Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein scaffolds in the coupling of synaptic exocytosis and endocytosis

Key Points

  • Nervous system function crucially depends on synaptic vesicle exocytosis and endocytosis at defined areas within the nerve terminal. Exocytosis preferentially occurs at defined release sites within the active zone, whereas synaptic vesicle membranes are retrieved largely from the surrounding periactive zone.

  • Release may be limited by a given fixed number of release sites that need to be cleared prior to the next presynaptic fusion event. This release site clearance is likely to be of physiological importance, for example, during short-term plasticity.

  • Evidence from the calyx of Held synapse shows that interference with endocytic protein function causes defects in short-term plasticity, and hence, in release site clearance. This indicates that synaptic vesicle exocytosis and endocytosis are tightly coupled.

  • Multidomain proteins of the active and surrounding periactive zones are potential scaffolds that couple exocytic fusion to the clearance of release sites.

  • Possible models regarding the mechanism by which release sites are cleared may involve lateral diffusion or removal of clustered synaptic vesicle proteins and/or dynamin-mediated membrane remodelling.

Abstract

Mechanisms that ensure robust long-term performance of synaptic transmission over a wide range of activity are crucial for the integrity of neuronal networks, for processing sensory information and for the ability to learn and store memories. Recent experiments have revealed that such robust performance requires a tight coupling between exocytic vesicle fusion at defined release sites and endocytic retrieval of synaptic vesicle membranes. Distinct presynaptic scaffolding proteins are essential for fulfilling this requirement, providing either ultrastructural coordination or acting as signalling hubs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An overview of the synaptic vesicle cycle.
Figure 2: Hypothetical timing of synaptic vesicle exocytosis–endocytosis.
Figure 3: Scaffolds in exocytic–endocytic coupling.
Figure 4: Hypothetical models for exocytic–endocytic coupling.

Similar content being viewed by others

References

  1. Kopp-Scheinpflug, C., Tolnai, S., Malmierca, M. S. & Rubsamen, R. The medial nucleus of the trapezoid body: comparative physiology. Neuroscience 154, 160–170 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Taschenberger, H. & von Gersdorff, H. Fine-tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity. J. Neurosci. 20, 9162–9173 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gundelfinger, E. D., Kessels, M. M. & Qualmann, B. Temporal and spatial coordination of exocytosis and endocytosis. Nature Rev. Mol. Cell Biol. 4, 127–139 (2003).

    Article  CAS  Google Scholar 

  4. Katz, B. & Miledi, R. Spontaneous and evoked activity of motor nerve endings in calcium Ringer. J. Physiol. 203, 689–706 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Neher, E. & Sakaba, T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59, 861–872 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Dittman, J. & Ryan, T. A. Molecular circuitry of endocytosis at nerve terminals. Annu. Rev. Cell Dev. Biol. 25, 133–160 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Galli, T. & Haucke, V. Cycling of synaptic vesicles: how far? How fast! Sci. STKE, re19 (2004).

  8. Murthy, V. N. & De Camilli, P. Cell biology of the presynaptic terminal. Annu. Rev. Neurosci. 26, 701–728 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Neher, E. What is rate-limiting during sustained synaptic activity: vesicle supply or availability of release sites? FNSYN 2, 1–6 (2010).

    Google Scholar 

  10. Smith, S. M., Renden, R. & von Gersdorff, H. Synaptic vesicle endocytosis: fast and slow modes of membrane retrieval. Trends Neurosci. 31, 559–568 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Granseth, B., Odermatt, B., Royle, S. J. & Lagnado, L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51, 773–786 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Martens, S. & McMahon, H. T. Mechanisms of membrane fusion: disparate players and common principles. Nature Rev. Mol. Cell Biol. 9, 543–556 (2008).

    Article  CAS  Google Scholar 

  13. Jahn, R. & Scheller, R. H. SNAREs — engines for membrane fusion. Nature Rev. Mol. Cell Biol. 7, 631–643 (2006).

    Article  CAS  Google Scholar 

  14. Doherty, G. J. & McMahon, H. T. Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857–902 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Katz, B. Quantal mechanism of neural transmitter release. Science 173, 123–126 (1971).

    Article  CAS  PubMed  Google Scholar 

  16. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Rizzoli, S. O. & Betz, W. J. Synaptic vesicle pools. Nature Rev. Neurosci. 6, 57–69 (2005).

    Article  CAS  Google Scholar 

  18. Kim, S. H. & Ryan, T. A. CDK5 serves as a major control point in neurotransmitter release. Neuron 67, 797–809 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ikeda, K. & Bekkers, J. M. Counting the number of releasable synaptic vesicles in a presynaptic terminal. Proc. Natl Acad. Sci. USA 106, 2945–2950 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kuromi, H. & Kidokoro, Y. Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron 20, 917–925 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Murthy, V. N. & Stevens, C. F. Reversal of synaptic vesicle docking at central synapses. Nature Neurosci. 2, 503–507 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Sigrist, S. J. & Schmitz, D. Structural and functional plasticity of the cytoplasmic active zone. Curr. Opin. Neurobiol. 8 Sep 2010 (doi:10.1016/j.conb.2010.08.012).

  23. Sudhof, T. C. & Rothman, J. E. Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474–477 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mohrmann, R., de Wit, H., Verhage, M., Neher, E. & Sorensen, J. B. Fast vesicle fusion in living cells requires at least three SNARE complexes. Science 330, 502–505 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. van den Bogaart, G. et al. One SNARE complex is sufficient for membrane fusion. Nature Struct. Mol. Biol. 17, 358–364 (2010).

    Article  CAS  Google Scholar 

  26. Hui, E., Johnson, C. P., Yao, J., Dunning, F. M. & Chapman, E. R. Synaptotagmin-mediated bending of the target membrane is a critical step in Ca(2+)-regulated fusion. Cell 138, 709–721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xue, M. et al. Distinct domains of complexin I differentially regulate neurotransmitter release. Nature Struct. Mol. Biol. 14, 949–958 (2007).

    Article  CAS  Google Scholar 

  28. Wang, X. et al. A protein interaction node at the neurotransmitter release site: domains of Aczonin/Piccolo, Bassoon, CAST, and rim converge on the N-terminal domain of Munc13-1 J. Neurosci. 29, 12584–12596 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kittel, R. J. et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312, 1051–1054 (2006). Loss of function of the active zone protein BRP in Drosophila melanogaster is shown to disrupt active zone assembly and cause defects in calcium channel clustering and presynaptic release.

    Article  CAS  PubMed  Google Scholar 

  30. Leal-Ortiz, S. et al. Piccolo modulation of Synapsin1a dynamics regulates synaptic vesicle exocytosis. J. Cell Biol. 181, 831–846 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zenisek, D., Steyer, J. A. & Almers, W. Transport, capture and exocytosis of single synaptic vesicles at active zones. Nature 406, 849–854 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Wu, L. G., Ryan, T. A. & Lagnado, L. Modes of vesicle retrieval at ribbon synapses, calyx-type synapses, and small central synapses. J. Neurosci. 27, 11793–11802 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu, J. et al. GTP-independent rapid and slow endocytosis at a central synapse. Nature Neurosci. 11, 45–53 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Hosoi, N., Holt, M. & Sakaba, T. Calcium dependence of exo- and endocytotic coupling at a glutamatergic synapse. Neuron 63, 216–229 (2009). Elegant work focusing on the calyx of Held, showing that interference with endocytic protein function causes short-term depression indicating defective exocytic–endocytic coupling.

    Article  CAS  PubMed  Google Scholar 

  35. Renden, R. & von Gersdorff, H. Synaptic vesicle endocytosis at a CNS nerve terminal: faster kinetics at physiological temperatures and increased endocytotic capacity during maturation. J. Neurophysiol. 98, 3349–3359 (2007).

    Article  PubMed  Google Scholar 

  36. Smith, C. & Neher, E. Multiple forms of endocytosis in bovine adrenal chromaffin cells. J. Cell Biol. 139, 885–894 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Balaji, J. & Ryan, T. A. Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. Proc. Natl Acad. Sci. USA 104, 20576–20581 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sankaranarayanan, S. & Ryan, T. A. Calcium accelerates endocytosis of vSNAREs at hippocampal synapses. Nature Neurosci. 4, 129–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Sankaranarayanan, S. & Ryan, T. A. Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nature Cell Biol. 2, 197–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Holt, M., Cooke, A., Wu, M. M. & Lagnado, L. Bulk membrane retrieval in the synaptic terminal of retinal bipolar cells. J. Neurosci. 23, 1329–1339 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Clayton, E. L. et al. Dynamin I phosphorylation by GSK3 controls activity-dependent bulk endocytosis of synaptic vesicles. Nature Neurosci. 13, 845–851 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Geumann, U., Schafer, C., Riedel, D., Jahn, R. & Rizzoli, S. O. Synaptic membrane proteins form stable microdomains in early endosomes. Microsc. Res. Tech. 73, 606–617 (2010).

    CAS  PubMed  Google Scholar 

  43. Krauss, M. & Haucke, V. Adaptin' endosomes for synaptic vesicle recycling, learning and memory. EMBO J. 29, 1313–1315 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fernandez-Alfonso, T., Kwan, R. & Ryan, T. A. Synaptic vesicles interchange their membrane proteins with a large surface reservoir during recycling. Neuron 51, 179–186 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Wienisch, M. & Klingauf, J. Vesicular proteins exocytosed and subsequently retrieved by compensatory endocytosis are nonidentical. Nature Neurosci. 9, 1019–1027 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R. & Hell, S. W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935–939 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Opazo, F. et al. Limited intermixing of synaptic vesicle components upon vesicle recycling. Traffic 11, 800–812 (2010). References 44–47 are a controversial set of papers pertaining to the question of whether newly exocytosed synaptic vesicle proteins remain clustered or intermix with a pre-existing pool on the neuronal plasma membrane.

    Article  CAS  PubMed  Google Scholar 

  48. Ferguson, S. M. et al. A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. Science 316, 570–574 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Heerssen, H., Fetter, R. D. & Davis, G. W. Clathrin dependence of synaptic-vesicle formation at the Drosophila neuromuscular junction. Curr. Biol. 18, 401–409 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kasprowicz, J. et al. Inactivation of clathrin heavy chain inhibits synaptic recycling but allows bulk membrane uptake. J. Cell Biol. 182, 1007–1016 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Koenig, J. H. & Ikeda, K. Synaptic vesicles have two distinct recycling pathways. J. Cell Biol. 135, 797–808 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Kim, S. H. & Ryan, T. A. Synaptic vesicle recycling at CNS snapses without AP-2. J. Neurosci. 29, 3865–3874 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Diril, M. K., Wienisch, M., Jung, N., Klingauf, J. & Haucke, V. Stonin 2 is an AP-2-dependent endocytic sorting adaptor for synaptotagmin internalization and recycling. Dev. Cell 10, 233–244 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Maritzen, T., Podufall, J. & Haucke, V. Stonins — specialized adaptors for synaptic vesicle recycling and beyond? Traffic 11, 8–15 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Jung, N. & Haucke, V. Clathrin-mediated endocytosis at synapses. Traffic 8, 1129–1136 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Wenk, M. R. & De Camilli, P. Protein–lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. Proc. Natl Acad. Sci. USA 101, 8262–8269 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McMahon, H. T. & Gallop, J. L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Ferguson, S. M. et al. Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev. Cell 17, 811–822 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Slepnev, V. I. & De Camilli, P. Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nature Rev. Neurosci. 1, 161–172 (2000).

    Article  CAS  Google Scholar 

  60. Marie, B. et al. Dap160/intersectin scaffolds the periactive zone to achieve high-fidelity endocytosis and normal synaptic growth. Neuron 43, 207–219 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Koh, T. W., Verstreken, P. & Bellen, H. J. Dap160/intersectin acts as a stabilizing scaffold required for synaptic development and vesicle endocytosis. Neuron 43, 193–205 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Pechstein, A., Shupliakov, O. & Haucke, V. Intersectin 1: a versatile actor in the synaptic vesicle cycle. Biochem. Soc. Trans. 38, 181–186 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Shupliakov, O. et al. Synaptic vesicle endocytosis impaired by disruption of dynamin–SH3 domain interactions. Science 276, 259–263 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Ringstad, N. et al. Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron 24, 143–154 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Dickman, D. K., Horne, J. A., Meinertzhagen, I. A. & Schwarz, T. L. A slowed classical pathway rather than kiss-and-run mediates endocytosis at synapses lacking synaptojanin and endophilin. Cell 123, 521–533 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Qualmann, B., Roos, J., DiGregorio, P. J. & Kelly, R. B. Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. Mol. Biol. Cell 10, 501–513 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rao, Y. et al. Molecular basis for SH3 domain regulation of F-BAR-mediated membrane deformation. Proc. Natl Acad. Sci. USA 107, 8213–8218 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bloom, O. et al. Colocalization of synapsin and actin during synaptic vesicle recycling. J. Cell Biol. 161, 737–747 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sankaranarayanan, S., Atluri, P. P. & Ryan, T. A. Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nature Neurosci. 6, 127–135 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Candiani, S. et al. The synapsin gene family in basal chordates: evolutionary perspectives in metazoans. BMC Evol. Biol. 10, 32 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pechstein, A. et al. Regulation of synaptic vesicle recycling by complex formation between intersectin 1 and the clathrin adaptor complex AP2. Proc. Natl Acad. Sci. USA 107, 4206–4211 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Koh, T. W. et al. Eps15 and Dap160 control synaptic vesicle membrane retrieval and synapse development. J. Cell Biol. 178, 309–322 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Henne, W. M. et al. FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328, 1281–1284 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gad, H., Low, P., Zotova, E., Brodin, L. & Shupliakov, O. Dissociation between Ca2+-triggered synaptic vesicle exocytosis and clathrin-mediated endocytosis at a central synapse. Neuron 21, 607–616 (1998). In this paper, work at the lamprey reticulospinal synapse reveals calcium regulation of synaptic vesicle endocytosis and a potential role for calcium in exocytic–endocytic coupling.

    Article  CAS  PubMed  Google Scholar 

  75. Teng, H., Cole, J. C., Roberts, R. L. & Wilkinson, R. S. Endocytic active zones: hot spots for endocytosis in vertebrate neuromuscular terminals. J. Neurosci. 19, 4855–4866 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yao, C. K. et al. A synaptic vesicle-associated Ca2+ channel promotes endocytosis and couples exocytosis to endocytosis. Cell 138, 947–960 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Deak, F., Schoch, S., Liu, X., Sudhof, T. C. & Kavalali, E. T. Synaptobrevin is essential for fast synaptic-vesicle endocytosis. Nature Cell Biol. 6, 1102–1108 (2004).

    Article  PubMed  Google Scholar 

  78. Nicholson-Tomishima, K. & Ryan, T. A. Kinetic efficiency of endocytosis at mammalian CNS synapses requires synaptotagmin, I. Proc. Natl Acad. Sci. USA 101, 16648–16652 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yao, J., Nowack, A., Kensel-Hammes, P., Gardner, R. G. & Bajjalieh, S. M. Cotrafficking of SV2 and synaptotagmin at the synapse. J. Neurosci. 30, 5569–5578 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Poskanzer, K. E., Marek, K. W., Sweeney, S. T. & Davis, G. W. Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature 426, 559–563 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Wadel, K., Neher, E. & Sakaba, T. The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release. Neuron 53, 563–575 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Yang, Y. M. et al. Septins regulate developmental switching from microdomain to nanodomain coupling of Ca(2+) influx to neurotransmitter release at a central synapse. Neuron 67, 100–115 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kawasaki, F., Hazen, M. & Ordway, R. W. Fast synaptic fatigue in shibire mutants reveals a rapid requirement for dynamin in synaptic vesicle membrane trafficking. Nature Neurosci. 3, 859–860 (2000). This paper shows that mutational inactivation of dynamin in Drosophila results in synaptic fatigue, in spite of a full complement of synaptic vesicles, indicating a potential function for dynamin in exocytic–endocytic coupling.

    Article  CAS  PubMed  Google Scholar 

  84. Kawasaki, F. & Ordway, R. W. Molecular mechanisms determining conserved properties of short-term synaptic depression revealed in NSF and SNAP-25 conditional mutants. Proc. Natl Acad. Sci. USA 106, 14658–14663 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Fenster, S. D. et al. Interactions between Piccolo and the actin/dynamin-binding protein Abp1 link vesicle endocytosis to presynaptic active zones. J. Biol. Chem. 278, 20268–20277 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Chen, Y. et al. Formation of an endophilin-Ca2+ channel complex is critical for clathrin-mediated synaptic vesicle endocytosis. Cell 115, 37–48 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Lai, M. M. et al. The calcineurin-dynamin 1 complex as a calcium sensor for synaptic vesicle endocytosis. J. Biol. Chem. 274, 25963–25966 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Liu, J. P., Sim, A. T. & Robinson, P. J. Calcineurin inhibition of dynamin I GTPase activity coupled to nerve terminal depolarization. Science 265, 970–973 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Daly, C. & Ziff, E. B. Ca2+-dependent formation of a dynamin-synaptophysin complex: potential role in synaptic vesicle endocytosis. J. Biol. Chem. 277, 9010–9015 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Henkel, A. W. & Betz, W. J. Monitoring of black widow spider venom (BWSV) induced exo- and endocytosis in living frog motor nerve terminals with FM1–43 Neuropharmacology 34, 1397–406 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Kuromi, H. & Kidokoro, Y. Selective replenishment of two vesicle pools depends on the source of Ca2+ at the Drosophila synapse. Neuron 35, 333–343 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Zefirov, A. L., Abdrakhmanov, M. M., Mukhamedyarov, M. A. & Grigoryev, P. N. The role of extracellular calcium in exo- and endocytosis of synaptic vesicles at the frog motor nerve terminals. Neuroscience 143, 905–910 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Kuromi, H., Honda, A. & Kidokoro, Y. Ca2+ influx through distinct routes controls exocytosis and endocytosis at drosophila presynaptic terminals. Neuron 41, 101–111 (2004). This paper provides evidence in favour of distinct types of calcium channels that regulate synaptic vesicle exocytosis and endocytic retrieval at the Drosophila neuromuscular junction.

    Article  CAS  PubMed  Google Scholar 

  94. Kuromi, H., Ueno, K. & Kidokoro, Y. Two types of Ca2+ channel linked to two endocytic pathways coordinately maintain synaptic transmission at the Drosophila synapse. Eur. J. Neurosci. 32, 335–346 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Yamashita, T., Eguchi, K., Saitoh, N., von Gersdorff, H. & Takahashi, T. Developmental shift to a mechanism of synaptic vesicle endocytosis requiring nanodomain Ca2+. Nature Neurosci. 13, 838–844 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Igarashi, M. & Watanabe, M. Roles of calmodulin and calmodulin-binding proteins in synaptic vesicle recycling during regulated exocytosis at submicromolar Ca2+ concentrations. Neurosci. Res. 58, 226–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Wu, X. S. et al. Ca(2+) and calmodulin initiate all forms of endocytosis during depolarization at a nerve terminal. Nature Neurosci. 12, 1003–1010 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Sakaba, T. & Neher, E. Calmodulin mediates rapid recruitment of fast-releasing synaptic vesicles at a calyx-type synapse. Neuron 32, 1119–1131 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Anggono, V. et al. Syndapin I is the phosphorylation-regulated dynamin I partner in synaptic vesicle endocytosis. Nature Neurosci. 9, 752–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Kuromi, H., Yoshihara, M. & Kidokoro, Y. An inhibitory role of calcineurin in endocytosis of synaptic vesicles at nerve terminals of Drosophila larvae. Neurosci. Res. 27, 101–113 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Rizo, J. & Rosenmund, C. Synaptic vesicle fusion. Nature Struct. Mol. Biol. 15, 665–674 (2008).

    Article  CAS  Google Scholar 

  102. Augustine, G. J., Santamaria, F. & Tanaka, K. Local calcium signaling in neurons. Neuron 40, 331–346 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Fouquet, W. et al. Maturation of active zone assembly by Drosophila Bruchpilot. J. Cell Biol. 186, 129–145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mukherjee, K. et al. Piccolo and bassoon maintain synaptic vesicle clustering without directly participating in vesicle exocytosis. Proc. Natl Acad. Sci. USA 107, 6504–6509 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Siksou, L. et al. A common molecular basis for membrane docking and functional priming of synaptic vesicles. Eur. J. Neurosci. 30, 49–56 (2009).

    Article  PubMed  Google Scholar 

  106. Fernandez-Busnadiego, R. et al. Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography. J. Cell Biol. 188, 145–156 (2010). References 105 and 106 provide ultrastructural evidence for the existence of tethers connecting synaptic vesicles to the active zone.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hallermann, S. et al. Naked Dense Bodies Provoke Depression. J. Neurosci. 30, 14340–14345 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bai, J., Hu, Z., Dittman, J. S., Pym, E. C. & Kaplan, J. M. Endophilin functions as a membrane-bending molecule and is delivered to endocytic zones by exocytosis. Cell 143, 430–441 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jin, Y. & Garner, C. C. Molecular Mechanisms of Presynaptic Differentiation. Annu. Rev. Cell Dev. Biol. 24, 237–262 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Owald, D. & Sigrist, S. J. Assembling the presynaptic active zone. Curr. Opin. Neurobiol. 19, 311–318 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Schoch, S. & Gundelfinger, E. D. Molecular organization of the presynaptic active zone. Cell Tissue Res. 326, 379–391 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Tsuriel, S. et al. Exchange and redistribution dynamics of the cytoskeleton of the active zone molecule bassoon. J. Neurosci. 29, 351–358 (2009).

    Article  CAS  Google Scholar 

  113. Meinrenken, C. J., Borst, J. G. & Sakmann, B. Calcium secretion coupling at calyx of held governed by nonuniform channel-vesicle topography. J. Neurosci. 22, 1648–1667 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Horn, R. & Marty, A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J. Gen. Physiol. 92, 145–159 (1988).

    Article  CAS  PubMed  Google Scholar 

  115. Rizzoli, S. O., Richards, D. A. & Betz, W. J. Monitoring synaptic vesicle recycling in frog motor nerve terminals with FM dyes. J. Neurocytol. 32, 539–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Zhang, Q., Li, Y. & Tsien, R. W. The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science 323, 1448–1453 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Royle, S. J., Granseth, B., Odermatt, B., Derevier, A. & Lagnado, L. Imaging phluorin-based probes at hippocampal synapses. Methods Mol. Biol. 457, 293–303 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schneggenburger, R. & Neher, E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889–893 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratories was supported by grants from the German Research Foundation (Deutsche Forschungsgemeinschaft; DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Haucke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Volker Haucke's homepage

Stephan J. Sigrist's homepage

Erwin Neher's homepage

Glossary

Active zone

(Often abbreviated to AZ.) An area in the presynaptic compartment that is specialized for rapid exocytosis and contains multidomain proteins acting as scaffolds in the organization of release sites.

Periactive zone

An array of endocytic proteins that surround the active zone and into which synaptic vesicle membranes are recycled following exocytosis.

Release site

Docking sites for synaptic vesicles within active zones that can be empty and accessible for a vesicle, occupied and ready for fusion, or empty and inaccessible.

Cytoplasmic matrix of the active zone

(Often abbreviated to CAZ.) An electron-dense largely detergent-resistant matrix comprising multidomain proteins that may form release sites for exocytosis.

Super-resolution light microscopic techniques

Forms of light microscopic technique that achieve spatial resolution of 50 to 100 nm, beyond the limit set by diffraction; they include stimulated emission depletion microscopy (STED), photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haucke, V., Neher, E. & Sigrist, S. Protein scaffolds in the coupling of synaptic exocytosis and endocytosis. Nat Rev Neurosci 12, 127–138 (2011). https://doi.org/10.1038/nrn2948

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2948

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing