Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The integration of negative affect, pain and cognitive control in the cingulate cortex

Key Points

  • The rostral cingulate cortex occupies a central position in models of emotion, pain and cognitive control. Work in these domains has strongly influenced recent models of social behaviour and psychopathology.

  • The segregationist view: it has been argued that the rostral cingulate cortex is functionally segregated into affective and cognitive divisions. Although this view remains influential, new data suggest that it is no longer tenable.

  • Robust links have been forged between the anterior subdivision of the midcingulate cortex (aMCC) and negative affect (as with the anticipation and delivery of pain), leading some to speculate that aMCC implements a 'domain-general' process that is integral to negative affect, pain and cognitive control.

  • Physiological evidence: a meta-analysis of activation foci from functional imaging studies of negative affect, pain and cognitive control revealed that aMCC is consistently activated by all three domains, refuting claims that cognition and emotion are strictly segregated in the cingulate.

  • Anatomical evidence: aMCC is characterized by substantial connections with subcortical regions involved in negative affect and pain (the spinothalamic system, periaqueductal grey, amygdala, nucleus accumbens and substantia nigra). Unlike other cortical 'hot spots' for emotion, aMCC harbours the rostral cingulate zone (RCZ) — a premotor area that is heavily interconnected with other motor centres (including the facial nucleus).

  • Functional evidence: measures of negative affect, pain and cognitive control exhibit convergent functional properties. These measures covary with one another and are amplified in similar ways by uncertainty about responses and outcomes.

  • The adaptive control hypothesis: the core function common to negative affect, pain and cognitive control is the need to determine an optimal course of action in the face of uncertainty — that is, to exert 'adaptive control'. We suggest that aMCC implements adaptive control by using information about punishment to bias responding in situations where the optimal course of action is uncertain or entails response competition.

  • Further evidence: pain-responsive MCC neurons are activated by the anticipation of pain, activated during instrumental escape from pain and are sensitive to manipulations of certainty and conflict. Lesions of aMCC alter how threat modulates instrumental behaviour. aMCC activity during aversively motivated learning is predicted by computational models of control and reinforcement learning.

  • These data encourage a broader perspective on the functional significance of cingulate activity, one that recognizes that aMCC did not evolve to optimize performance on laboratory measures of 'cold' cognition. The data that we have surveyed are consistent with the possibility that the contribution of aMCC to measures of cognitive control stems from its older role in regulating 'hot' behaviours.

  • The adaptive control hypothesis provides a clear roadmap to the most profitable avenues for understanding the contribution of aMCC to negative affect and pain.

Abstract

It has been argued that emotion, pain and cognitive control are functionally segregated in distinct subdivisions of the cingulate cortex. However, recent observations encourage a fundamentally different view. Imaging studies demonstrate that negative affect, pain and cognitive control activate an overlapping region of the dorsal cingulate — the anterior midcingulate cortex (aMCC). Anatomical studies reveal that the aMCC constitutes a hub where information about reinforcers can be linked to motor centres responsible for expressing affect and executing goal-directed behaviour. Computational modelling and other kinds of evidence suggest that this intimacy reflects control processes that are common to all three domains. These observations compel a reconsideration of the dorsal cingulate's contribution to negative affect and pain.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Divisions of the human rostral cingulate cortex.
Figure 2: Negative affect, pain and cognitive control activate a common region within the aMCC.
Figure 3: Cingulate premotor areas in the human MCC.
Figure 4: Subcortical connnectivity of the macaque analogue to the human RCZ.

References

  1. Brodmann, K. Brodmann's Localisation in the cerebral cortex. (ed. Garey, L. J.) (Springer, New York, 2005).

    Google Scholar 

  2. Papez, J. W. A proposed mechanism of emotion. Arch. Neurol. Psychiatry 38, 725–733 (1937).

    Article  Google Scholar 

  3. Kober, H. et al. Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies. Neuroimage 42, 998–1031 (2008).

    Article  PubMed  Google Scholar 

  4. Tracey, I. & Mantyh, P. W. The cerebral signature for pain perception and its modulation. Neuron 55, 377–391 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Vogt, B. A. & Sikes, R. W. in Cingulate neurobiology and disease (ed. Vogt, B. A.) 311–338 (Oxford Univ. Press, New York, 2009). The authors propose a novel hypothesis about the contribution of the cingulate premotor areas to pain.

    Google Scholar 

  6. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A. & Nieuwenhuis, S. The role of the medial frontal cortex in cognitive control. Science 306, 443–447 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Cole, M. W., Yeung, N., Freiwald, W. A. & Botvinick, M. Cingulate cortex: diverging data from humans and monkeys. Trends Neurosci. 32, 566–574 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Behrens, T. E., Hunt, L. T. & Rushworth, M. F. The computation of social behavior. Science 324, 1160–1164 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Shin, L. M. & Liberzon, I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology 35, 169–191 (2010).

    Article  PubMed  Google Scholar 

  10. Phillips, M. L., Ladouceur, C. D. & Drevets, W. C. A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol. Psychiatry 13, 833–857 (2008).

    Article  Google Scholar 

  11. Etkin, A. & Wager, T. D. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry 164, 1476–1488 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vogt, B. A. Cingulate neurobiology and disease (Oxford Univ. Press, New York, 2009).

  13. Devinsky, O., Morrell, M. J. & Vogt, B. A. Contributions of anterior cingulate to behaviour. Brain 118, 279–306 (1995).

    Article  PubMed  Google Scholar 

  14. Bush, G., Luu, P. & Posner, M. I. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 4, 215–222 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Steele, J. D. & Lawrie, S. M. Segregation of cognitive and emotional function in the prefrontal cortex: a stereotactic meta-analysis. Neuroimage 21, 868–875 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Medford, N. & Critchley, H. D. Conjoint activity of anterior insular and anterior cingulate cortex: awareness and response. Brain Struct. Funct. 214, 535–549 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Luu, P. & Posner, M. I. Anterior cingulate cortex regulation of sympathetic activity. Brain 126, 2119–2120 (2003).

    Article  PubMed  Google Scholar 

  18. Etkin, A., Egner, T. & Kalisch, R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci. 15, 85–93 (2011).

    Article  PubMed  Google Scholar 

  19. Davis, K. D. et al. Human anterior cingulate cortex neurons encode cognitive and emotional demands. J. Neurosci. 25, 8402–8406 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sehlmeyer, C. et al. Human fear conditioning and extinction in neuroimaging: a systematic review. PLoS One 4, e5865 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mechias, M. L., Etkin, A. & Kalisch, R. A meta-analysis of instructed fear studies: implications for conscious appraisal of threat. Neuroimage 49, 1760–1768 (2010).

    Article  PubMed  Google Scholar 

  22. Drabant, E. M. et al. Experiential, autonomic, and neural responses during threat anticipation vary as a function of threat intensity and neuroticism. Neuroimage 55, 401–410 (2011).

    Article  PubMed  Google Scholar 

  23. Farrell, M. J., Laird, A. R. & Egan, G. F. Brain activity associated with painfully hot stimuli applied to the upper limb: A meta-analysis. Hum. Brain Mapp. 25, 129–139 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rainville, P., Duncan, G. H., Price, D. D., Carrier, B. & Bushnell, M. C. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277, 968–971 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Vogt, B. A. Pain and emotion interactions in subregions of the cingulate gyrus. Nature Rev. Neurosci. 6, 533–544 (2005).

    Article  CAS  Google Scholar 

  26. Peyron, R., Laurent, B. & Garcia-Larrea, L. Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiol. Clin. 30, 263–288 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Mobbs, D. et al. Neural activity associated with monitoring the oscillating threat value of a tarantula. Proc. Natl Acad. Sci. USA 107, 20582–20586 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nee, D. E., Wager, T. D. & Jonides, J. Interference resolution: Insights from a meta-analysis of neuroimaging tasks. Cogn. Affect. Behav. Neurosci. 7, 1–17 (2007).

    Article  PubMed  Google Scholar 

  29. Pereira, M. G. et al. Emotion affects action: Midcingulate cortex as a pivotal node of interaction between negative emotion and motor signals. Cogn. Affect. Behav. Neurosci. 10, 94–106 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yeung, N., Botvinick, M. M. & Cohen, J. D. The neural basis of error detection: conflict monitoring and the error-related negativity. Psychol. Rev. 111, 931–959 (2004). This paper shows how computational models of cognitive control can account for ERP markers of conflict and errors that are thought to be generated in MCC. It makes the case that control processes implemented in MCC are likely to be closely related to affective and nociceptive processes.

    Article  PubMed  Google Scholar 

  31. Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luu, P., Collins, P. & Tucker, D. M. Mood, personality, and self-monitoring: negative affect and emotionality in relation to frontal lobe mechanisms of error monitoring. J. Exp. Psychol. Gen. 129, 43–60 (2000).

    Article  PubMed  Google Scholar 

  33. Pessoa, L. On the relationship between emotion and cognition. Nature Rev. Neurosci. 9, 148–158 (2008).

    Article  CAS  Google Scholar 

  34. Botvinick, M. M. Conflict monitoring and decision making: reconciling two perspectives on anterior cingulate function. Cogn. Affect. Behav. Neurosci. 7, 356–366 (2007).

    Article  PubMed  Google Scholar 

  35. Wallis, J. D. & Kennerley, S. W. Heterogeneous reward signals in prefrontal cortex. Curr. Opin. Neurobiol. 20, 191–198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rushworth, M. F. & Behrens, T. E. Choice, uncertainty and value in prefrontal and cingulate cortex. Nature Neurosci. 11, 389–397 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Haber, S. N. & Knutson, B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35, 4–26 (2010).

    Article  PubMed  Google Scholar 

  38. Laird, A. R. et al. ALE meta-analysis workflows via the Brainmap database: progress towards a probabilistic functional brain atlas. Front. Neuroinformatics. 3, 23 (2009). This paper reviews methods for performing quantitative meta-analyses of functional imaging data using the ALE technique and BrainMap database.

    Article  PubMed Central  Google Scholar 

  39. Nichols, T., Brett, M., Andersson, J., Wager, T. & Poline, J. B. Valid conjunction inference with the minimum statistic. Neuroimage 25, 653–660 (2005).

    Article  PubMed  Google Scholar 

  40. Price, D. D. Psychological and neural mechanisms of the affective dimension of pain. Science 288, 1769–1772 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Johansen-Berg, H. & Rushworth, M. F. Using diffusion imaging to study human connectional anatomy. Annu. Rev. Neurosci. 32, 75–94 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Morecraft, R. J. & Tanji, J. in Cingulate neurobiology and disease (ed. Vogt, B. A.) 113–144 (Oxford Univ. Press, New York, 2009). This chapter reviews the anatomy, physiology and function of the cingulate premotor areas, including their connections with the facial nucleus.

    Google Scholar 

  43. Picard, N. & Strick, P. L. Motor areas of the medial wall: a review of their location and functional activation. Cereb. Cortex 6, 342–353 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Nee, D. E., Kastner, S. & Brown, J. W. Functional heterogeneity of conflict, error, task-switching, and unexpectedness effects within medial prefrontal cortex. Neuroimage 54, 528–540 (2010).

    Article  PubMed  Google Scholar 

  45. Picard, N. & Strick, P. L. Imaging the premotor areas. Curr. Opin. Neurobiol. 11, 663–672 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Morecraft, R. J., Stilwell-Morecraft, K. S. & Rossing, W. R. The motor cortex and facial expression: new insights from neuroscience. Neurologist 10, 235–249 (2004).

    Article  PubMed  Google Scholar 

  47. Showers, M. J. C. The cingulate gyrus: additional motor area and cortical autonomic regulator. J. Comp. Neurol. 112, 231–301 (1959).

    Article  CAS  PubMed  Google Scholar 

  48. Shackman, A. J. et al. Anxiety selectively disrupts visuospatial working memory. Emotion 6, 40–61 (2006).

    Article  PubMed  Google Scholar 

  49. Salomons, T. V., Coan, J. A., Hunt, S. M., Backonja, M. M. & Davidson, R. J. Voluntary facial displays of pain increase suffering in response to nociceptive stimulation. J. Pain 9, 443–448 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dum, R. P., Levinthal, D. J. & Strick, P. L. The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. J. Neurosci. 29, 14223–14235 (2009). Using trans-synaptic anterograde transport of the herpes simplex virus, the authors demonstrated that the cingulate premotor areas are prominent targets of nociceptive information ascending from the periphery to the cortex through the spinothalamic system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. An, X., Bandler, R., Ongur, D. & Price, J. L. Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys. J. Comp. Neurol. 401, 455–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Ghashghaei, H. T., Hilgetag, C. C. & Barbas, H. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage 34, 905–923 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Morecraft, R. J. et al. Amygdala interconnections with the cingulate motor cortex in the rhesus monkey. J. Comp. Neurol. 500, 134–165 (2007).

    Article  PubMed  Google Scholar 

  54. Roy, A. K. et al. Functional connectivity of the human amygdala using resting state fMRI. Neuroimage 45, 614–626 (2009).

    Article  PubMed  Google Scholar 

  55. Yu, C. et al. Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation. Neuroimage 54, 2571–2581 (2011).

    Article  PubMed  Google Scholar 

  56. Freese, J. L. & Amaral, D. G. in The Human Amygdala (eds Whalen, P. J. & Phelps, E. A.) 3–42 (Guilford, New York, 2009).

    Google Scholar 

  57. Choi, J. S., Cain, C. K. & LeDoux, J. E. The role of amygdala nuclei in the expression of auditory signaled two-way active avoidance in rats. Learning & Memory 17, 139–147 (2010).

    Article  Google Scholar 

  58. Kunishio, K. & Haber, S. N. Primate cingulostriatal projection: limbic striatal versus sensorimotor striatal input. J. Comp. Neurol. 350, 337–356 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Delgado, M. R., Li, J., Schiller, D. & Phelps, E. A. The role of the striatum in aversive learning and aversive prediction errors. Phil. Trans. R. Soc. Lond. B 363, 3787–3800 (2008).

    Article  Google Scholar 

  60. Jensen, J. et al. Direct activation of the ventral striatum in anticipation of aversive stimuli. Neuron 40, 1251–1257 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Levita, L. et al. The bivalent side of the nucleus accumbens. Neuroimage 44, 1178–1187 (2009).

    Article  PubMed  Google Scholar 

  62. Robinson, O. J., Frank, M. J., Sahakian, B. J. & Cools, R. Dissociable responses to punishment in distinct striatal regions during reversal learning. Neuroimage 51, 1459–1467 (2010).

    Article  PubMed  Google Scholar 

  63. Williams, S. M. & Goldman-Rakic, P. S. Widespread origin of the primate mesofrontal dopamine system. Cereb. Cortex 8, 321–345 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Bromberg-Martin, E. S., Matsumoto, M. & Hikosaka, O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68, 815–834 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hatanaka, N. et al. Thalamocortical and intracortical connections of monkey cingulate motor areas. J. Comp. Neurol. 462, 121–138 (2003).

    Article  PubMed  Google Scholar 

  66. Vogt, B. A. & Pandya, D. N. Cingulate cortex of the rhesus monkey: II. Cortical afferents. J. Comp. Neurol. 262, 271–289 (1987).

    Article  CAS  PubMed  Google Scholar 

  67. Mesulam, M. M. & Mufson, E. J. Insula of the old world monkey. III: Efferent cortical output and comments on function. J. Comp. Neurol. 212, 38–52 (1982).

    Article  CAS  PubMed  Google Scholar 

  68. Cauda, F. et al. Functional connectivity of the insula in the resting brain. Neuroimage 55, 8–23 (2011).

    Article  PubMed  Google Scholar 

  69. Wager, T. D. & Barrett, L. F. From affect to control: functional specialization of the insula in motivation and regulation. PsycExtra [online], (2004).

  70. Wiech, K. et al. Anterior insula integrates information about salience into perceptual decisions about pain. J. Neurosci. 30, 16324–16331 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baliki, M. N., Geha, P. Y. & Apkarian, A. V. Parsing pain perception between nociceptive representation and magnitude estimation. J. Neurophysiol. 101, 875–887 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kurth, F., Zilles, K., Fox, P. T., Laird, A. R. & Eickhoff, S. B. A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct. Funct. 214, 519–534 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Menon, V. & Uddin, L. Q. Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 214, 655–667 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Dosenbach, N. U. et al. Distinct brain networks for adaptive and stable task control in humans. Proc. Natl Acad. Sci. USA 104, 11073–11078 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ullsperger, M., Harsay, H. A., Wessel, J. R. & Ridderinkhof, K. R. Conscious perception of errors and its relation to the anterior insula. Brain Struct. Funct. 214, 629–643 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kanske, P., Heissler, J., Schonfelder, S., Bongers, A. & Wessa, M. How to Regulate Emotion? Neural Networks for Reappraisal and Distraction. Cereb. Cortex 1 Nov 2010 (doi: 10.1093/cercor/bhq216).

  77. Kavaliers, M. & Choleris, E. Antipredator responses and defensive behavior: ecological and ethological approaches for the neurosciences. Neurosci. Biobehav. Rev. 25, 577–586 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Boesch, C. The effects of leopard predation on grouping patterns in forest chimpanzees. Behaviour 117, 220–242 (1991).

    Article  Google Scholar 

  79. Susskind, J. M. et al. Expressing fear enhances sensory acquisition. Nature Neurosci. 11, 843–850 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Augustine, J. R. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res. Rev. 22, 229–244 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. DeYoung, C. G. et al. Testing predictions from personality neuroscience: Brain structure and the Big Five. Psychol. Sci. 21, 820–828 (2010).

    Article  PubMed  Google Scholar 

  82. Milad, M. R. et al. A role for the human dorsal anterior cingulate cortex in fear expression. Biol. Psychiatry 62, 1191–1194 (2007).

    Article  PubMed  Google Scholar 

  83. Huster, R. J. et al. Effects of anterior cingulate fissurization on cognitive control during stroop interference. Hum. Brain Mapp. 30, 1279–1289 (2009).

    Article  PubMed  Google Scholar 

  84. Stroop, J. R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643–662 (1935).

    Article  Google Scholar 

  85. Amodio, D. M., Master, S. L., Yee, C. M. & Taylor, S. E. Neurocognitive components of the behavioral inhibition and activation systems: implications for theories of self-regulation. Psychophysiology 45, 11–19 (2008). This paper demonstrated that trait-like individual differences in anxiety and behavioural inhibition are predictive of ERP indices of cognitive control thought to be generated in MCC.

    PubMed  Google Scholar 

  86. Folstein, J. R. & Van Petten, C. Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology 45, 152–170 (2008).

    Article  PubMed  Google Scholar 

  87. Pud, D., Eisenberg, E., Sprecher, E., Rogowski, Z. & Yarnitsky, D. The tridimensional personality theory and pain: harm avoidance and reward dependence traits correlate with pain perception in healthy volunteers. Eur. J. Pain 8, 31–38 (2004).

    Article  PubMed  Google Scholar 

  88. Harkins, S. W., Price, D. D. & Braith, J. Effects of extraversion and neuroticism on experimental pain, clinical pain, and illness behavior. Pain 36, 209–218 (1989).

    Article  CAS  PubMed  Google Scholar 

  89. Wiech, K. & Tracey, I. The influence of negative emotions on pain: behavioral effects and neural mechanisms. Neuroimage 47, 987–994 (2009).

    Article  PubMed  Google Scholar 

  90. Ploghaus, A., Becerra, L., Borras, C. & Borsook, D. Neural circuitry underlying pain modulation: expectation, hypnosis, placebo. Trends Cogn. Sci. 7, 197–200 (2003).

    Article  PubMed  Google Scholar 

  91. Dube, A. A. et al. Brain activity associated with the electrodermal reactivity to acute heat pain. Neuroimage 45, 169–180 (2009).

    Article  PubMed  Google Scholar 

  92. Crombez, G., Baeyens, F., Vansteenwegen, D. & Eelen, P. Startle intensification during painful heat. Eur. J. Pain 1, 87–94 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Hajcak, G. & Foti, D. Errors are aversive: defensive motivation and the error-related negativity. Psychol. Sci. 19, 103–108 (2008). This paper demonstrated that response errors on a standard cognitive control task are associated with enhanced negative affect, indexed using the fear-potentiated startle reflex.

    Article  PubMed  Google Scholar 

  94. Critchley, H. D., Tang, J., Glaser, D., Butterworth, B. & Dolan, R. J. Anterior cingulate activity during error and autonomic response. Neuroimage 27, 885–895 (2005).

    Article  PubMed  Google Scholar 

  95. Cohen, B. H., Davidson, R. J., Senulis, J. A. & Saron, C. D. Muscle tension patterns during auditory attention. Biol. Psychol. 33, 133–156 (1992).

    Article  CAS  PubMed  Google Scholar 

  96. Schacht, A., Nigbur, R. & Sommer, W. Emotions in Go/NoGo conflicts. Psychol. Res. 73, 843–856 (2009).

    Article  PubMed  Google Scholar 

  97. Van Boxtel, A. & Jessurun, M. Amplitude and bilateral coherency of facial and jaw-elevator EMG activity as an index of effort during a two-choice serial reaction task. Psychophysiology 30, 589–604 (1993).

    Article  CAS  PubMed  Google Scholar 

  98. Schacht, A., Dimigen, O. & Sommer, W. Emotions in cognitive conflicts are not aversive but task-specific. Cogn. Affect. Behav. Neurosci. 10, 349–456 (2010).

    Article  PubMed  Google Scholar 

  99. Sommer, M., Hajak, G., Dohnel, K., Meinhardt, J. & Muller, J. L. Emotion-dependent modulation of interference processes: an fMRI study. Acta Neurobiol. Exp. (Warsaw) 68, 193–203 (2008).

    Google Scholar 

  100. Van Dillen, L. F., Heslenfeld, D. J. & Koole, S. L. Tuning down the emotional brain: an fMRI study of the effects of cognitive load on the processing of affective images. Neuroimage 45, 1212–1219 (2009).

    Article  PubMed  Google Scholar 

  101. Wiech, K., Ploner, M. & Tracey, I. Neurocognitive aspects of pain perception. Trends Cogn. Sci. 12, 306–313 (2008).

    Article  PubMed  Google Scholar 

  102. Buhle, J. & Wager, T. D. Performance-dependent inhibition of pain by an executive working memory task. Pain 149, 19–26 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Bantick, S. J. et al. Imaging how attention modulates pain in humans using functional MRI. Brain 125, 310–319 (2002).

    Article  PubMed  Google Scholar 

  104. Zhang, W. & Luo, J. The transferable placebo effect from pain to emotion: changes in behavior and EEG activity. Psychophysiology 46, 626–634 (2009).

    Article  PubMed  Google Scholar 

  105. Oka, S. et al. Predictability of painful stimulation modulates subjective and physiological responses. J. Pain 11, 239–246 (2010).

    Article  PubMed  Google Scholar 

  106. Alvarez, R. P., Chen, G., Bodurka, J., Kaplan, R. & Grillon, C. Phasic and sustained fear in humans elicits distinct patterns of brain activity. Neuroimage 55, 389–400 (2011).

    Article  PubMed  Google Scholar 

  107. Faymonville, M.-E., Vogt, B. A., Maquet, P. & Laureys, S. in Cingulate neurobiology and disease (ed. Vogt, B. A.) 381–400 (Oxford Univ. Press, New York, 2009).

    Google Scholar 

  108. Fonteyne, R., Vervliet, B., Hermans, D., Baeyens, F. & Vansteenwegen, D. Reducing chronic anxiety by making the threatening event predictable: an experimental approach. Behav. Res. Ther. 47, 830–839 (2009).

    Article  PubMed  Google Scholar 

  109. Price, D. D., Barrell, J. J. & Gracely, R. H. A psychophysical analysis of experimential factors that selectively influence the affective dimension of pain. Pain 8, 137–149 (1980).

    Article  CAS  PubMed  Google Scholar 

  110. Nielsen, C. S., Price, D. D., Vassend, O., Stubhaug, A. & Harris, J. R. Characterizing individual differences in heat-pain sensitivity. Pain 119, 65–74 (2005).

    Article  PubMed  Google Scholar 

  111. Salomons, T. V., Johnstone, T., Backonja, M. M. & Davidson, R. J. Perceived controllability modulates the neural response to pain. J. Neurosci. 24, 7199–7203 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Diener, C., Kuehner, C. & Flor, H. Loss of control during instrumental learning: a source localization study. Neuroimage 50, 717–726 (2010).

    Article  PubMed  Google Scholar 

  113. Holroyd, C. B., Krigolson, O. E., Baker, R., Lee, S. & Gibson, J. When is an error not a prediction error? An electrophysiological investigation. Cogn. Affect. Behav. Neurosci. 9, 59–70 (2009).

    Article  PubMed  Google Scholar 

  114. Klein, T. A. et al. Genetically determined differences in learning from errors. Science 318, 1642–1645 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Mohr, P. N. C., Biele, G. & Heerkeren, H. R. Neural processing of risk. J. Neurosci. 30, 6613–6619 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Christopoulos, G. I., Tobler, P. N., Bossaerts, P., Dolan, R. J. & Schultz, W. Neural correlates of value, risk, and risk aversion contributing to decision making under risk. J. Neurosci. 29, 12574–12583 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S. & Cohen, J. D. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Auvray, M., Myin, E. & Spence, C. The sensory-discriminative and affective-motivational aspects of pain. Neurosci. Biobehav. Rev. 34, 214–223 (2010).

    Article  PubMed  Google Scholar 

  119. Seymour, B. & Dolan, R. Emotion, decision making, and the amygdala. Neuron 58, 662–671 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Craske, M. G. et al. What is an anxiety disorder? Depress. Anxiety 26, 1066–1085 (2009).

    Article  PubMed  Google Scholar 

  121. Rolls, E. T. Emotion explained (Oxford Univ. Press, New York, 2007).

  122. Seymour, B., Singer, T. & Dolan, R. The neurobiology of punishment. Nature Rev. Neurosci. 8, 300–311 (2007).

    Article  CAS  Google Scholar 

  123. Frank, M. J., Woroch, B. S. & Curran, T. Error-related negativity predicts reinforcement learning and conflict biases. Neuron 47, 495–501 (2005). Using a probabilistic reinforcement learning paradigm, the authors demonstrated that variation in the ERN, an ERP index of cognitive control thought to be generated in MCC, was predictive of the degree to which participants learned from negative feedback.

    Article  CAS  PubMed  Google Scholar 

  124. van der Helden, J., Boksem, M. A. & Blom, J. H. The importance of failure: feedback-related negativity predicts motor learning efficiency. Cereb. Cortex 20, 1596–1603 (2010).

    Article  PubMed  Google Scholar 

  125. Hester, R., Murphy, K., Brown, F. L. & Skilleter, A. J. Punishing an error improves learning: the influence of punishment magnitude on error-related neural activity and subsequent learning. J. Neurosci. 30, 15600–15607 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ploghaus, A. et al. Dissociating pain from its anticipation in the human brain. Science 284, 1979–1981 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Porro, C. A. & Lui, F. in Cingulate neurobiology and disease (ed. Vogt, B. A.) 365–379 (Oxford Univ. Press, New York, 2009).

    Google Scholar 

  128. Rainville, P. Brain mechanisms of pain affect and pain modulation. Curr. Opin. Neurobiol. 12, 195–204 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Norman, D. A. & Shallice, T. in Consciousness and self-regulation. Advances in research and theory (eds Davidson, R. J., Schwartz, G. E. & Shapiro, D.) 1–18 (Plenum, New York, 1986).

    Book  Google Scholar 

  130. Gray, J. A. & McNaughton, N. The neuropsychology of anxiety: an enquiry into the functions of the septo-hippocampal system (Oxford Univ. Press, New York, 2000).

  131. Hutchison, W. D., Davis, K. D., Lozano, A. M., Tasker, R. R. & Dostrovsky, J. O. Pain-related neurons in the human cingulate cortex. Nature Neurosci. 2, 403–405 (1999).

    Article  CAS  PubMed  Google Scholar 

  132. Koyama, T., Tanaka, Y. Z. & Mikami, A. Nociceptive neurons in the macaque anterior cingulate activate during anticipation of pain. Neuroreport 9, 2663–2667 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. Iwata, K. et al. Anterior cingulate cortical neuronal activity during perception of noxious thermal stimuli in monkeys. J. Neurophysiol. 94, 1980–1991 (2005).

    Article  PubMed  Google Scholar 

  134. Nakata, H., Sakamoto, K. & Kakigi, R. Characteristics of No-go-P300 component during somatosensory Go/No-go paradigms. Neurosci. Lett. 478, 124–127

  135. Nakata, H. et al. Centrifugal modulation of human LEP components to a task-relevant noxious stimulation triggering voluntary movement. Neuroimage 45, 129–142 (2009).

    Article  PubMed  Google Scholar 

  136. Le Pera, D. et al. Inhibitory effect of voluntary movement preparation on cutaneous heat pain and laser-evoked potentials. Eur. J. Neurosci. 25, 1900–1907 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Rudebeck, P. H., Buckley, M. J., Walton, M. E. & Rushworth, M. F. A role for the macaque anterior cingulate gyrus in social valuation. Science 313, 1310–1312 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Kalin, N. H., Shelton, S. E. & Davidson, R. J. The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. J. Neurosci. 24, 5506–5515 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Feinstein, J. S., Adolphs, R., Damasio, A. & Tranel, D. The human amygdala and the induction and experience of fear. Curr. Biol. 21, 1–5 (2011).

    Article  CAS  Google Scholar 

  140. Fanselow, M. S. & Lester, L. S. in Evolution and learning (eds R. C. Bolles & M. D. Beecher) 185–211 (Erlbaum, Hillsdale, New Jersey, 1988).

    Google Scholar 

  141. Kalin, N. H. The neurobiology of fear. Sci. Am. 268, 94–101 (1993).

    Article  CAS  PubMed  Google Scholar 

  142. Blanchard, D. C., Hynd, A. L., Minke, K. A., Minemoto, T. & Blanchard, R. J. Human defensive behaviors to threat scenarios show parallels to fear- and anxiety-related defense patterns of non-human mammals. Neurosci. Biobehav. Rev. 25, 761–770 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Kalin, N. H., Shelton, S. E., Fox, A. S., Oakes, T. R. & Davidson, R. J. Brain regions associated with the expression and contextual regulation of anxiety in primates. Biol. Psychiatry 58, 796–804 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Mobbs, D. et al. From threat to fear: the neural organization of defensive fear systems in humans. J. Neurosci. 29, 12236–12243 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mobbs, D. et al. When fear is near: threat imminence elicits prefrontal-periaqueductal gray shifts in humans. Science 317, 1079–1083 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Holroyd, C. B. & Yeung, N. in The Neural Basis of Motivational and Cognitive Control (eds R. B. Mars, J. Sallet, M. F. S. Rushworth & N. Yeung) (MIT Press, Cambridge, MA, in press).

  147. Schiller, D., Levy, I., Niv, Y., LeDoux, J. E. & Phelps, E. A. From fear to safety and back: reversal of fear in the human brain. J. Neurosci. 28, 11517–11525 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Jocham, G., Neumann, J., Klein, T. A., Danielmeier, C. & Ullsperger, M. Adaptive coding of action values in the human rostral cingulate zone. J. Neurosci. 29, 7489–7496 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Gläscher, J. & Büchel, C. Formal learning theory dissociates brain regions with different temporal integration. Neuron 47, 295–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Seymour, B. et al. Temporal difference models describe higher-order learning in humans. Nature 429, 664–667 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Downar, J., Crawley, A. P., Mikulis, D. J. & Davis, K. D. A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. J. Neurophysiol. 87, 615–620 (2002).

    Article  PubMed  Google Scholar 

  152. Atlas, L. Y., Bolger, N., Lindquist, M. A. & Wager, T. D. Brain mediators of predictive cue effects on perceived pain. J. Neurosci. 30, 12964–12977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Legrain, V., Iannetti, G. D., Plaghki, L. & Mouraux, A. The pain matrix reloaded A salience detection system for the body. Prog. Neurobiol. 93, 111–113 (2011).

    Article  PubMed  Google Scholar 

  154. Hart, D. L. & Sussman, R. W. Man the Hunted (Westview Press, Boulder, Colorado, 2008).

    Google Scholar 

  155. Johansen, J. P. & Fields, H. L. Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nature Neurosci. 7, 398–403 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Cisek, P. & Kalaska, J. F. Neural mechanisms for interacting with a world full of action choices. Annu. Rev. Neurosci. 33, 269–298 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Derbyshire, S. W., Vogt, B. A. & Jones, A. K. Pain and Stroop interference tasks activate separate processing modules in anterior cingulate cortex. Exp. Brain Res. 118, 52–60 (1998).

    Article  CAS  PubMed  Google Scholar 

  158. Kwan, C. L., Crawley, A. P., Mikulis, D. J. & Davis, K. D. An fMRI study of the anterior cingulate cortex and surrounding medial wall activations evoked by noxious cutaneous heat and cold stimuli. Pain 85, 359–374 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Davis, K. D., Hutchison, W. D., Lozano, A. M., Tasker, R. R. & Dostrovsky, J. O. Human anterior cingulate cortex neurons modulated by attention-demanding tasks. J. Neurophysiol. 83, 3575–3577 (2000).

    Article  CAS  PubMed  Google Scholar 

  160. Orr, J. M. & Weissman, D. H. Anterior cingulate cortex makes 2 contributions to minimizing distraction. Cereb. Cortex 19, 703–711 (2009).

    Article  PubMed  Google Scholar 

  161. Venkatraman, V., Rosati, A. G., Taren, A. A. & Huettel, S. A. Resolving response, decision, and strategic control: evidence for a functional topography in dorsomedial prefrontal cortex. J. Neurosci. 29, 13158–13164 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Op de Beeck, H. P., Haushofer, J. & Kanwisher, N. G. Interpreting fMRI data: maps, modules and dimensions. Nature Rev. Neurosci. 9, 123–135 (2008).

    Article  CAS  Google Scholar 

  163. Morrison, I. & Downing, P. E. Organization of felt and seen pain responses in anterior cingulate cortex. Neuroimage 37, 642–651 (2007).

    Article  PubMed  Google Scholar 

  164. Oler, J. A. et al. Amygdalar and hippocampal substrates of anxious temperament differ in their heritability. Nature 466, 864–868 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Stern, E. R., Welsh, R. C., Fitzgerald, K. D. & Taylor, S. F. Topographic analysis of individual activation patterns in medial frontal cortex in schizophrenia. Hum. Brain Mapp. 30, 2146–2156 (2009).

    Article  PubMed  Google Scholar 

  166. Kosslyn, S. M. et al. Bridging psychology and biology: the analysis of individuals in groups. Am. Psychol. 57, 341–351 (2002).

    Article  PubMed  Google Scholar 

  167. Piche, M., Arsenault, M. & Rainville, P. Dissection of perceptual, motor and autonomic components of brain activity evoked by noxious stimulation. Pain 149, 453–462 (2010). The authors used inter- and intra-individual variation in pain reports and peripheral physiology (electrodermal and electromyographic activity) to understand the functional significance of activation in different regions of the rostral cingulate during painful electrical stimulation.

    Article  CAS  PubMed  Google Scholar 

  168. Cohen, M. X. & Ranganath, C. Behavioral and neural predictors of upcoming decisions. Cogn. Affect. Behav. Neurosci. 5, 117–126 (2005).

    Article  CAS  PubMed  Google Scholar 

  169. Izard, C. E. Four systems for emotion activation: cognitive and noncognitive processes. Psychol. Rev. 100, 68–90 (1993).

    Article  CAS  PubMed  Google Scholar 

  170. Stephan, K. E. On the role of general system theory for functional neuroimaging. J. Anat. 205, 443–470 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Hanke, M. et al. PyMVPA: A unifying approach to the analysis of neuroscientific Data. Front. Neuroinformatics 3, 3 (2009).

    Article  PubMed Central  Google Scholar 

  172. Downing, P. E., Wiggett, A. J. & Peelen, M. V. Functional magnetic resonance imaging investigation of overlapping lateral occipitotemporal activations using multi-voxel pattern analysis. J. Neurosci. 27, 226–233 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Walsh, B. J., Buonocore, M. H., Carter, C. S. & Mangun, G. R. Integrating conflict detection and attentional control mechanisms. J. Cogn. Neurosci. 2 Dec 2010 (doi:10.1162/jocn.2010.21595).

  174. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    CAS  PubMed  Google Scholar 

  175. Kienast, T. et al. Dopamine in amygdala gates limbic processing of aversive stimuli in humans. Nature Neurosci. 11, 1381–1382 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Yacubian, J. et al. Dissociable systems for gain- and loss-related value predictions and errors of prediction in the human brain. J. Neurosci. 26, 9530–9537 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ousdal, O. T. et al. The human amygdala is involved in general behavioral relevance detection: evidence from an event-related functional magnetic resonance imaging Go-NoGo task. Neuroscience 156, 450–455 (2008).

    Article  CAS  PubMed  Google Scholar 

  178. Polli, F. E. et al. Hemispheric differences in amygdala contributions to response monitoring. Neuroreport 20, 398–402 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Nishijo, H., Hori, E., Tazumi, T. & Ono, T. Neural correlates to both emotion and cognitive functions in the monkey amygdala. Behav. Brain Res. 188, 14–23 (2008).

    Article  PubMed  Google Scholar 

  180. Brazdil, M. et al. Error processing — evidence from intracerebral recordings. Exp. Brain Res. 146, 460–466 (2002).

    Article  PubMed  Google Scholar 

  181. Polli, F. E. et al. Reduced error-related activation in two anterior cingulate circuits is related to impaired performance in schizophrenia. Brain 131, 971–986 (2008).

    Article  PubMed  Google Scholar 

  182. Pourtois, G. et al. Errors recruit both cognitive and emotional monitoring systems: Simultaneous intracranial recordings in the dorsal anterior cingulate gyrus and amygdala combined with fMRI. Neuropsychologia 48, 1144–1159 (2010).

    Article  PubMed  Google Scholar 

  183. Vogt, B. A. in Cingulate neurobiology and disease (ed. Vogt, B. A.) 65–94 (Oxford Univ. Press, New York, 2009).

    Google Scholar 

  184. Ford, K. A., Gati, J. S., Menon, R. S. & Everling, S. BOLD fMRI activation for anti-saccades in nonhuman primates. Neuroimage 45, 470–476 (2009).

    Article  PubMed  Google Scholar 

  185. Graziano, M. S. & Aflalo, T. N. Mapping behavioral repertoire onto the cortex. Neuron 56, 239–251 (2007).

    Article  CAS  PubMed  Google Scholar 

  186. Floden, D., Vallesi, A. & Stuss, D. T. Task context and frontal love activation in the Stroop task. J. Cogn. Neurosci. 23, 867–879 (2010).

    Article  PubMed  Google Scholar 

  187. Yeung, N. & Cohen, J. D. The impact of cognitive deficits on conflict monitoring: Predictable dissociations between the error-related negativity and N2. Psychol. Sci. 17, 164–171 (2006).

    Article  PubMed  Google Scholar 

  188. Swick, D. & Turken, A. U. Dissociation between conflict detection and error monitoring in the human anterior cingulate cortex. Proc. Natl Acad. Sci. USA 99, 16354–16359 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. deCharms, R. C. et al. Control over brain activation and pain learned by using real-time functional, MRI. Proc. Natl Acad. Sci. USA 102, 18626–18631 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Fornito, A. et al. Variability of the paracingulate sulcus and morphometry of the medial frontal cortex: associations with cortical thickness, surface area, volume, and sulcal depth. Hum. Brain Mapp. 29, 222–236 (2008).

    Article  PubMed  Google Scholar 

  191. Leonard, C. M., Towler, S., Welcome, S. & Chiarello, C. Paracingulate asymmetry in anterior and midcingulate cortex: sex differences and the effect of measurement technique. Brain Struct. Funct. 213, 553–569 (2009).

    Article  PubMed  Google Scholar 

  192. Vogt, B. A., Nimchinsky, E. A., Vogt, L. J. & Hof, P. R. Human cingulate cortex: surface features, flat maps, and cytoarchitecture. J. Comp. Neurol. 359, 490–506 (1995).

    Article  CAS  PubMed  Google Scholar 

  193. Crosson, B. et al. Left-hemisphere processing of emotional connotation during word generation. Neuroreport 10, 2449–2455 (1999).

    Article  CAS  PubMed  Google Scholar 

  194. Heckers, S. et al. Anterior cingulate cortex activation during cognitive interference in schizophrenia. Am. J. Psychiatry 161, 707–715 (2004).

    Article  PubMed  Google Scholar 

  195. Buchel, C. et al. Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J. Neurosci. 22, 970–976 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Peyron, R. et al. Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain 122, 1765–1780 (1999).

    Article  PubMed  Google Scholar 

  197. Paus, T. et al. Human cingulate and paracingulate sulci: pattern, variability, asymmetry, and probabilistic map. Cereb. Cortex 6, 207–214 (1996).

    Article  CAS  PubMed  Google Scholar 

  198. DeArmond, S. J., Fusco, J. F. & Dewy, M. M. Structure of the human brain: a photographic atlas (Oxford Univ. Press, New York, 1989).

  199. Brown, J. W. Multiple cognitive control effects of error likelihood and conflict. Psychol. Res. 73, 744–750 (2009).

    Article  PubMed  Google Scholar 

  200. Mansouri, F. A., Tanaka, K. & Buckley, M. J. Conflict-induced behavioural adjustment: a clue to the executive functions of the prefrontal cortex. Nature Rev. Neurosci. 10, 141–152 (2009).

    Article  CAS  Google Scholar 

  201. Grinband, J. et al. The dorsal medial frontal cortex is sensitive to time on task, not response conflict or error likelihood. Neuroimage 17 Dec 2010 (doi:10.1016/j.neuroimage.2010.12.027).

  202. Carp, J., Kim, K., Taylor, S. F., Fitzgerald, K. D. & Weissman, D. H. Conditional differences in mean reaction time explain effects of response congruency, but not accuracy, on posterior medial frontal cortex activity. Front. Hum. Neurosci. 4, 231 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Alexander, W. H. & Brown, J. W. Computational models of performance monitoring and cognitive control. Topics Cogn. Science 2, 658–677 (2010). The authors review prominent models of cognitive control and reinforcement learning that have been used to understand the functional significance of rostral cingulate cortex activity.

    Article  Google Scholar 

  204. King, J. A., Korb, F. M., Von Cramon, D. Y. & Ullsperger, M. Post-error behavioral adjustments are facilitated by activation and suppression of task-relevant and task-irrelevant information processing. J. Neurosci. 30, 12759–12769 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Gehring, W. J. & Knight, R. T. Prefrontal-cingulate interactions in action monitoring. Nature Neurosci. 3, 516–520 (2000).

    Article  CAS  PubMed  Google Scholar 

  206. Holroyd, C. B. & Coles, M. G. The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev. 109, 679–709 (2002).

    Article  PubMed  Google Scholar 

  207. Steinhauser, M. & Yeung, N. Decision processes in human performance monitoring. J. Neurosci. 30, 15643–15653 (2010).

    Article  CAS  Google Scholar 

  208. Ekman, P., Davidson, R. J. & Friesen, W. V. The Duchenne smile: Emotional expression and brain physiology: II. J. Pers. Soc. Psychol. 58, 342–353 (1990).

    Article  CAS  PubMed  Google Scholar 

  209. Koyama, T., Kato, K., Tanaka, Y. Z. & Mikami, A. Anterior cingulate activity during pain-avoidance and reward tasks in monkeys. Neurosci. Res. 39, 421–430 (2001).

    Article  CAS  PubMed  Google Scholar 

  210. Liu, X., Hairston, J., Schrier, M. & Fan, J. Common and distinct networks underlying reward valence and processing stages: A meta-analysis of functional neuroimaging studies. Neurosci. Biobehav. Rev. 24 Dec 2010 (doi:10.1016/j.neubiorev.2010.12.012).

  211. Palomero-Gallagher, N., Vogt, B. A., Schleicher, A., Mayberg, H. S. & Zilles, K. Receptor architecture of human cingulate cortex: evaluation of the four-region neurobiological model. Hum. Brain Mapp. 30, 2336–2355 (2009).

    Article  PubMed  Google Scholar 

  212. Zilles, K. & Amunts, K. Centenary of Brodmann's map — conception and fate. Nature Rev. Neurosci. 11, 139–145 (2010).

    Article  CAS  Google Scholar 

  213. Vogt, B. A. in Cingulate neurobiology and disease (ed. Vogt, B. A.) 3–30 (Oxford Univ. Press, New York, 2009).

    Google Scholar 

  214. Laird, A. R. et al. ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum. Brain Mapp. 25, 155–164 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Morecraft, R. J., Louie, J. L., Herrick, J. L. & Stilwell-Morecraft, K. S. Cortical innervation of the facial nucleus in the non-human primate: a new interpretation of the effects of stroke and related subtotal brain trauma on the muscles of facial expression. Brain 124, 176–208 (2001).

    Article  CAS  PubMed  Google Scholar 

  216. Waller, B. M., Parr, L. A., Gothard, K. M., Burrows, A. M. & Fuglevand, A. J. Mapping the contribution of single muscles to facial movements in the Rhesus macaque. Physiol. Behav. 95, 93–100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Burrows, A. M. The facial expression musculature in primates and its evolutionary significance. Bioessays 30, 212–225 (2008).

    Article  PubMed  Google Scholar 

  218. Darwin, C. The expression of the emotions in man and animals (Oxford Univ. Press, New York, 2009).

Download references

Acknowledgements

We thank the Laboratory for Affective Neuroscience and Waisman Laboratory for Brain Imaging and Behavior staff A. Dinndorf, M. Fox, L. Friedman, L. Hinsenkamp, A. Koppenhaver, A. Laird, B. Nacewicz, D. Rebedew and J.E. Shackman for assistance; M.X. Cohen, W. Irwin, S. Nieuwenhuis, J. Oler, and T. Yarkoni for feedback; and G. Bush for providing details of the meta-analysis described in reference 14. This work was supported by the European Commission (Marie Curie Reintegration Grant to H.A.S.), the University of Toronto Centre for the Study of Pain (Clinician-Scientist award to T.V.S.), Fetzer Foundation (R.J.D.), and National Institute of Mental Health (P50-MH069315, P50-MH084051 and R01-MH43454 (R.J.D.); A.J.S. was partially supported by R01-MH064498 (B.R. Postle); A.S.F. was supported by T32-MH018931 (R.J.D.)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander J. Shackman, Tim V. Salomons or Richard J. Davidson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (box)

Method: Coordinate-Based Meta-Analysis (CBMA) of Functional Imaging Studies (PDF 2298 kb)

Related links

Related links

FURTHER INFORMATION

Alexander Shackman's homepage

Heleen Slagter's homepage

Richard Davidson's homepages

http://www.healthemotions.org/

http://www.investigatinghealthyminds.org/cihmLaboratory.html

The BrainMap database

SUPPLEMENTARY INFORMATION

S1 (box)

Glossary

Cognitive control

A range of elementary processes (such as attention, inhibition and learning) that are engaged when automatic or habitual responses are insufficient to sustain goal-directed behaviour. Control can be engaged proactively or reactively.

Computational model

A mathematically detailed simulation of a psychological construct that can afford quantitative predictions of trial-by-trial fluctuations in behaviour and neurophysiology.

Reinforcement learning models

(Often abbreviated to RL models.) A class of computational models describing how organisms learn to maximize reinforcement based on experience. RL models assume that organisms update reinforcer expectations on the basis of prediction errors and the current learning rate.

Stroop task

A task in which subjects rapidly respond to a colour word, such as 'blue', on the basis of the colour in which the letters are displayed. The task is easy when the colour and word are compatible ('blue' depicted in blue), but is more difficult when the two are incompatible ('blue' depicted in red).

Go/No-Go task

A task in which subjects must rapidly respond to one kind of cue ('Go') while withholding responses to another ('No-Go').

Eriksen Flanker task

A task in which subjects rapidly respond to a centrally presented visual cue, such as an arrowhead, that is neighboured (flanked) by cues that can potentially code an alternative response.

Instrumental behaviour

Behaviour that is goal-directed insofar as it increases the likelihood of obtaining rewards or avoiding punishments. Instrumental behaviour is distinguished from behaviours that are reflexively elicited independent of reinforcement, as in Pavlovian (classical) conditioning.

Reinforcer

A stimulus that is capable (intrinsically or through learning) of eliciting instrumental behaviour; reward and punishment.

Attentional set

A template, rule or goal held in memory to guide attention (for example, search for angry faces in a crowded visual scene).

Architectonic area

A region of the brain defined by its cellular and molecular neuroanatomy, including neuronal structure (cytoarchitecture), myelin structure (myeloarchitecture) and neurochemistry (chemoarchitecture).

Electrodermal activity

(Often abbreviated to EDA.) Changes in the electrical resistance of the dermis stemming from activity of the sweat glands. EDA reflects activation in the sympathetic nervous system and is used to index arousal, stress and cognitive load.

Event-related potential

(Often abbreviated to ERP.) A scalp-recorded measure of the average brain electrical activity evoked by a particular stimulus or response.

Fear-potentiated startle reflex

A reflex evoked by the sudden onset of high-intensity stimuli (for example, a loud noise) and amplified by negative affect. In humans, this is measured using electrodes overlying orbicularis oculi, the muscle responsible for eye blinks.

Response conflict

Competition elicited by stimuli associated with multiple, incompatible response tendencies — as in the Stroop task.

Prediction error

In reinforcement learning models, an explicit description of the discrepancy between reinforcer expectations and actual reinforcement.

Electromyography

(Often abbreviated to EMG.) Recordings of electrical activity generated by the skeletal musculature.

Neurofeedback

A kind of learning in which real-time neural activity is employed as feedback.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shackman, A., Salomons, T., Slagter, H. et al. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat Rev Neurosci 12, 154–167 (2011). https://doi.org/10.1038/nrn2994

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2994

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing