded by averaging data from a group of participants. However, recent MRI studies in the human brain show that inter-individual variability in a wide range of basic and higher cognitive functions — including perception, motor control, memory, aspects of consciousness and the ability to introspect — can be predicted from the local structure of grey and white matter as assessed by voxel-based morphometry or diffusion tensor imaging. We propose that inter-individual differences can be used as a source of information to link human behaviour and cognition to brain anatomy.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Examples of typical average and individual responses across two conditions.
Figure 2: Structural bases of inter-individual differences in action and decision making.
Figure 3: Structural bases of inter-individual differences in conscious perception.
Figure 4: Brain structure correlates of higher cognitive functions.

References

  1. Henrich, J., Heine, S. J. & Norenzayan, A. The weirdest people in the world? Behav. Brain Sci. 33, 61–83; discussion 83–135 (2010).

    Article  PubMed  Google Scholar 

  2. Vogel, E. K. & Awh, E. How to exploit diversity for scientific gain. Curr. Dir. Pscyhol. Sci. 17, 171–176 (2008).

    Article  Google Scholar 

  3. Bishop, S., Duncan, J., Brett, M. & Lawrence, A. D. Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli. Nature Neurosci. 7, 184–188 (2004).

    CAS  Article  PubMed  Google Scholar 

  4. Bishop, S. Trait anxiety and impoverished prefrontal control of attention. Nature Neurosci. 12, 92–98 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Osaka, M. et al. The neural basis of individual differences in working memory capacity: an fMRI study. Neuroimage 18, 789–797 (2003).

    Article  PubMed  Google Scholar 

  6. Wig, G. S. et al. Medial temporal lobe BOLD activity at rest predicts individual differences in memory ability in healthy young adults. Proc. Natl Acad. Sci. USA 105, 18555–18560 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. McNab, F. & Klingberg, T. Prefrontal cortex and basal ganglia control access to working memory. Nature Neurosci. 11, 103–107 (2008).

    CAS  Article  PubMed  Google Scholar 

  8. Haruno, M. & Frith, C. D. Activity in the amygdala elicited by unfair divisions predicts social value orientation. Nature Neurosci. 13, 160–161 (2010).

    CAS  Article  PubMed  Google Scholar 

  9. Koten, J. W. Jr et al. Genetic contribution to variation in cognitive function: an fMRI study in twins. Science 323, 1737–1740 (2009).

    CAS  Article  PubMed  Google Scholar 

  10. Cacioppo, J. T. et al. In the eye of the beholder: individual differences in perceived social isolation predict regional brain activation to social stimuli. J. Cogn. Neurosci. 21, 83–92 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gray, J. R., Chabris, C. F. & Braver, T. S. Neural mechanisms of general fluid intelligence. Nature Neurosci. 6, 316–322 (2003).

    CAS  Article  PubMed  Google Scholar 

  12. Tom, S. M., Fox, C. R., Trepel, C. & Poldrack, R. A. The neural basis of loss aversion in decision-making under risk. Science 315, 515–518 (2007).

    CAS  Article  PubMed  Google Scholar 

  13. Vogel, E. K. & Machizawa, M. G. Neural activity predicts individual differences in visual working memory capacity. Nature 428, 748–751 (2004).

    CAS  Article  PubMed  Google Scholar 

  14. Vogel, E. K., McCollough, A. W. & Machizawa, M. G. Neural measures reveal individual differences in controlling access to working memory. Nature 438, 500–503 (2005).

    CAS  Article  PubMed  Google Scholar 

  15. Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29, 169–195 (1999).

    CAS  Article  PubMed  Google Scholar 

  16. Amodio, D. M., Jost, J. T., Master, S. L. & Yee, C. M. Neurocognitive correlates of liberalism and conservatism. Nature Neurosci. 10, 1246–1247 (2007).

    CAS  Article  PubMed  Google Scholar 

  17. Drew, T. & Vogel, E. K. Neural measures of individual differences in selecting and tracking multiple moving objects. J. Neurosci. 28, 4183–4191 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Martens, S., Munneke, J., Smid, H. & Johnson, A. Quick minds don't blink: electrophysiological correlates of individual differences in attentional selection. J. Cogn. Neurosci. 18, 1423–1438 (2006).

    Article  PubMed  Google Scholar 

  19. Herzmann, G., Kunina, O., Sommer, W. & Wilhelm, O. Individual differences in face cognition: brain-behavior relationships. J. Cogn. Neurosci. 22, 571–589 (2010).

    Article  PubMed  Google Scholar 

  20. Kienast, T. et al. Dopamine in amygdala gates limbic processing of aversive stimuli in humans. Nature Neurosci. 11, 1381–1382 (2008).

    CAS  Article  PubMed  Google Scholar 

  21. Zald, D. H. et al. Midbrain dopamine receptor availability is inversely associated with novelty-seeking traits in humans. J. Neurosci. 28, 14372–14378 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Gjedde, A. et al. Inverted-U-shaped correlation between dopamine receptor availability in striatum and sensation seeking. Proc. Natl Acad. Sci. USA 107, 3870–3875 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Gerretsen, P. et al. Is desire for social relationships mediated by serotonergic system in the prefrontal cortex? An [18F] setoperone PET study. Soc. Neurosci. 5, 375–383 (2010).

    Article  PubMed  Google Scholar 

  24. Boy, F. et al. Individual differences in subconscious motor control predicted by GABA concentration in SMA. Curr. Biol. 20, 1779–1785 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Sumner, P. et al. More GABA, less distraction: a neurochemical predictor of motor decision speed. Nature Neurosci. 13, 825–827 (2010).

    CAS  Article  PubMed  Google Scholar 

  26. Muthukumaraswamy, S. D. et al. Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc. Natl Acad. Sci. USA 106, 8356–8361 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Gaser, C. & Schlaug, G. Brain structures differ between musicians and non-musicians. J. Neurosci. 23, 9240–9245 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Sluming, V. et al. Voxel-based morphometry reveals increased gray matter density in Broca's area in male symphony orchestra musicians. NeuroImage 17, 1613–1622 (2002).

    Article  PubMed  Google Scholar 

  29. Maguire, E. A. et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc. Natl Acad. Sci. USA 97, 4398–4403 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Mechelli, A. et al. Neurolinguistics: structural plasticity in the bilingual brain. Nature 431, 757 (2004).

    CAS  Article  PubMed  Google Scholar 

  31. Westerhausen, R. et al. Interhemispheric transfer time and structural properties of the corpus callosum. Neurosci. Lett. 409, 140–145 (2006).

    CAS  Article  PubMed  Google Scholar 

  32. Whitford, T. J. et al. Predicting inter-hemispheric transfer time from the diffusion properties of the corpus callosum in healthy individuals and schizophrenia patients: a combined ERP and DTI study. Neuroimage 54, 2318–2329 (2011).

    Article  PubMed  Google Scholar 

  33. Tuch, D. S. et al. Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. Proc. Natl Acad. Sci. USA 102, 12212–12217 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Johansen-Berg, H. et al. Integrity of white matter in the corpus callosum correlates with bimanual co-ordination skills. Neuroimage 36, Suppl. 2, T16–T21 (2007).

    Article  Google Scholar 

  35. van Gaal, S. et al. Pre-SMA gray-matter density predicts individual differences in action selection in the face of conscious and unconscious response conflict. J. Cogn. Neurosci. 23, 382–390 (2011).

    Article  PubMed  Google Scholar 

  36. Pew, R. W. The speed-accuracy operating characteristic. Acta Psychol. 30, 16–26 (1969).

    Article  Google Scholar 

  37. Bogacz, R., Wagenmakers, E. J., Forstmann, B. U. & Nieuwenhuis, S. The neural basis of the speed-accuracy tradeoff. Trends Neurosci. 33, 10–16 (2010).

    CAS  Article  PubMed  Google Scholar 

  38. Chittka, L., Dyer, A. G., Bock, F. & Dornhaus, A. Psychophysics: bees trade off foraging speed for accuracy. Nature 424, 388 (2003).

    CAS  Article  PubMed  Google Scholar 

  39. Uchida, N. & Mainen, Z. F. Speed and accuracy of olfactory discrimination in the rat. Nature Neurosci. 6, 1224–1229 (2003).

    CAS  Article  PubMed  Google Scholar 

  40. van Veen, V. et al. The neural and computational basis of controlled speed–accuracy tradeoff during task performance. J. Cogn. Neurosci. 20, 1952–1965 (2008).

    Article  PubMed  Google Scholar 

  41. Ivanoff, J., Branning, P. & Marois, R. fMRI evidence for a dual process account of the speed-accuracy tradeoff in decision-making. PLoS ONE 3, e2635 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Forstmann, B. U. et al. Cortico-striatal connections predict control over speed and accuracy in perceptual decision making. Proc. Natl Acad. Sci. USA 107, 15916–15920 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Forstmann, B. U. et al. Striatum and pre-SMA facilitate decision-making under time pressure. Proc. Natl Acad. Sci. USA 105, 17538–17542 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Andrews, T. J., Halpern, S. D. & Purves, D. Correlated size variations in human visual cortex, lateral geniculate nucleus and optic tract. J. Neurosci. 17, 2859–2868 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Dougherty, R. F. et al. Visual field representations and locations of visual areas V1/2/3 in human visual cortex. J. Vis. 3, 586–598 (2003).

    Article  PubMed  Google Scholar 

  46. Daniel, P. M. & Whitteridge, D. The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. 159, 203–221 (1961).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Duncan, R. O. & Boynton, G. M. Cortical magnification within human primary visual cortex correlates with acuity thresholds. Neuron 38, 659–671 (2003).

    CAS  Article  PubMed  Google Scholar 

  48. Sterzer, P., Kleinschmidt, A. & Rees, G. The neural bases of multistable perception. Trends Cogn. Sci. 13, 310–318 (2009).

    Article  PubMed  Google Scholar 

  49. Pettigrew, J. D. & Miller, S. M. A 'sticky' interhemispheric switch in bipolar disorder? Proc. R. Soc. B 265, 2141–2148 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Miller, S. M. et al. Genetic contribution to individual variation in binocular rivalry rate. Proc. Natl Acad. Sci. USA 107, 2664–2668 (2009).

    Article  Google Scholar 

  51. Kanai, R., Bahrami, B. & Rees, G. Human parietal cortex structure predicts individual differences in perceptual rivalry. Curr. Biol. 20, 1626–1630 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Kanai, R., Carmel, D., Bahrami, B. & Rees, G. Structural and functional fractionation of right superior parietal cortex in bistable perception. Curr. Biol. 21, R106–R107 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Lumer, E., Friston, K. & Rees, G. Neural correlates of perceptual rivalry in the human brain. Science 280, 1930–1934.

  54. Kleinschmidt, A., Bichel, C., Zeki, S. & Frackowiak, R. S. J. Human brain activity during spontaneously reversing perception of ambiguous figures. Proc. R. Soc. B 265, 2427–2433 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Rees, G., Kreiman, G. & Koch, C. Neural correlates of consciousness in humans. Nature Rev. Neurosci. 3, 261–270 (2002).

    CAS  Article  Google Scholar 

  56. Sterzer, P. & Kleinschmidt, A. A neural basis for inference in perceptual ambiguity. Proc. Natl Acad. Sci. USA 104, 323–328 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Britz, J., Pitts, M. A. & Michel, C. M. Right parietal brain activity precedes perceptual alternation during binocular rivalry. Hum. Brain Mapp. 5 Aug 2010 (doi:10.1002/hbm.2 1117).

  58. Bonneh, Y. S., Pavlovskaya, M., Ring, H. & Soroker, N. Abnormal binocular rivalry in unilateral neglect: evidence for a non-spatial mechanism of extinction. Neuroreport 15, 473–477 (2004).

    Article  PubMed  Google Scholar 

  59. Kanai, R., Muggleton, N. G. & Walsh, V. TMS over the intraparietal sulcus induces perceptual fading. J. Neurophysiol. 100, 3343–3350 (2008).

    Article  PubMed  Google Scholar 

  60. Schwarzkopf, D. S., Song, C. & Rees, G. The surface area of human V1 predicts the subjective experience of object size. Nature Neurosci. 14, 28–30 (2011).

    CAS  Article  PubMed  Google Scholar 

  61. Rajimehr, R. & Tootell, R. B. H. Does retinotopy influence cortical folding in primate visual cortex? J. Neurosci. 29, 11149–11152 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Sereno, M. I. et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995).

    CAS  Article  PubMed  Google Scholar 

  63. Pruessner, J. C. et al. Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories. Cereb. Cortex 10, 433–442 (2000).

    CAS  Article  PubMed  Google Scholar 

  64. Fischl, B. et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002).

    CAS  Article  PubMed  Google Scholar 

  65. Jovicich, J. et al. MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage 45, 177–192 (2009).

    Article  Google Scholar 

  66. Weniger, G., Lange, C. & Irle, E. Abnormal size of the amygdala predicts impaired emotional memory in major depressive disorder. J. Affect. Disord. 94, 219–229 (2006).

    Article  PubMed  Google Scholar 

  67. Irle. et al. Reuced amygdalar and hippocampal size in adults with generalized social phobia. J. Psychiatry Neurosci. 35, 126–131 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bickart, K. C. et al. Amygdala volume and social network size in humans. Nature Neurosci. 14, 163–164 (2011).

    CAS  Article  PubMed  Google Scholar 

  69. Rouw, R. & Scholte, H. S. Neural basis of individual differences in synesthetic experiences. J. Neurosci. 30, 6205–6213 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Metcalfe, J. & Shimamura, A. Metacognition: Knowing About Knowing (MIT Press, Cambridge MA, 1994).

    Book  Google Scholar 

  71. Kolb, F. C. & Braun, J. Blindsight in normal observers. Nature 377, 336–338 (1995).

    CAS  Article  PubMed  Google Scholar 

  72. Persaud, N., McLeod, P. & Cowey, A. Post-decision wagering objectively measures awareness. Nature Neurosci. 10, 257–261 (2007).

    CAS  Article  PubMed  Google Scholar 

  73. Lau, H. C. & Passingham, R. E. Relative blindsight in normal observers and the neural correlate of visual consciousness. Proc. Natl Acad. Sci. USA 103, 18763–18768 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Kanai, R., Walsh, V. & Tseng, C.-H. Subjective discriminability of invisibility: a framework for distinguishing perceptual and attentional failures of awareness. Conscious. Cogn. 19, 1045–1057 (2010).

    Article  PubMed  Google Scholar 

  75. Hampton, R. R. Rhesus monkeys know when they remember. Proc. Natl Acad. Sci. USA 98, 5359–5362 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Smith, J. D. The study of animal metacognition. Trends Cogn. Sci. 13, 389–395 (2009).

    Article  PubMed  Google Scholar 

  77. Kunimoto, C., Miller, J. & Pashler, H. Confidence and accuracy of near-threshold discrimination responses. Conscious. Cogn. 10, 294–340 (2001).

    CAS  Article  PubMed  Google Scholar 

  78. Galvin, S. J., Podd, J. V., Drga, V. & Whitmore, J. Type 2 tasks in the theory of signal detectability: discrimination between correct and incorrect decisions. Psychon. Bull. Rev. 10, 843–876 (2003).

    Article  PubMed  Google Scholar 

  79. Washburn, D. A., Smith, J. D. & Taglialatela, L. A. Individual differences in metacognitive responsiveness: cognitive and personality correlates. J. Gen. Psychol. 132, 446–461 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fleming, S. M. et al. Relating introspective accuracy to individual differences in brain structure. Science 329, 1541–1543 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Fan, J. et al. Testing the efficiency and independence of attentional networks. J. Cogn. Neurosci. 14, 340–347 (2002).

    Article  PubMed  Google Scholar 

  82. Fan, J. et al. Testing the behavioural interaction and integration of attentional networks. Brain Cogn. 70, 209–220 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Westlye, L. T., Grydeland, H., Walhovd, K. B. & Fjell, A. M. Associations between regional cortical thickness and attentional networks as measured by the attention network test. Cereb. Cortex 21, 345–356 (2011).

    Article  PubMed  Google Scholar 

  84. Fan, J. et al. The activation of attentional networks. Neuroimage 26, 471–479 (2005).

    Article  PubMed  Google Scholar 

  85. Bush, G., Luu, P. & Posner, M. I. Cognitive and emotional influences in anterior cingulate cortex. Trends. Cogn. Sci. 4, 215–222 (2000).

    CAS  Article  PubMed  Google Scholar 

  86. Aron, A. R., Robbins, T. W. & Poldrack, R. A. Inhibition and the right inferior frontal cortex. Trends Cogn. Sci. 8, 170–177(2004).

    Article  PubMed  Google Scholar 

  87. Putnam, M. C. et al. Structural organization of the corpus callosum predicts the extent and impact of cortical activity in the nondominant hemisphere. J. Neurosci. 28, 2912–2918 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Tomassini, V. et al. Structural and functional bases for individual differences in motor learning. Hum. Brain Mapp. 32, 494–508 (2011).

    Article  PubMed  Google Scholar 

  89. Olesen, P. J., Nagy, Z. Westerberg, H. & Klingberg, T. Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network. Cogn. Brain Res. 18, 48–57 (2003).

    Article  Google Scholar 

  90. Critchley, H. D. et al. Neural systems supporting interoceptive awareness. Nature Neurosci. 7, 189–195 (2004).

    CAS  Article  PubMed  Google Scholar 

  91. Olson, E. A. et al. White matter integrity predicts delay discounting behavior in 9- to 23-year-olds: a diffusion tensor imaging study. J. Cogn. Neurosci. 21, 1406–1421 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  92. McClure, S. M., Laibson, D. I., Loewenstein, G. & Cohen, J. D. Separate neural systems value immediate and delayed monetary rewards. Science 306, 503–507 (2004).

    CAS  Article  PubMed  Google Scholar 

  93. Cardinal, R. N. & Ceung, T. H. C. Nucleus accumbens core lesions retard instrumental learning and performance with delayed reinforcement in the rat. BMC Neurosci. 6, 9 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Deary, I. J., Penke, L. & Johnson, W. The neuroscience of human intelligence differences. Nature Rev. Neurosci. 11, 201–211 (2010).

    CAS  Article  Google Scholar 

  95. Hulshoff Pol, H. E. et al. Genetic contributions to human brain morphology and intelligence. J. Neurosci. 26, 10235–10242 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rushton, J. P. & Ankney, C. D. Whole brain size and general mental ability: a review. Int. J. Neurosci. 119, 691–731 (2009).

    Article  PubMed  Google Scholar 

  97. Karama, S. et al. Positive association between cognitive ability and cortical thickness in a representative US sample of healthy 6 to 18 year-olds. Intelligence 37, 145–155 (2009).

    Article  Google Scholar 

  98. Choi, Y. Y. et al. Multiple bases of human intelligence revealed by cortical thickness and neural activation. J. Neurosci. 28, 10323–10329 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. Deary, I. J. et al. White matter integrity and cognition in childhood and old age. Neurology 66, 505–512 (2006).

    CAS  Article  PubMed  Google Scholar 

  100. Schmithorst, V. J., Wilke, M., Dardzinski, B. J. & Holland, S. K. Cognitive functions correlate with white matter architecture in a normal pediatric population: a diffusion tensor MRI study. Hum. Brain Mapp. 26, 139–147 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Chiang, M. C. et al. Genetics of brain fiber architecture and intellectual performance. J. Neurosci. 29, 2212–2224 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. Charlton, R. A. et al. The relationship between white matter brain metabolites and cognition in normal aging: the GENIE study. Brain Res. 1164, 108–116 (2007).

    CAS  Article  PubMed  Google Scholar 

  103. Li, Y. et al. Brain anatomical network and intelligence. PLoS Comput. Biol. 5, e1000395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jensen, A. R. Clocking the Mind: Mental Chronometry and Individual Differences (Elsevier, Amsterdam, 2006).

    Google Scholar 

  105. Deary, I. J., Der, G. & Ford, G. Reaction times and intelligence differences: a population-based cohort study. Intelligence 29, 389–399 (2001).

    Article  Google Scholar 

  106. Penke, L. et al. A general factor of brain white matter integrity predicts information processing speed in healthy older people. J. Neurosci. 30, 7569–7574 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. Costa, P. T. Jr. & McCrae, R. R. Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI) Manual (Psychological Assesments Resources, Odessa, 1992).

    Google Scholar 

  108. Paunonen, S. V. & Ashton, M. C. Big five factors and faces and the prediction of behavior. J. Pers. Soc. Psychol. 81, 524–539 (2001).

    CAS  Article  PubMed  Google Scholar 

  109. Ashby, F. G., Isen, A. M. & Turken, A. U. A neuropsychological theory of positive affect and its influence on cognition. Psychol. Rev. 106, 529–550 (1999).

    CAS  Article  PubMed  Google Scholar 

  110. MacLean, M. H. & Arnell, K. M. Personality predicts temporal attention costs in the attentional blink paradigm. Psychon. Bull. Rev. 17, 556–562 (2010).

    Article  PubMed  Google Scholar 

  111. DeYoung, C. G., Peterson, J. B. & Higgins, D. M. Sources of openness/intellect: cognitive and neuropsychological correlates of the fifth factor of personality. J. Pers. 73, 825–858 (2005).

    Article  PubMed  Google Scholar 

  112. Reimann, R., Angleitner, A. & Strelau, J. Genetic and environmental influences on personality: a study of twins reared together using the self- and peer report NEO-FFI scales. J. Pers. 65, 449–476 (1997).

    Article  Google Scholar 

  113. Bouchard, T. J. Jr & McGue, M. Genetic and environmental influences on human psychological differences. J. Neurobiol. 54, 4–45 (2003).

    Article  PubMed  Google Scholar 

  114. DeYoung, C. G. & Gray, J. R. in The Cambridge Handbook of Personality Psychology (eds Corr, P. J. & Matthews, G.) 323–346 (Cambridge Univ. Press, New York, 2009).

    Google Scholar 

  115. DeYoung, C. G. et al. Testing predictions from personality neuroscience: brain structure and the big five. Psychol. Sci. 21, 820–828 (2010).

    Article  PubMed  Google Scholar 

  116. Matsuo, K. et al. A voxel-based morphometry study of frontal gray matter correlates of impulsivity. Hum. Brain Mapp. 30, 1188–1195 (2009).

    Article  PubMed  Google Scholar 

  117. Welborn, B. L. et al. Variation in orbitofrontal cortex volume: relation to sex, emotion regulation and affect. Soc. Cogn. Affect. Neurosci. 4, 328–339 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kruger, J. & Dunning, D. Unskilled and unaware of it: how difficulties in recognizing one's own incompetence lead to inflated self-assessments. J. Pers. Soc. Psychol. 77, 1121–1134 (1999).

    CAS  Article  PubMed  Google Scholar 

  119. Thompson, P. M. et al. Genetic influences on brain structure. Nature Neurosci. 4, 1253–1258 (2001).

    CAS  Article  PubMed  Google Scholar 

  120. Glahn, D. C., Thompson, P. M. & Blangero, J. Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function. Hum. Brain Mapp. 28, 488–501 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Schmitt, J. E. et al. A multivariate analysis of neuroanatomic relationships in a genetically informative pediatric sample. Neuroimage 35, 70–82 (2007).

    Article  PubMed  Google Scholar 

  122. Peper, J. S. et al. Genetic influences on human brain structure: a review of brain imaging studies in twins. Hum. Brain Mapp. 28, 464–473 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Panizzon, M. S. et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb. Cortex 19, 2728–2735 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Devlin, B., Daniels, M. & Roeder, K. The heritability of IQ. Nature 388, 468–471 (1997).

    CAS  Article  PubMed  Google Scholar 

  125. Haier, R. J. et al. Structural brain variation and general intelligence. Neuroimage 23, 425–433 (2004).

    Article  PubMed  Google Scholar 

  126. Lange, N., Froimowitz, M. P., Bigler, E. D. & Lainhart, J. E. Associations between IQ, total and regional brain volumes, and demography in a large normative sample of healthy children and adolescents. Dev. Neuropsychol. 35, 296–317 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Duncan, J. et al. A neural basis for general intelligence. Science 289, 457–480 (2000).

    CAS  Article  PubMed  Google Scholar 

  128. Bouchard, T. J. & McGue, M. Familial studies of intelligence: a review. Science 212, 1055–1059 (1981).

    Article  PubMed  Google Scholar 

  129. Rubenstein, J. L. & Rakic, P. Genetic control of cortical development. Cereb. Cortex 9, 521–523 (1999).

    CAS  Article  PubMed  Google Scholar 

  130. Rubenstein, J. L. et al. Genetic control of cortical regionalization and connectivity. Cereb. Cortex 9, 524–532 (1999).

    CAS  Article  PubMed  Google Scholar 

  131. Rakic, P. Specification of cerebral cortical areas. Science 241, 170–176 (1988).

    CAS  Article  PubMed  Google Scholar 

  132. Pallas, S. L. Intrinsic and extrinsic factors that shape neocortical specification. Trends Neurosci. 24, 417–423 (2001).

    CAS  Article  PubMed  Google Scholar 

  133. Draganski, B. et al. Neuroplasticity: changes in grey matter induced by training. Nature 427, 311–312 (2004).

    CAS  Article  PubMed  Google Scholar 

  134. Draganski, B. et al. Temporal and spatial dynamics of brain structure changes during extensive learning. J. Neurosci. 26, 6314–6317 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  135. Driemeyer, J. et al. Changes in gray matter induced by learning—revisited. PLoS ONE 3, e2669 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Haier, R. J., Karama, S., Leyba, L. & Jung, R. E. MRI assessment of cortical thickness and functional activity changes in adolescent girls following three months of practice on a visual-spatial task. BMC Res. Notes 2, 174 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Quallo, M. M. et al. Gray and white matter changes associated with tool-use learning in macaque monkeys. Proc. Natl Acad. Sci. USA 106, 18379–18384 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  138. Scholz, J., Klein, M. C., Behrens, T. E. & Johansen-Berg, H. Training induces changes in white-matter architecture. Nature Neurosci. 12, 1370–1371 (2009).

    CAS  Article  PubMed  Google Scholar 

  139. Taubert, M. et al. Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. J. Neurosci. 30, 11670–11677 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  140. Carreira, M. et al. An anatomical signature for literacy. Nature 461, 983–986 (2009).

    Article  CAS  Google Scholar 

  141. Dehaene, S. et al. How learning to read changes the cortical networks for vision and language. Science 330, 1359–1364 (2010).

    CAS  Article  PubMed  Google Scholar 

  142. Turkeltaub, P. E. et al. Development of neural mechanisms for reading. Nature Neurosci. 6, 767–773 (2003).

    CAS  Article  PubMed  Google Scholar 

  143. Price, C. J. & Mechelli, A. Reading and reading disturbance. Curr. Opin. Neurobiol. 15, 231–238 (2005).

    CAS  Article  PubMed  Google Scholar 

  144. Machizawa, M. G. & Driver, J. Principal component analysis behavioural individual differences suggests that particular aspects of visual working memory may relate to specific aspects of attention. Neuropsychologia 3 Dec 2010 (doi: 10.1016/j.neuropsychologia.2010.11.032).

    Article  PubMed  Google Scholar 

  145. Garrido, L. VBM reveals reduced gray matter volume in the temporal cortex of developmental prosopagnosics. Brain 132, 3443–3455 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Mechelli, A. Friston, K. J., Frackowiak, R. S. & Price, C. J. Structural covariance in the human cortex. J. Neurosci. 25, 8303–8310 (2005).

    CAS  Article  Google Scholar 

  147. He, Y., Chen, Z. & Evans, A. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex 17, 2407–2419.

  148. Hagmann, P. et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 6, e159. (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Volkmar, F. R. & Greenough, W. T. Rearing complexity affects branching of dendrites in the visual cortex of the rat. Science 176, 1445–1447 (1972).

    CAS  Article  PubMed  Google Scholar 

  150. Turner, A. M. & Greenough, W. T. Differential rearing effects on rat visual cortex synapses. I. Synaptic and neuronal density and synapses per neuron. Brain Res. 329, 195–203 (1985).

    CAS  Article  PubMed  Google Scholar 

  151. Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    CAS  Article  PubMed  Google Scholar 

  152. Rakic, P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 18, 383–388 (1995).

    CAS  Article  PubMed  Google Scholar 

  153. Rakic, P. The radial edifice of cortical architecture: from neuronal silhouettes to genetic engineering. Brain Res. Rev. 55, 204–219 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Eriksson, S. H. et al. Quantitative grey matter histological measures do not correlate with grey matter probability values from in vivo MRI in the temporal lobe. J. Neurosci. Methods 181, 111–118 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  155. Logothetis, N. K. et al. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    CAS  Article  PubMed  Google Scholar 

  156. Rauch, A., Rainer, G. & Logothetis, N. K. The effect of a serotonin-induced dissociation between spiking and perisynaptic activity on BOLD functional MRI. Proc. Natl Acad. Sci. USA 105, 6759–6764 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  157. Viswanathan, A. & Freeman, R. D. Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nature Neurosci. 10, 1308–1312 (2007).

    CAS  Article  PubMed  Google Scholar 

  158. Logothetis, N. K. What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008).

    CAS  Article  PubMed  Google Scholar 

  159. Sirotin, Y. B. & Das, A. Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity. Nature 457, 475–479 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  160. Jiao, Y. et al. Predictive models of autism spectrum disorder based on brain regional cortical thickness. Neuroimage 50, 589–599 (2010).

    Article  PubMed  Google Scholar 

  161. Querbes, O. et al. Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve. Brain 132, 2036–2047 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Ashburner, J. & Friston, K. J. Voxel-based morphometry — the methods. Neuroimage 11, 805–821 (2000).

    CAS  Article  PubMed  Google Scholar 

  163. Good, C. D. et al. A voxel-based morphometric study of ageing in 465 normal adjult human brain. Neuroimage 14, 21–36 (2001).

    CAS  Article  PubMed  Google Scholar 

  164. Ashburner, J. A fast diffeomorphic image registration algorithm. Neuroimage 38, 95–113 (2007).

    Article  PubMed  Google Scholar 

  165. Wright, I. C. et al. Meta-analysis of regional brain volumes in schizophrenia. Am. J. Psychiatry 157, 16–25 (2000).

    CAS  Article  PubMed  Google Scholar 

  166. Raz, N. et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb. Cortex 15, 1676–1689 (2005).

    Article  PubMed  Google Scholar 

  167. Fischl, B. & Dale, A. M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl Acad. Sci. USA 97, 11050–11055 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  168. MacDonald, D., Kabani, N., Avis, D. & Evans, A. C. Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12, 340–356 (2000).

    CAS  Article  PubMed  Google Scholar 

  169. Miller, M. I. et al. Bayesian construction of geometrically based cortical thickness metrics. Neuroimage 12, 676–687 (2000).

    CAS  Article  PubMed  Google Scholar 

  170. Hutton, C. et al. Voxel-based cortical thickness measurements in MRI. Neuroimage 40, 1701–1710 (2008).

    Article  PubMed  Google Scholar 

  171. Zilles, K. in The Human Nervous System (ed. Paxinos, G.) (Academic Press, San Diego, 2004).

    Google Scholar 

  172. Geyer, S., Schleicher, A. & Zilles, K. Areas 3a, 3b and 1 of human primary somatosensory cortex. Neuroimage 10, 63–83 (1999).

    CAS  Article  PubMed  Google Scholar 

  173. Collins, C. E. et al. Neuron densities vary across and within cortical areas in primates. Proc. Natl Acad. Sci. USA 107, 15927–15932 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  174. Fields, R. D. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 31, 361–370 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  175. Johansen-Berg, H. Behavioral relevance of variation in white matter microstructure. Curr. Opin. Neurol. 23, 351–358 (2010).

    PubMed  Google Scholar 

  176. Beaulieu, C. Diffusion MRI: From Quantitative Measurement to In Vivo Neuroanatomy (eds Johansen-Berg, H. & Behrens, T. E. J.) 105–126 (Elsevier, London, 2009).

    Google Scholar 

  177. Behrens, T. E. et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neurosci. 6, 750–757 (2003).

    CAS  Article  PubMed  Google Scholar 

  178. Kaas, J. H. Why is brain size so important: design problems and solutions as neocortex gets bigger or smaller. Brain Mind 1, 7–23 (2000).

    Article  Google Scholar 

  179. Hyde, K. L. et al. Morphometry of the amusic brain: a two-site study. Brain 129, 2562–2570 (2006).

    Article  PubMed  Google Scholar 

  180. Hyde, K. L. et al. Cortical thickness in congenital amusia: when less is better than more. J. Neurosci. 27, 13028–13032 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  181. Dumontheil, I., Hassan, B., Gilbert, S. J. & Blakemore, S.-J. Development of the selection and manipulation of self-generated thoughts in adolescence. J. Neurosci. 30, 7664–7671 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  182. Kanai, R., Dong, M., Bahrami, B. & Rees, G. Distractibility in daily life is reflected in the structure of human parietal cortex. J. Neurosci. (in the press).

  183. Huttenlocher, P. R. & Dabholkar, A. S. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387, 167–178 (1997).

    CAS  Article  PubMed  Google Scholar 

  184. Chechik, G., Meilijson, I. & Ruppin, E. Neuronal regulation: a mechanism for synaptic pruning during brain maturation. Neural Comput. 11, 2061–2080 (1999).

    CAS  Article  PubMed  Google Scholar 

  185. Gogtay, N. et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl Acad. Sci. USA 101, 8174–8179 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  186. Abitz, M. et al. Excess of neurons in the human newborn mediodorsal thalamus compared with that of the adult. Cereb. Cortex 17, 2573–2578 (2007).

    Article  PubMed  Google Scholar 

  187. Jernigan, T. L. et al. Maturation of human cerebrum observed in vivo during adolescence. Brain 114, 2037–2049 (1999).

    Article  Google Scholar 

  188. Slwell, E. R. et al. In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neurosci. 2, 859–861 (1999).

    Article  Google Scholar 

  189. Sowell, E. R., Thompson, P. M., Tessner, K. D. & Toga, A. W. Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain maturation. J. Nerurosci. 21, 8819–8829 (2001).

    CAS  Article  Google Scholar 

  190. Sowell, E. R. et al. Longitudinal mapping of cortical thickness and brain growth in normal children. J. Neurosci. 24, 8223–8231 (2004).

    CAS  Article  Google Scholar 

  191. Toga, A. W., Thompson, P. M. & Sowell, E. R. Mapping brain maturation. Trends Neurosci. 29, 148–159 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank B. Bahrami for reading earlier versions of the manuscript. R.K. is supported by the Japan Society for the Promotion of Science (JSPS). G.R. is supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryota Kanai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Geraint Rees's homepage

Glossary

Corpus callosum

A white matter structure that connects the left and right cerebral hemispheres.

Cortical magnification factor

The size of the surface area of the visual cortex relative to the size of the visual field it represents. It is generally larger for the central part of the visual field near the fovea and smaller for higher eccentricity.

Decision criterion

An evaluative criterion used for selecting one option from several possible actions or percepts.

Developmental prosopagnosia

A congenital impairment in the ability to recognize faces without any deficit in recognizing other categories of objects.

Eccentricity from fixation

The distance of a given position in the visual field from the point of fixation (that is, the centre of the visual field). Eccentricity is usually measured in degrees of visual angle.

Fractional anisotropy

A scalar measure of directionality of diffusion of water molecules derived from a collection of diffusion-weighted images. It is thought to reflect regional white matter features such as axon calibre, fibre density and myelination that are associated with white matter integrity.

Multiple-comparison problem

The high probability of obtaining a false-positive result when multiple inferential statistical tests are conducted in parallel (for example, across many voxels). Statistical methods to address this problem require a strong level of evidence to detect genuine relationships.

Optic radiation

A bundle of white matter fibres that relays visual information from the lateral geniculate nucleus to the visual cortex.

Response conflict

A situation in which an automated response competes with a voluntary choice of task-relevant action.

Signal detection theory

A theoretical framework to compute the ability to discriminate a signal from noise.

Type 2 performance

A measure of the ability to discriminate correct responses from incorrect responses using introspection or subjective confidence.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kanai, R., Rees, G. The structural basis of inter-individual differences in human behaviour and cognition. Nat Rev Neurosci 12, 231–242 (2011). https://doi.org/10.1038/nrn3000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3000

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing